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Fatty acids, alkanones and
alcohols from a major lower
Triassic low-permeability
petroleum reservoir
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Marina Milovic! and Omid H. Ardakani®?

'Geological Survey of Canada, Natural Resources Canada, Calgary, AB, Canada, >GNS Science, Lower
Hutt, New Zealand, *Department of Geoscience, University of Calgary, Calgary, AB, Canada

For the first time, polar organic compounds in extracted bitumen from the Lower
Triassic Montney Formation have been analyzed. This stratigraphic unit is one of
the most prolific low-permeability reservoirs in Western Canada. However, its
organic geochemical characterization is a challenge due to low biomarker
concentration in the liquids and frequent mixing of gas/condensate
hydrocarbons. Since typical biomarkers were not available, this study focused
on another group of molecules, polar oxygen-compounds, which were
derivatized and subsequently resolved using chromatographic techniques. In
the polar fractions, based on their contrasting molecular distributions, n-fatty
acids and alkan-2-ones do not seem to share a common origin and do not have
an apparent association with the n-alkanes. This study is also the first report of
1,13-, 1,14- and 1,15-diols in fossil organic matter; and in carbon number
ranges of Cy5-Cyg, C16-Cyg and Cy7-Cyg respectively. The similar distributions
of 1,14- 1,15-diols suggests a common origin for these compound classes,
whereas theand 1,13-diols seem to derive from a different source or mechanism.
A series of alkan-3-ols has also been identified in the C;,-C,g range, sharing a
common distribution pattern with the n-fatty acids. The large variability detected in
the molecular distribution of oxygen-containing aliphatic compounds introduces the
question whether they may record a geochemical signature that precedes thermal
degradation and hydrocarbon migration events within Montney reservoirs.
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1 Introduction

In the Western Canadian Sedimentary Basin, a significant amount of petroleum
resources is currently produced from the Lower Triassic Montney Formation
(unconventional estimated reserves at 12,719 billion m® of natural gas, 14,521 million
barrels of natural-gas-liquids, and 1,125 million barrels of oil, BC Oil and Gas Commission,
2012; Rokosh et al., 2012). Hydrocarbons in the Montney Formation are thought to originate
from thermal degradation of migrated oil. This is based on the fact that the organic matter in
Montney mostly consists of pore-filling solid bitumen (Sanei et al., 2015; Wood and Sanei,
2016; Wood et al, 2018). Maximum burial and thermal maturity reached in the Late
Cretaceous/Early Paleogene caused thermal cracking of accumulated hydrocarbons which
led to the petroleum accumulations we know today (Wood and Sanei, 2016; Ducros et al.,
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2017; Euzen et al, 2021). Primary organic matter has also been
identified within Montney (Ardakani et al., 2022). However, the
relative contribution from in-situ kerogen to the petroleum
accumulations remains unknown. Source rock candidates include
the Middle Triassic Doig Formation, the Lower Jurassic Gordondale
Member of the Fernie Formation, and the Montney Formation
(Alan and Creaney, 1991; Ejezie, 2007; Euzen et al, 2021).
Nonetheless, fluid to source correlations to date (e.g., based on
biomarkers) continue to be rather inconclusive.

Recent studies on gas hydrocarbons have facilitated the
definition of hydrocarbon play boundaries within Montney (e.g.,
Cesar et al., 2020b; Cesar et al., 2021), as well as potential gas
migration pathways (Wood and Sanei, 2016; Euzen et al., 2021;
Wood et al, 2022) using a molecular approach. The overall
geochemical signature of produced gases from these fields seems
to be controlled by thermal maturity effects and fluid mixing due to
migration (Cesar et al., 2020a; Cesar et al., 2021; Cesar et al., 2022;
Wood et al.,, 2022). As a result, gas geochemical tools alone have not
been successful discriminators for the identification of the source(s)
of hydrocarbons.

In the liquid phase, geochemical assessment has been limited by
the low abundance of biomarkers (e.g., hopanes and steranes) in the
produced condensates and light oils. In the Montney Formation,
little has been studied regarding the geochemistry of light
hydrocarbons, which often cannot be detected in rock extracts
due to volatility loss during sample handling/preparation,
limiting fluid to source correlation. Research on condensate
samples has suggested the possibility of mixtures of migrated
hydrocarbons with hydrocarbons derived from original kerogen
of the Montney Formation (Cesar et al., 2020a).

