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Soil moisture is an essential component for the planetary balance between land
surface water and energy. Obtaining long-term global soil moisture data is important
for understanding the water cycle changes in the warming climate. To date several
satellite soil moisture products are being developed with varying retrieval algorithms,
however with considerable missing values. To resolve the data gaps, here we have
constructed two global satellite soil moisture products, i.e., the CCI (Climate Change
Initiative soil moisture, 1989–2021; CCIori hereafter) and the CM (Correlation
Merging soil moisture, 2006–2019; CMori hereafter) products separately using a
Convolutional Neural Network (CNN) with autoencoding approach, which considers
soil moisture variability in both time and space. The reconstructed datasets, namely
CCIrec andCMrec, are cross-evaluatedwith artificial missing values, and further againt
in-situ observations from 12 networks including 485 stations globally, with multiple
error metrics of correlation coefficients (R), bias, root mean square errors (RMSE) and
unbiased root mean square error (ubRMSE) respectively. The cross-validation results
show that the reconstructed missing values have high R (0.987 and 0.974,
respectively) and low RMSE (0.015 and 0.032 m3/m3, respectively) with the
original ones. The in-situ validation shows that the global mean R between CCIrec
(CCIori) and in-situ observations is 0.590 (0.581), RMSE is 0.093 (0.093) m3/m3,
ubRMSE is 0.059 (0.058) m3/m3, bias is 0.032 (0.037) m3/m3 respectively; CMrec

(CMori) shows quite similar results. The added value of this study is to provide long-
term gap-free satellite soil moisture products globally, which helps studies in the
fields of hydrology, meteorology, ecology and climate sciences.
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1 Introduction

Soil moisture is one of the most important variables affecting hydrological and climatic
processes by affecting the exchanges of water and energy between the Earth’s surface and the
atmosphere (Schwingshackl et al., 2017). Soil moisture can influence the short-term weather
and long-term climatic processes by altering the physical, chemical, and biological interactions
at land-atmosphere interface (Jung et al., 2010; Mittelbach et al., 2012; Yang et al., 2016; Sang
et al., 2021). Being the major actor of vegetation photosynthesis, soil moisture affects the carbon
cycle processes of land surface (Seneviratne et al., 2010). It can also change the surface albedo

OPEN ACCESS

EDITED BY

Isa Ebtehaj,
Université Laval, Canada

REVIEWED BY

Khabat Khosravi,
Florida International University,
United States
Hamed Azimi,
Memorial University of Newfoundland,
Canada

*CORRESPONDENCE

Guojie Wang,
gwang@nuist.edu.cn

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and
Remote Sensing,
a section of the journal
Frontiers in Earth Science

RECEIVED 23 December 2022
ACCEPTED 27 January 2023
PUBLISHED 03 February 2023

CITATION

Hu Y, Wang G, Wei X, Zhou F, Kattel G,
Amankwah SOY, Hagan DFT and Duan Z
(2023), Reconstructing long-term global
satellite-based soil moisture data using
deep learning method.
Front. Earth Sci. 11:1130853.
doi: 10.3389/feart.2023.1130853

COPYRIGHT

© 2023 Hu, Wang, Wei, Zhou, Kattel,
Amankwah, Hagan and Duan. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 03 February 2023
DOI 10.3389/feart.2023.1130853

https://www.frontiersin.org/articles/10.3389/feart.2023.1130853/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1130853/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1130853/full
http://orcid.org/0000-0002-8348-6477
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1130853&domain=pdf&date_stamp=2023-02-03
mailto:gwang@nuist.edu.cn
mailto:gwang@nuist.edu.cn
https://doi.org/10.3389/feart.2023.1130853
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1130853


and soil thermal properties, consequently affecting the boundary layer
properties, such as cloud, precipitation, and evapotranspiration (Ma
et al., 1999; Cook et al., 2006; Guan et al., 2009).

Soil moisture has been widely investigated to understand drought
variability (Zhang et al., 2021a; Liu et al., 2021; Lu et al., 2021), flood
episodes (Wasko and Nathan, 2019; Eeckman et al., 2020), crop yields
(Rossato et al., 2017; Champagne et al., 2019), and forest fires (Rigden
et al., 2020; Thomas Ambadan et al., 2020). However, studies have
indicated significant soil moisture variability over time and space due
to climate, biology, soil properties, topography, and human activities
such as cultivation, fertilization, irrigation and consequently new soil-
formation (Korres et al., 2015). Therefore, it is of great significance to
obtain accurate soil moisture variations at local, regional and global
scales for many related hydrological, meteorological and ecological
applications.