In contrast to molecules in the gas-condensate range, there is a group
of compounds that have not been analyzed yet, these are polar
compounds in the resin fraction of soluble bitumen. It is known that
resins are scarce (or absent) in the produced condensates and light oils.
However, they are preserved in the solid bitumen residue within the
reservoir, and potentially record a fingerprint of the original source of
migrated hydrocarbon that charged Montney productive intervals. At the
same time, these polar compounds can be a source of gas/condensate,
particularly when thermal alteration (cracking) takes place (e.g, Michels
et al,, 2000) as is the case of the Montney Formation.

In this study, and for the first time, we characterize polar
compounds of extracted bitumen from the Montney Formation
in order to 1) identify the main oxygen-aliphatic compound classes,
2) investigate associations between them, and 3) discuss their
potential as source discriminators.

2 Geological setting

The Montney Formation (Figure 1A) deposited in the
northwestern margin of the North American craton during the
Lower Triassic (Davies, 1997; Davies et al., 2018; Zonneveld and
Moslow, 2018) in a mixed siliciclastic-carbonate depositional
environment that accumulated shoreface to offshore, and
turbidite sediments (Davies, 1997; Davies et al., 2018; Zonneveld
and Moslow, 2018). The lithology includes a complex succession of
dolomitic siltstone, minor component of very fine-to fine-grained
sandstone with local bioclastic carbonate rocks and minor shale
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intervals (Davies, 1997; Davies et al., 2018; Zonneveld and Moslow,
2018).

The Montney Formation is divided into three main members
(Davies, 1997; Davies et al,, 2018; Zonneveld and Moslow, 2018). The
Lower Member corresponds to multi-cyclic very fine-grained sandstone
and dolomitic siltstone. It overlies the Triassic unconformity on Permian
and/or older strata, and it is overlain by the base of the Middle Member in
the east (where present), and by the Upper Member in the west. The
Middle Member consists of a thick succession of bituminous dolomitic
siltstone with interbedded very-fine grained sandstone. It overlies the
Lower Member and is marked by a boundary of reworked clasts of the
underlying units. The Upper Member corresponds to multicyclic,
coarsening-up siltstones and very fine sandstones dominated by
storm-related fabrics, with local dolomitized coquina facies; and it is
overlain by the Doig Formation. The Upper Member is primarily seen in
the British Columbia section (Supplementary Figure S1). In addition, the
Montney stratigraphic succession deeps towards the southwest, thus the
sections in British Columbia are often more mature than those from
Alberta (BC Oil and Gas Commission, 2012; Rokosh et al., 2012). The
general schematic stratigraphy is illustrated in Figure 1B.

3 Materials and methods
3.1 Sample preparation

A total of 15 powdered and homogenized rock samples were
solvent-extracted using dichloromethane (DCM) in a Soxhlet
apparatus for 24h. The general characteristics of the samples are
listed in Table 1. The samples selected for this study correspond to
core intervals from the different stratigraphic Members (Lower, Middle,
and Upper), different locations, and different thermal maturity levels as
indicated by rock pyrolysis (Tmax) and aromatic ratios (Table 1).

Polar fractions were obtained from the extracted bitumen using
column chromatography by elution with methanol once saturate and
aromatic hydrocarbon fractions had been eluted with n-pentane and
DCM:n-pentane, respectively. Aliquots of the polar fractions
(0.5-1 mg) were derivatized in 200 puL of pyridine and 300 pL of
N,O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA) at 70°C for 1h.
Then, the derivatized fractions were dried under a gentle stream of
nitrogen at 35°C and re-dissolved in n-hexane for molecular analysis as
explained below. Procedural blanks were prepared and analyzed to
monitor for any contamination during sample preparation, and
instrument blanks and standards were run to check for instrument
carry over or any other instrumental anomalies. Nonadecanol was used
as internal standard.

3.2 Molecular analysis

Derivatized fractions were analyzed via gas chromatography time-
of-flight mass spectrometry (GC-QTOF-MS) on an Agilent 7890BGC -
7200 QTOF mass spectrometer equipped with a DB5-ms column
(60m x 025um id. x 0.25mm ft), using splitless injection and
helium as carrier gas (1.3 mL/min). The temperature program of the
GC oven started at 80°C for 1 min, then ramped at 5°C/min to 325°C and
held at the final temperature for 30 min. Compound identification was
carried out using relative retention times and characteristic mass spectra.
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stratigraphic column (after Zonneveld and Moslow, 2018).

The distribution of n-alkanes in the saturate fractions were
determined using GC with flame ionization detection (FID) analysis of
the saturated hydrocarbon fractions on an Agilent 7890B GC-FID. A
30 m x 0.25 mm x 0.25 pm DB-1 fused silica capillary column was used,
with helium as carrier gas. The samples were injected using split injection
with the injector temperature set at 300°C. The temperature program of
the GC oven started at 60°C, then ramped at 6’C/min to 300°C for 30 min.
The FID temperature was maintained at 300°C.

4 Results
4.1 Fatty acids

C;5-Csq n-fatty acids (carboxylic acids) are present in all samples
(Figure 2A, m/z 117) and typically dominated by C;5-Cyp
(Figure 2A; Figure 3A). samples X12140 and
X12143 have bimodal distributions with maximum abundance at
Ci3-Cio and Cyy-Cyy (Figures 3B, D). Samples X12141 and

However,
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X12148 display unimodal distributions that are to some extent
flat tops between C,9 and C,; (Figure 3C).

4.2 Alkanones

Alkanones, or more specifically alkan-2-ones, were identified
using the m/z 58 as shown in Figure 2B, usually in the C,;-C,;
carbon range. All the samples exhibit unimodal distributions with
illustrated in Figure 3.
Predominance of even carbon numbered homologues was found
in samples X12140, X12142, X12143, X12148, X12149, X12151, and
X12152 (e.g., Figure 3D).

maximum abundance of C,, as

4.3 Diols

Figure 4 presents the diols detected in the studied samples,
which include 1,13-diols (m/z 257), 1,14-diols (m/z 271), and 1,15-
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TABLE 1 Montney Formation core rock samples included in this study. Core locations shown in Figure 1A.

Sample Core/province Member Utiies TMNr? Potential source
Ph®
X12139 C16-10-88-23W6/British Upper 446 0.90 1.42 Montney migrated? (Watt et al., 2022)
Columbia
X12140 C16-10-88-23W6/British Upper 458 0.88 1.43
Columbia
X12141 06-36-071-04W6/Alberta Middle 434 0.60 0.84
X12142 06-36-071-04W6/Alberta Middle 440 0.60 1.12 Montney migrated? (Watt et al., 2022) + in-situ Montney (Ardakani
et al., 2022)
X12143 11-27-077-06W6/Alberta Lower 441 0.56 0.80
X12144 C16-10-88-23W6/British Upper 447 0.90 1.48 Montney migrated? (Watt et al.,, 2022)
Columbia
X12145 C16-10-88-23W6/British Upper 455 0.90 1.49
Columbia
X12146 C16-10-88-23W6/British Upper 453 0.91 1.50
Columbia
X12147 06-33-072-25W5/Alberta Middle 428 0.61 0.79 Montney migrated? (Watt et al., 2022) + in-situ Montney (Ardakani
et al., 2022)
X12148 06-36-071-04W6/Alberta Middle 440 0.64 0.78
X12149 C16-10-88-23W6/British Upper 456 0.91 1.53 Montney migrated? (Watt et al., 2022)
Columbia
X12150 C16-10-88-23W6/British Upper 439 0.91 1.31
Columbia
X12151 C16-10-88-23W6/British Upper 463 0.90 1.45
Columbia
X12152 06-33-072-25W5/Alberta Middle 430 0.61 0.51 Montney migrated? (Watt et al., 2022) + in-situ Montney (Ardakani
et al., 2022)
X12153 11-27-077-06W6/Alberta Lower 438 0.60 0.91

“TMNT: trimethylnaphthalene ratio calculated as 1,3,7-trimethylnaphthalene/(1,3,7 + 1,2,5)-trimethylnaphthalene, peak areas from the m/z 170; TMNr increases with thermal maturity (van

Aarssen et al., 1999).