Soil moisture data can be obtained from model simulations, site
measurements and satellite observations (Wang et al., 2019). The
model simulation often has strong uncertainty in accuracy, which
mostly relies on the land surface models to simulate the soil moisture
processes (Hu and Lv, 2015; Raoult et al., 2018). Observational soil
moisture is more reliable and can assist correcting biases or evaluating
the model simulated data (Huang et al., 2008; Yang et al., 2021).
Generally, the in-situmeasurement outperforms satellite observations
with higher accuracy, less affected by atmospheric and vegetation
conditions (Zhu et al., 2017). However, the site observations have
sparse distribution and are heavily limited by manpower and other
resources, which thus cannot well capture the soil moisture variability
of large spatial scales (Crow et al., 2012). Presently, the satellite remote
sensing technology has become the most effective tool for large-scale
soil moisture monitoring (Zeng et al., 2015). Compared with in-situ
measurements, satellite-based observations can capture the soil
moisture variability at regional and global scales with lower costs
(Yee et al., 2017). The microwave remote sensing has the advantages of
all-weather observation, making it a promising approach for retrieving
soil moisture of land surface (Stamenkovic et al., 2017). Nevertheless,
the satellite service life limits the temporal coverage of soil moisture
products (Karthikeyan et al., 2017). Meanwhile, there are considerable
data gaps in satellite soil moisture products due to scan width, dense
vegetation, atmospheric conditions, and also sensor failures, etc.
(Draper, 2018). There are also different qualities among these
products due to the used sensors and retrieval algorithms (Kim
et al., 2015a). Some studies have used data merging technology
make long-term soil moisture retrievals from different satellites, but
there are still considerable data gaps in the merged products (Liu et al.,
2009; Liu et al., 2012; Wagner et al., 2012; Kim et al., 2015b).

It is necessary to reconstruct the data gaps in satellite Earth
observations, and there are several such studies on hydrological
and meteorological variables (Long et al., 2014; Alvera-Azcárate
et al., 2016; Liu et al., 2017; Cui et al., 2020; Sun et al., 2020). For
instance, Wang et al. (2012) used a three-dimensional discrete cosine
transform (DCT-PLS) approach to fill the data gaps in satellite soil
moisture product (Wang et al., 2012); and Jing et al. (2018) used a
random forest (RF) model to estimate the missing soil moisture values.
Methods such as general regression neural network (GRNN) and
generalized linear model are also tested in the Tibet Plateau (Cui et al.,
2019) and the Midwestern United States (Llamas et al., 2020).
Generally, good performances can be achieved when it is a regional
study with relatively a small portion of missing values in the original
data. However, there are still challenges to effectively reconstruct the

missing values in large scale satellite products especially at global scales
(Guevara et al., 2021).

With the rapid increase of the data amount and computing
capacity, studies have tried to use the deep learning technology for
reconstructing Earth observations (Ma et al., 2019), which can
efficiently learn the spatio-temporal features and resolve the non-
linear relationships among the data (Nogueira et al., 2018). Although
the deep learning approach is believed to have significant advantages,
it is mainly applied to reconstruct soil moisture, land or sea surface
temperature with coarse resolution and regional scales. For instance,
Fang et al. (2017) used a Long-Short-Term-Memory network to
reconstruct soil moisture of United States; Wu et al. (2019) used a
multi-scale feature connected convolutional neural network to
reconstruct land surface temperature of Europe and Eastern China;
Barth et al. (2020) used a Data INterpolating Convolutional network
to reconstruct sea surface temperature with lower error and higher
variability. Although there are several deep learning approaches to fill
the data gaps in Earth observations, limited work is done to
reconstruct long-term global soil moisture from satellites (Zhang
et al., 2021b).

In this study, we have adopted a convolutional neural network
(CNN) with autoencoding approach to reconstruct two soil moisture
retrievals from satellites for the sake of long-term gap-free daily
products. For this, a large database of in-situ global soil moisture
measurements from 12 networks, consisting of 485 stations totally, is
used to evaluate the reconstructed products with multiple error
metrics. Such gap-free global products are urgently needed by
scientific researches of multi-disciplinary fields including hydrology,
meteorology, ecology and climate sciences.