"Pr/Ph: pristane/phytane; using peak areas from the total ion chromatogram (e.g., Peters et al., 2005).

diols (m/z 285). These compound classes were identified in the
ranges C;5-Cyg, Cj6-Cro, and C;7-Cyo, respectively.

The main carbon number distribution patterns of the diols
can be observed in Figure 5. The 1,14- and 1,15- diols (Figures
5B, C) generally decrease in abundance with increasing carbon
number at variable slopes, except samples X12140 and
X12143 which register higher abundances in the C,,, range.
Another aspect to notice is the preference for odd carbon
numbers in the 1,14-diols, particularly in the C,o, range
(Figure 5B). The odd preference is less emphasized in the
1,15-diols yet observed in samples X12145, X12151 and
X12152 (e.g., Figure 5C). The 1,13-diols exhibit a more
variable molecular distribution though with a preference for
Cig and odd carbon numbers after C,o (Figure 5A).

4.4 Alkan-3-ols

For this compound series (Figure 6A; Supplementary Figure S2),
the chain length varied from C;, to Cyg (sometimes Cyg, visible).
The distribution patterns were found to be very similar to those of
the fatty acids (Figure 3, Figure 6B): 1) mixed/bimodal distribution
(e.g., X12140, X12143), 2) flatten top (e.g., X12141, X12148), and 3)

Frontiers in Earth Science 04

decreasing abundance with increasing carbon number after
maximum peak (the rest of the samples). Certain preference for
C,o and C,, was observed in samples X12140, X12142-X12146, and
X12148-X12151.

5 Discussion

5.1 The significance of fatty acids in fossil
organic matter from the Montney Formation

In recent sedimentary organic matter, fatty acids have typically
been attributed to algal and bacterial (C,4-Cyp; Perry et al., 1979;
Cranwell et al., 1987; Naeher et al., 2022), aquatic macrophytes (Cy,-
C,; Cranwell et al., 1987; Volkman et al., 1999; Naeher et al., 2022)
and terrestrial plant sources (Cps-Csp; Ricley et al., 1991; Freeman
and Pancost, 2014; Naeher et al., 2022). It is also considered that
terrestrial plants synthesize longer chain fatty acids preferably
(Wang and Liu, 2012; Naafs et al., 2019). However, chain length
alone is not always diagnostic of the source of these compounds,
particularly in environments with aquatic and terrestrial organic
matter inputs (Fang et al., 2014). As well, the molecular distribution
of n-alkanes and n-fatty acids are expected to be similar when the
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n-alkanes derive from the decarboxylation of the acids during
deposition/diagenesis (Barakat et al., 2000; Naafs et al., 2019).

In fossil organic matter (e.g, petroleum, bitumen), the
evaluation of linear carboxylic acids is less common because of
their degradation with thermal maturity and many other biomarkers
being available for petroleum geochemistry studies (e.g., hopanes,
steranes, aromatic markers, etc.). However, we must highlight the
work by Jaffé and Gallardo (1990), Jaffé et al. (1992), Jaffé and
Gallardo (1993), who suggested that most of the fatty acids identified
in fossil organic matter are originally protected within more
complex geo-polymer structures (later kerogen, bitumen) and
released with increasing thermal maturity before the peak of oil
generation. Free fatty acids, instead, would not be preserved but
degrade to n-alkanes and/or other compounds during diagenesis.
Therefore, opposite to recent environments, we may infer that in
petroleum fluids and bitumen extracts from mature source rocks,
the fatty acids should not be expected to have a distribution pattern
similar to the n-alkanes as the latter would not necessarily be
degradation products of the former (Jaffé and Gallardo, 1990;
Jaffé et al., 1992; Jaffé and Gallardo, 1993).

This may explain why in our samples the distribution of n-fatty
acids generally differs from the distribution of n-alkanes. For
instance, samples X12140 and X12143, from completely different
locations and stratigraphic intervals (Table 1; Figure 1), have a
bimodal distribution pattern of fatty acids in common (Figures 2B,
D). The same bimodality is not expressed in the n-alkanes
distribution of these samples. It could be argued that a second
group of fatty acids with highest peaks in the C,,-C,, range (Figures
2B, D) represents an additional terrestrial organic matter input.
However, additional evidence is required to confirm terrestrial
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contribution. As well, bimodal fatty acids distribution could
simply result from hydrocarbon mixing before maximum burial
of the Montney Formation. Post maximum burial migration events
in Montney (e.g., during the Eocene uplift) consisted of gas/
condensate which unlikely carried fatty acids due to insolubility
of the latter.

It is important to mention that in sample X12143, primary
organic matter was identified besides solid bitumen (Ardakani et al.,
2022). Therefore, we cannot rule out the possibility of fatty acids
bimodality resulting from the mixture of migrated hydrocarbons
and in-situ organic matter.

Samples X12141 and X12148 are also peculiar because they
showed a flatten-top distribution pattern of n-fatty acids, which is
different to the n-alkanes from the same samples. These samples
come from the same well (Table 1) and Middle Montney Member
although 40 m apart from each other. At this stage, it is challenging
to propose source variations attributed to a flatten profile, but these
samples could also represent mixtures of multiple-sourced
hydrocarbons.

In the rest of the samples, fatty acids abundances generally
decrease with increasing carbon number after C4-C,o (Figure 2A;
Figure 3A), similar to the n-alkanes. However, there is no obvious
indication that the latter are degradation products of the fatty acids.
For instance, if decarboxylation was taking place (loss of a COOH
group), the highest peak in the n-alkane distribution should be
displaced one carbon number less compared to the highest peak of
the fatty acids, and that is not the case in any of the samples (see also
Supplementary Table S4).

We must emphasize that comparisons between fatty acids and
n-alkanes are also limited by the fact that the current distribution of
n-alkanes in the Montney Formation has largely resulted from
thermal cracking of migrated hydrocarbons during Montney’s
maximum burial, and additional fluid migration/mixing during
the Eocene uplift (Wood and Sanei, 2016; Cesar et al., 2020a;
Wood et al., 2022).

It is also possible that the distribution of fatty acids is responding
to localized organic facies variations. A larger number of samples
and geochemical constraints will provide light on this matter.
Likewise, biodegradation cannot be ruled out although thermal
maturity might have overprinted the molecular distribution
ultimately.

5.2 The significance of alkan-2-ones in fossil
organic matter from the Montney Formation

Alkan-2-ones are commonly present in peat and peat-forming
vegetation (C,;-Css; Puttmann and Bracke, 1995; Zheng et al., 2007;
Naafs et al., 2019). In addition, bacterial and algal sources have been
found to generate these compounds in a variety of depositional
settings (Cy4-Csp; Grimalt et al., 1990; Lopez-Dias et al., 2013; Zhang
and Volkman, 2020). Although extensively studied in recent
environments, alkan-2-ones have been detected in fossil organic
matter of different thermal maturities with a moderate (or none)
odd over even predominance of carbon chain length (Grimalt et al.,
1990; George and Jardine, 1994; Leif and Simoneit, 1995; Strelnikova
and Serebrennikova, 2011; Jaraula et al., 2015). Similar to the case of
fatty acids, the low concentration of ketones in mature petroleum
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source rocks compared to other biomarkers has probably reduced
the interest in the analysis of these compounds in petroleum
(Alhassan and Anderson, 2013).

Zhang and Volkman (2020) reported an even over odd
predominance of alkan-2-ones in a torbanite from the Sydney
Basin, Australia, similar to the C-number predominance in
samples from our study. The Australian torbanite contains
organic matter type I and has vitrinite reflectance of 0.4 %Ro.
The same authors suggested that these compounds could have
derived from cleavage of C-O bonds in the kerogen and
indicated the presence of long-chain alkyl moieties in green algae
(Derenne et al, 1997; Zhang and Volkman, 2017). Despite the
difference in maturity, this example may explain the presence
and marine origin of alkan-2-ones in Montney samples since
there is no reported evidence of significant terrestrial organic
matter input in the Montney Formation.