2 Materials and methods

2.1 Data description

In our study, two global daily soil moisture products, namely the
climate change initiative soil moisture prodcut (CCIori) (Dorigo, et al.,
2017; Gruber et al., 2019; Preimesberger et al., 2020) and the
correlation merging soil moisture product (CMori) (Hagan et al.,
2020), are used. Both datasets are daily products merged from
multiple satellites and gridded at 0.25° horizontal resolution. The
applied datasets have been widely validated using in-situ observations,
and they are indicated to be amongst the best satellite soil moisture
products with good data promising (Dorigo, et al., 2017; Gruber et al.,
2019; Hagan et al., 2020; Preimesberger et al., 2020). The CCI data is
combined with active and passive microwave sensors from multiple
satellites. The passive microwave soil moisture data include the
Scanning Multichannel Microwave Radiometer (SMMR), the
Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall
Measuring Mission Microwave Imager (TRMM/TMI) (Owe et al.,
2008), the Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E) (Njoku et al., 2003), the WindSat
(Parinussa et al., 2011), the Soil Moisture Ocean Salinity (SMOS)
(Kerr et al., 2001), the Advanced Microwave Scanning Radiometer 2
(AMSR2) (Parinussa et al., 2015), the Soil Moisture Active Passive
(SMAP) (Entekhabi et al., 2010), the Global Precipitation
Measurement Microwave Imager (GMP/GMI) (Hou et al., 2014)
and the Fengyun-3 (FY-3) (Yang et al., 2012) respectively. We used
the most recent CCI version 7.1 combined soil moisture data. The CM
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data is merged from six passive microwave products, including SSM/I,
TRMM/TMI, AMSR-E, WindSat, AMSR2 and FY-3B satellites. The
CM data is also merged using the CCI scheme with however different
merging criteria. CCI merges data by minimizing the error while CM
merges data by maximizing the correlation (Hagan et al., 2020). In this
study, the CCI ranges from 1989 to 2021 and the CM ranges from

2006 to 2019 respectively. Spatially, we have limited both data to
60°S–60°N, owing to the frozen soil (Ran et al., 2021) and ice cover
issues at high latitudes.

The percentages of missing data in CCIori and CMori are shown in
Figure 1. There are high percentages of missing data in highland
mountains and mid-high latitudes, mainly due to frozen soil in winter.

FIGURE 1
Percentages of missing values in (A) CCIori data during 1989–2021, and (B) CMori data during 2006–2019.

FIGURE 2
The partitioned regions for model training and the used 485 in-situ stations monitoring soil moisture. These stations are from 12 networks; JIANGSU
network is from China and the other are from the ISMN project.
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Apparently, there are more missing values in the CMori than the CCIori
data in most regions of the globe.

2.2 Data preprocessing

Due to different meteorological and terrestial conditions, the
spatio-temporal soil moisture patterns are different among
continents (Liu et al., 2018). We therefore partition the global land
into six regions as shown in Figure 2, considering two key aspects: 1)

The oceans have to be eliminated from the model training so as to
minimize its impact on terrestrial soil moisture; 2) these partitions
have some overlapping regions, so that the artifacts at edges can be
reduced during post-processing (Barth et al., 2020).

2.3 The deep learning (DL) model

Generally, traditional reconstruction methods can only consider
temporal information for time series reconstruction or only spatial

FIGURE 3
Structure of the used CNN model with autoencoding approach.

FIGURE 4
Shown in (A, B) are CCIori and CMori respectively; (C, D) are those with artificial missing values at random and in rectangular regions; CCIrec (E) CMrec (F)
are their respective reconstructions (unit: m3/m3).
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information for image reconstruction in the reconstruction process,
while cannot consider both spatial and temporal information of data
in the reconstruction process, which leads to a great uncertainty
(Zhang et al., 2021c). It has been shown that DL methods generally
outperform traditional data reconstruction methods with stronger
non-linear modeling capabilities (Nogueira et al., 2018; Ma et al., 2019;
Wu et al., 2019), and the CNN method is able to consider both
temporal and spatial information of the data in the reconstruction
process (Barth et al., 2020; Han et al., 2020; Luo et al., 2022). For the
above reasons, this study does not compare the performance of
different methods, but focuses on obtaining reconstructed data.

The used model here is a CNN structure with autoencoding
approach. The convolutional auto-encoder replaces the full
connection layer in the traditional auto-encoder with a convolutional
layer and a pooling layer, thus effectively reducing data transfer loss
(Yuan et al., 2019). The model contains five encoding and decoding
layers, and each layer has a convolutional kernel size of 3 × 3. The
pooling layer is used to reduce the size of the model, enhance
computational speed, and optimize model robustness during features
extraction. After each encoding layer, there is an average pooling layer
with a filter size of 2 × 2; they together constitute the encoder which can
convert the input feature into a latent-space representation. The

FIGURE 5
Selected regions with random and rectangular artificial missing values and their respective reconstructions (unit: m3/m3).

Frontiers in Earth Science frontiersin.org05

Hu et al. 10.3389/feart.2023.1130853

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1130853


decoder, consisting of convolutional layers and interpolation layers,
reconstructs the input data according to the potential spatial
representation obtained by the encoder. Meanwhile, skip connection
structures are added to the model to increase feature utilization. The DL
model obtains soil moisture values, longitude, latitude and time
information from CMori and CCIori data respectively, from which
the input feature is generated. The input feature includes not only
soil moisture at date T, but also the values at date T − 1 and T + 1.
Moreover, The seasonality calculated at date T is also added to the
feature, so that the DL model can consider the seasonal variability.
Longitudes and latitudes are added to the input feature, so that the DL
model can consider the influence of spatial positions on soil moisture.
During the network training process, the convolution operation enables
the model to consider the influence of the surrounding pixels on the
center pixel soil moisture. In summary, the used DLmodel can consider
information from both spatial and temporal dimensions, which is the
main advantage of the model. The model diagram is shown in Figure 3.
We chose RMSE as the loss function of the model to assess the error
between the predicted and true values, which also provides support for

the parameter adjustment of the model (LeCun et al., 2015). The
formula is as follows:

RMSE �
��������������
1
n
∑n

i�1 ŷi − yi( )2√
(1)

where ŷi represents the predicted value, yi represents the true value,
and n represents the number of data involved in the calculation of the
loss function. Adam optimizer is used to optimize the parameters. The
learning rate is set to 0.001, the exponential decay rate is set to 0.9 for
the first moment and 0.999 for the second moment. The regularization
parameter is set to 10−8.

2.4 Data post-processing

The DL model is trained for the six partitioned regions
respectively, from which the reconstructed data are then spatially
merged with edge artifacts removed. Soil moisture is considered
ineffective in densely vegetated areas; therefore we have eliminated

FIGURE 6
The scatter plots of artificial missing values and their reconstructions for CCI (A) and CM (B) data respectively. The colorbar indicates the data frequency.

FIGURE 7
The loss function of RMSE for CCI (A) and CM (B) data. The solid lines with different colors represent the loss functions of different regions, which are
consistent with each partition in Figure 2. Each epoch includes 366 iterations.
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the reconstructed values where the multiple-year averaged NDVI
(Normalized Difference Vegetation Index) is higher than 0.8 using
the Advanced Very High-Resolution Radiometer (AVHRR) product
(doi.org/10.7289/V5PZ56R6). The reconstructed values are also
eliminated where soil temperature is below 0°C in cold seasons
using ERA5-Land data a reference (doi.org/10.24381/cds.e2161bac).

2.5 Data quality evaluation

We use cross-validation and in-situ observations to evaluate the
quality of reconstructed data. Several error metrics including the

correlation coefficient (R), bias, root mean square error (RMSE)
and unbiased root mean square error (ubRMSE) are used. The
formula is as follows:

R � ∑n
i�1 yi − �y( )(ŷi − ŷ)�����������∑n

i�1 yi − �y( )2√ �����������∑n
i�1 ŷi − ŷ( )2√ (2)

bias � 1
n
∑n

i�1 ŷi − yi( ) (3)
ubRMSE � �������������

RMSE2 − bias2
√

(4)
where ŷi represents the original or reconstructed soil moisture, yi

represents the reference soil moisture, ŷ represents the mean value of

FIGURE 8
Spatial patterns of CCIori (A), CCIrec (B), CMori (C), and CMrec (D) on 1 August 2012 (unit: m3/m3).

FIGURE 9
Time series from CCIori and CMori and their reconstructions. Shown in (A, C) are from the same pixel, so are those in (B, D).
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original or reconstructed soil moisture, �y represents the mean value of
reference soil moisture, and the n represents the number of data
involved in the calculation.