We rule out alkan-2-one generation via decarboxylation of fatty
acids because of their different molecular distribution patterns.
Decarboxylation would have led to alkan-2-ones with one less
carbon atom, switching maximum peak heights towards lower
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carbon chains (Puttmann and Bracke, 1995; Lopez-Dias et al,
2013). Instead, the highest alkanone peak found in our samples
corresponds to a carbon chain (C,) longer than the highest peaks in
the fatty acid distribution (Ci5-Cio)
Supplementary Tables S1, S2). In addition, oxidation of n-alkanes

(Figure 2; Figure 3;
does not seem to be a potential generation pathway either because of
the contrasting molecular distribution pattern of both compound
classes (Figure 3, Supplementary Tables S2, S4).

5.3 The significance of alcohols in fossil
organic matter from the Montney Formation

Contrary to the case of fatty acids and alkan-2-ones, to our
knowledge, this is the first report ever of alkyl diols in fossil organic
matter.

In recent environments, these lipids typically consist of even-
numbered carbon chains with hydroxyl groups at C-13, C-14, or C-
15, and 28 to 32 carbon atoms (e.g., Rodrigo-Gamiz et al., 2016;
Rampen et al,, 2021). In the studied samples, diol distributions are
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Diols identified in the samples (e.g., X12153): (A) 1,13-diols, (B) 1,14-diols, (C) 1,15-diols.

characterized by an odd-numbered carbon preference after Cy, and
shorter chain length (less than 30 carbon atoms). It is possible that
the diols detected in this research are thermal breakdown products
of the original long-chain diols, and the loss of a methyl group by
thermal cleavage has switched the carbon length preference to odd
numbers.

Generally, 1,14-diols are considered to be sourced by specific
diatoms and are typically associated with upwelling zones (Koning
etal., 2001; Wakeham et al., 2002; Damste et al., 2003), whereas 1,15-
diols have been attributed to specific marine and freshwater algae
(Volkman et al., 1992, 1999) in recent organic matter. However, in
our sample set, 1,14- and 1,15- diols seem to share a common source
(Figures 7A, B). This is interpreted based on their markedly similar
distribution. In Figure 7A, we have plotted the ratios of the C;4-C;3
range to the C,)-C,, range for both compound classes and they
express an almost 1:1 correlation, with no significant thermal
maturity overprint (Figure 7B). Their mutual association cannot
be explained by their distribution in recent environments. It is
possible that in the Mesozoic, 1,14- and 1,15- diols were synthesized
by a common source/organism. The samples X12147 and
X12152 stand out in Figure 7 with values [C;4-Ci5]/[Cao-Csal
above three. They are the only two samples from the well 06-33-

Frontiers in Earth Science 07

072-25W5 (Middle Montney, Table 1), and local organic matter type
variations may be responsible for their uniqueness.

Contrary to 1,14-diols, 1,13-diols have been found to share a
source with 1,15-diols in recent depositional environments (e.g.,
Rodrigo-Gamiz et al., 2016; Rampen et al., 2021). However, in this
study, the distribution of 1,13-diols clearly differs from 1,14- and
1,15- diols (Figure 5A). Additionally, we noticed a marked
preference for C,;1,13-diol with respect to C,y and C,, in most
of the samples, and for C;31,13-diol in sample X12152 (Figure 5A).
Additional studies are necessary to investigate potential sources for
the 1,13 homologues, but their origin most likely differ from the
sources of 1,14- and 1,15- diols.

Another possibility is that the original distribution of alkyl-diols
has simply been overprinted by other geochemical phenomena (e.g.,
mineral-catalyzed isomerization/cyclization, biodegradation), to
which each compound class (1,13- versus 1,14- versus 1,15-) may
have a different susceptibility. Under such condition, our
interpretation of a common source for 1,14-diols and 1,15-diols
would not necessarily be the case.