For the cross-validation, we add 20% artificial missing values in
the CCIori and CMori data respectively, and also continous missing
values in rectangular regions. Then the convolutional auto-encoder is
used for reconstruction. Finally, the reconstructed artificial missing
values and their corresponding original values are used to evaluate the
reconstruction performance. For the in-situ validation, we use the
measured daily data obtained from multiple soil moisture stations in
the International Soil Moisture Network (ISMN) as the in-situ data for
the evaluation (Dorigo et al., 2013). Totally eleven networks are
selected from ISMN, which are distributed in North America and
Europe, Africa, Asia, and Oceania. An additional soil moisture
network from Jiangsu province, China is also used. Finally we have
twelve soil moisture networks which consist in-situ soil moisture
observations, spanning 2012–2017, from 485 stations for data
validation. The soil moisture networks are shown as point in
Figure 2 with different colors.

3 Results

In this study, we use a convolutional neural network with
autoencoding approach to reconstruct soil moisture datasets. The
reconstructed data effectively fills the gaps in the original data and
retains the data distribution and characteristics of the original

data. We first conduct cross-validation experiments by simulating
missing values to demonstrate the effectiveness of the deep
learning method in reconstructing soil moisture data. Then, we
use loss function, data spatial pattern, time series, and data
distribution to evaluate the data reconstruction results. At the
same time, we also choose the in-situ data to evaluate the accuracy
of the reconstruction data. The specific results for each section are
shown below.

3.1 Cross-validation results

We design an experiment of artifical missing values to prove the
feasibility and effectiveness of deep learning model in reconstructing
soil moisture, using data of the last year of CCIori (2021) and CMori

(2019). In the experiment, we add 20% missing values in random and
spatially continuous manners to the CCIori and CMori data
respectively. The processed data is put into the trained deep
learning model to obtain the reconstructions, denoted as CCIrec
and CMrec, respectively. Figure 4 shows the CCIori and CMori with
artificial missing values on 31 August 2021 and 31 August 2019 as
examples, and their reconstructions. It can be seen from Figure 4 that
the reconstructed artificial missing values shows quite similar spatial
patterns as the original data; particularly, the artificial missing values
in the rectangular regions are very well reconstructed. This indicates
the used DL model is capable of reconstructing not only random
missing values but also those of large regions.

FIGURE 10
CCIrec against CCIori (A), CMrec against CMori (B), CCIori against in-situ observations (C), CMori against in-situ observations (D), CCIrec against in-situ
observations (E), and CMrec against in-situ observations (F) from January 2012 to December 2017.
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To better understand the reconstruction performance, we
further select several small regions with artificial random and
rectangular missing values to show the results as in Figure 5.
Clearly, the reconstructed missing values in CCIrec and CMrec are
highly consistent with those in the CCIori and CMori data.
Particularly, it is found that the artificial missing values in all
the rectangular regions are very well constructed with very fine
spatial patterns. However, this is not surprising because the used
DL model considers soil moisture variability in both spatial and
temporal dimensions.

In addition, the scatter plots of the reconstructed artificial missing
values against the original ones are shown in Figure 6. It appears
clearly that the fited line (white dotted line in Figure 6) is close to 1:1
(white solid line in Figure 6), indicating the consistent density
distribution between the reconstructions and original values.
Meanwhile, they have high correlation coefficients and low RMSE.
R for CCIori and CCIrec is 0.987 and RMSE for them is only 0.015 m3/
m3. For CMori and CMrec, R is 0.974 and RMSE is 0.032 m3/m3.
Obviously, R is higher for the CCI data than the CM data, and RMSE is
vise versa. This is reasonable because there are apparently more
missing values in the CM data which can largely affect the training
of DL model. However, their differences of R and RMSE is relatively
limited; this implies that the used DL model can still fulfill the
reconstruction task even if there is a large portion of missing
values in the original data.

The above results of cross-validation indicates that the used DL
method is highly capable of reconstructing the missing values in the

original soil moisture data, which proves that the soil moisture data
reconstructed by this method has good credibility.

3.2 Loss function

To optimize parameters of the DL model, the loss function of each
iteration is computed using RMSE, which is shown in Figure 7. Since
the global land is partitioned into six regions (Figure 2) for the
reconstruction, their loss curves are shown in Figure 7 respectively.
The loss values of CCI and CM data in different regions are initially all
above 0.05, which gradually decrease with increasing iterations and
finally stabilize after 200 epochs. Although all the loss functions are
stabilized below 0.05, they are different for the partitioned regions
owing to different data properties.