The presence of alkan-3-ols seems to be closely related to the
fatty acids, probably sharing a common source since their molecular
distributions are significantly similar (Figure 3; Figure 6; Figure 7C).
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To our knowledge, this research is also the first time that alkan-3-ols
are reported in fossil organic matter. In recent environments, alkan-
3-ols have only been identified in surface-wax washings of
Primulaceae (Radulovic and Zivkovic Stosic, 2021) or are perhaps
usually not reported in studies of recent organic matter. At this stage,
an association with plant contribution is challenged by the limited
evidence of terrestrial organic matter contribution to Montney
hydrocarbons (e.g., Ardakani et al,, 2022). If we attempt to find
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5.4 Potential associations with the general
Montney Formation stratigraphy

To further investigate the applicability of oxygenated aliphatic
compounds as source discriminators, we divided the data in Lower,
Middle, and Upper members in Figure 7. The molecular
characteristics of the samples do not seem to be specific of a
particular Montney Member. The samples from the Upper
Member in British Columbia are more mature (Figure 7B). The
lack of differentiation among Montney Members might have
resulted from hydrocarbons migrating from the same source or
variable combinations of two or more sources.
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Although defining source discriminators of Montney petroleum
fluids remains a challenge, we have made evident that oxygenated
aliphatic compounds are suitable candidates to achieve such goal,
not only because they have been preserved, but also because of their
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variability in the samples. The characteristics of polar compounds
are also important because they have very unlikely been overprinted
by hydrocarbons that migrated during the Eocene, which mostly
consist of gas/condensate (very low concentration of polar
compounds). Therefore, the polar compounds from the extracted
bitumen are a closer approximation to the hydrocarbons that
originally migrated into Montney intervals before its maximum
burial.

From a broader perspective, it is intriguing that the
molecular distributions observed herein do not indicate clear
association with the generation mechanisms currently known
for the synthesis of these compounds in recent sediments.
Another pathway for investigation is to evaluate whether the
polar compounds studied were as sensitive to climate
variations as they are known to be in recent depositional
environments.

A final aspect that is important for low-permeability
reservoirs in the region is that the thermal degradation of
polar compounds might also be affecting other rock
properties such as organic porosity, which plays a key role in

hydrocarbon production.

6 Conclusion

Fatty acids, alkan-2-ones, diols and alkan-3-ols have been
identified in extracted bitumen from the Montney Formation.
This may represent the first time that 1,13-, 1,14- and
1,15- diols as well as alkan-3-ols are reported in fossil
organic matter.

Regardless of thermal maturation overprint on the original
signatures of the fatty acids merely based on their distribution,
we infer marine organic matter (<C,, range dominant) source.
Exceptions include samples X12140 and 12143 where a bimodal
molecular distribution was observed with additional maximum
peaks in C,, and C,, respectively. Further evidence is required to
suggest a terrestrial input in these samples. Both samples correspond
to different stratigraphic members and thermal maturity, thus the
bimodality is probably a consequence of the mixing of contrasting
hydrocarbon charges within those Montney sections before
maximum burial.

Based on their distinctive distribution pattern, fatty acids have
not been degraded to n-alkanes (e.g., via decarboxylation). Likewise,
the alkan-2-ones do not represent oxidation products of the
n-alkanes. Mechanisms to explain the preference for even-
numbered carbon chain of alkan-2-ones remain unknown though
even-chain ketones have been identified in Australian torbanites
previously.

In contrast to recent organic matter, in Montney Formation
the 1,14- and 1,15- seem to share a common source or
generation mechanism as expressed by their very similar
molecular distribution patterns. These and the 1,13-diols
could be their
counterparts or have otherwise precursors that have not
been identified to this date. The origin of 1,13-diols is not
clearly associated to the other alkyl diols as interpreted based

breakdown products of longer-chain

on their different molecular patterns.
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The highly similar molecular distribution of alkan-3-ols
and fatty acids suggest that they are biosynthetically related
and/or share a common source. Their origin from the
degradation of compounds with similar structure (e.g., 3-
hydroxy-fatty acids) remains unclear.

Ultimately, our research opens a new path in geochemical
Lower

screening of the unconventional Triassic Montney

Formation and conveys renovated interest in studying
oxygenated compound classes in fossil organic matter that had

scarcely been considered in recent years.
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