3.3 Spatial patterns

The spatial patterns of CCIori and CMori as well as their
reconstructions on 1 August 2012 is used as an example to better
illustrate the results. Clearly, although there are large regions of
missing values in CCIori (Figure 8A) and CMori (Figure 8C), their
spatial patterns are very well reconstructed as shown in Figures 8B, D
respectively. It is worth noting that, values are masked out in CCIrec
and CMrec where either soil temperature is below 0°C or Normalized
Difference Vegetation Index (NDVI) is larger than 0.8. Clearly, both

FIGURE 11
Boxplots of R, RMSE, ubRMSE and bias of CCIrec and CMrec evaluated with in-situ observations from the global International Soil Moisture Network
(ISMN).
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CCIrec and CMrec are rather consistent in their spatial patterns,
indicating such a reconstruction with DL method can effectively
resolve the data gaps in large space while preserve the spatial
features of the original data.

3.4 Time series

To further verify the soil moisture reconstruction in temporal
dimension, two pixels are selected to superimpose the original time

FIGURE 12
Boxplots of R, RMSE, ubRMSE and bias of CCIrec and CMrec evaluated with in-situ observations from twelve soil moisture networks across the globe.

FIGURE 13
Pixel-wise correlation coefficients between CCIrec with CMrec using data of their overlapping period.
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series onto the reconstructed ones as shown in Figure 9. The time
series spans from 1 January 2012 to 31 December 2017. While time
series in Figures 9A, C are derived from the same pixel, those in
Figures 9B, D are derived from a second one. It appears that, the
temporal changes of original data are well reconstructed considering
the variations at seasonal and finer time scales, although they are
slightly different in CCI and CM data. It can be seen that, CCI data has
smaller day-to-day variations than those in CM data. It is thus
indicated the used DL method can reliably reconstruct the
temporal variations of both CCI and CM data in presence of
considerable portion of missing values.

3.5 Global performance

The above analysis indicates the reconstructed data retains the
features of the original data in both spatial and temporal
dimensions (Figures 8, 9). To understand the general
performance of data reconstruction, we show the scatter plots of
the global reconstructions against the original data and in-situ
observations in Figure 10. The fitted data is quite close to 1:1 line
(white solid line in Figure 10), and the points are almost evenly
distributed on both sides of the fitted line. It appears R between
CCIrec and CCIori is 0.97, and RMSE is 0.019 m3/m3 (Figure 10A);
those metrics for CMrec and CMori is 0.96 and 0.031 m3/m3

(Figure 10B) respectively. It is indicated the CCI reconstruction
performs better than CM data. The validations of CCIrec and CMrec

with in-situ observations (Figures 10C, D) are similar to in-situ
observation verification results for CCIori and CMori (Figures 10E,
F). The data in Figures 10C, D are all distributed above the 1:1 line
(white solid line in Figure 10), which may indicate that the CCIrec
and CMrec data overestimate soil moisture to some extent. The data
distribution of CCIrec is more concentrated than CMrec. R between
CMrec and in-situ observations is 0.45 and 0.140 m3/m3

(Figure 10D), and those metrics for CCIrec and in-situ
observations is 0.61 and 0.099 m3/m3 (Figure 10C) respectively,
indicating better reconstruction results of CCI than CM.

3.6 Comparison with in-situ observations

Four metrics of R, RMSE, ubRMSE and bias are used to further
evaluate CCIrec and CMrec using global in-situ observations
(Figure 11). Generally speaking, R between CCIrec and in-situ
observations appears to be 0.65 on average, and that for CMrec is
0.42 on average. Apparently, CCIrec shows much higher correlations
with in-situ observations with smaller range among the stations.
Conversely, RMSE, ubRMSE and bias of CCIrec is much smaller
than those of CMrec, and their ranges are much smaller indicating
less uncertainties of these results. It is thus convincing that the derived
CCIrec is more consistent with the in-situ observations globally.

In Figure 12, we further show the boxplots of R, RMSE, ubRMSE
and bias of CCIrec and CMrec against in-situ observations from eleven
regional soil moisture from ISMN and the JIANGSU network in
addition. Metrics of satellite data show considerable variations in
different regions due to the factors such as satellite sensors, retrieval
algorithms and merging algorithms (Fu et al., 2019). Apparently, R
coefficients between CCIrec and in-situ observations in all the twelve
regions appears to be much higher than those for CMrec; on the

contrary, metrics of RMSE, ubRMSE and bias for CCIrec are largely
smaller than those for CMrec. It is thus indicated that CCIrec notably
outperforms CMrec in the studied soil moisture networks across the
globe.

3.7 Spatio-temporal consistency

It is of interest to understand the spatio-temporal consistency of
the reconstructed CCIrec and CMrec data, for which we computed their
pixel-wise correlation coefficients as shown in Figure 13. Generally,
CCIrec and CMrec are highly and positively correlated across most of
the global land, and their correlation coefficients can reach >0.8 in
transitional regions between wet and dry climate. However, in some
regions such as southwest China, they show slightly negative
correlation coefficients, indicating large discrepancy in both data
and we have to use them with caution. In densely vegetated
regions such as rainforest, the CCIrec and CMrec values are masked
out since microwave remote sensing can not penetrate dense
vegetation.

4 Conclusion and discussion

The added value of this study is generating of the longest global
gap-free soil moisture records from satellites with daily resolution,
which is urgently needed in Earth sciences. In this study, the DL
method with auto-encoder as the main structure can fully consider the
spatio-temporal information of the data itself to effectively reconstruct
the satellite-based soil moisture data with missing values. The
reconstructed datasets are cross-evaluated with artificial missing
values, and further againt in-situ observations with multiple error
metrics. The main results of this study are as follows: 1) Cross-
validation has shown that the DL method used in this study has
high reliability in reconstructing the missing values in satellite soil
moisture products. 2) The reconstructed data can well retain the
pattern of the original data in both space and time dimensions. 3) In-
situ validations have shown that CCIrec is much better than CMrec. In
general, the long-term global gap-free soil moisture data reconstructed
in this study can provide credible support for the development of
related research.

The contribution of this study is to effectively solve the problem
of missing values in long-term satellite-based soil moisture
products. At present, the reconstructed CCIrec is the longest gap-
free soil moisture data under the premise of daily resolution, which
is expected to contribute to water cycle studies in the warming
climate. Most of the reconstruction work use single satellite-based
soil moisture data for reconstruction (Fang et al., 2017; Zhang et al.,
2021c), limited by the service life of the satellite, these data time
coverage is short, difficult to obtain long-term reconstruction data.
Compared with reconstruction work based on similar satellite
merging soil moisture data (Zhang et al., 2021b; Guevara et al.,
2021), our reconstructed data have larger spatial scale and higher
temporal resolution. At the same time, compared with the global
reconstruction work, we partition the global land into six regions for
reconstruction, because the local model can better learn regional
differences and help improve training efficiency compared with the
global-scale model using global data (Chen et al., 2021). In this
study, we find that the reconstructed data has a consistency with
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original data; but in comparison with the in-situ data, the accuracy
evaluation index of the reconstructed data are slightly lower than or
the same as those of the original data. Because only the soil moisture
information is used for reconstruction, so that the accuracy of the
reconstructed data is difficult to exceed the accuracy of the original
data. This result is consistent with the research results of Zhang et al.
(2021c). Barth et al. (2022) pointed out in the latest research that
using more variables that are strongly associated with the
reconstructed data as input to the data reconstruction process
can improve the reconstruction effect to some extent. In future
studies, researchers can add more variables closely related to soil
moisture as CNNmethod inputs, such as precipitation, temperature
and evapotranspiration, in the process of reconstructing soil
moisture to try to improve the reconstruction results of soil
moisture.

The main disadvantage of the method used in this study is that
although temporal information is considered to some extent in the
reconstruction process, it still has some limitations, i.e., when
reconstructing soil moisture data at date T, only the effects of date
T + 1 and T − 1 can be considered, while it is difficult to consider the
effects of more distant dates on the reconstruction of soil moisture
data at date T. At the same time, the present method does not assign
different weights according to the distance from date T. Therefore, it
results in the same intensity of impact on the date T data
reconstruction for dates that are farther away from date T or for
dates that are closer. In future research, researchers can try to
introduce recurrent neural network modules into the CNN method
as a way to achieve the purpose of considering the influence of more
distant dates on the reconstructed date T and assigning different
weights according to the distance from the reconstructed date T
during the reconstruction process.
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