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Determining the eruption frequency-Magnitude (f-M) relationship for data-limited
volcanoes is challenging since it requires a comprehensive eruption record of the
past eruptive activity. This is the case for Melimoyu, a long-dormant and data-
limited volcano in the Southern Volcanic Zone (SVZ) in Chile with only two
confirmed Holocene eruptions (VEI 5). To supplement the eruption records,
we identified analogue volcanoes for Melimoyu (i.e., volcanoes that behave
similarly and are identified through shared characteristics) using a quantitative
and objective approach. Firstly, we compiled a global database containing
181 variables describing the eruptive history, tectonic setting, rock
composition, and morphology of 1,428 volcanoes. This database was filtered
primarily based on data availability into an input dataset comprising 37 numerical
variables for 438 subduction zone volcanoes. Then, we applied Agglomerative
Nesting, a bottom-up hierarchical clustering algorithm on three datasets derived
from the input dataset: 1) raw data, 2) output from a Principal Component Analysis,
and 3) weighted data tuned to minimise the dispersion in the absolute probability
per VEI. Lastly, we identified the best set of analogues by analysing the dispersion
in the absolute probability per VEI and applying a set of criteria deemed important
by the local geological service, SERNAGEOMIN, and VB. Our analysis shows that
the raw data generate a low dispersion and the highest number of analogues (n =
20). More than half of these analogues are in the SVZ, suggesting that the tectonic
setting plays a key role in the clustering analysis. The eruption f-M relationship
modelled from the analogue’s eruption data shows that if Melimoyu has an
eruption, there is a 49% probability (50th percentile) of it being VEI≥4.
Meanwhile, the annual absolute probability of a VEI≤1, VEI 2, VEI 3, VEI 4, and

OPEN ACCESS

EDITED BY

Nico Fournier,
GNS Science, New Zealand

REVIEWED BY

Chaochao Gao,
Zhejiang University, China
Tushar Mittal,
Massachusetts Institute of Technology,
United States

*CORRESPONDENCE

Vanesa Burgos,
burg0001@e.ntu.edu.sg

RECEIVED 14 January 2023
ACCEPTED 09 May 2023
PUBLISHED 24 May 2023

CITATION

Burgos V, Jenkins SF, Bono Troncoso L,
Perales Moya CV, Bebbington M,
Newhall C, Amigo A, Prada Alonso J and
Taisne B (2023), Identifying analogues for
data-limited volcanoes using hierarchical
clustering and expert knowledge: a case
study of Melimoyu (Chile).
Front. Earth Sci. 11:1144386.
doi: 10.3389/feart.2023.1144386

COPYRIGHT

© 2023 Burgos, Jenkins, Bono Troncoso,
Perales Moya, Bebbington, Newhall,
Amigo, Prada Alonso and Taisne. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Abbreviations: AGNES, AGglomerative NESting; CDF, Cumulative Distribution Function; GVP, Global
Volcanism Program; f-M, frequency-Magnitude; IQR, Interquartile Range; LOFZ, Liquiñe-Ofqui Fault
Zone; M, Magnitude; PC, Principal Component; PCA, Principal Component Analysis; PDC, Pyroclastic
Density Current; RCD, Relative Completeness Date; SVZ, Southern Volcanic Zone; VEI, Volcanic
Explosivity Index; VOTW, Volcanoes of the World.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 24 May 2023
DOI 10.3389/feart.2023.1144386

https://www.frontiersin.org/articles/10.3389/feart.2023.1144386/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1144386/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1144386/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1144386/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1144386/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1144386&domain=pdf&date_stamp=2023-05-24
mailto:burg0001@e.ntu.edu.sg
mailto:burg0001@e.ntu.edu.sg
https://doi.org/10.3389/feart.2023.1144386
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1144386


VEI≥5 eruption at Melimoyu is 4.82 × 10−4, 1.2 × 10−3, 1.45 × 10−4, 9.77 × 10−4, and
8.3 × 10−4 (50th percentile), respectively. Our work shows the importance of using
numerical variables to capture the variability across volcanoes and combining
quantitative approaches with expert knowledge to assess the suitability of
potential analogues. Additionally, this approach allows identifying groups of
analogues and can be easily applied to other cases using numerical variables
from the global database. Future work will use the analogues to populate an
event tree and define eruption source parameters for modelling volcanic hazards at
Melimoyu.

KEYWORDS

analogues, data-limited, eruption probability, frequency-magnitude relationship, long-
dormant, hierarchical clustering, principal compoment analysis

1 Introduction

Forecasting eruptions ideally requires a comprehensive eruption
record that is representative of past eruptive behaviour and from
which the probability of having a given eruption scenario can be
estimated. However, compiling these data can be extremely
challenging, especially for volcanoes with limited data due to
eruption under-recording. One of these data-limited volcanoes is
Melimoyu (Chile), with just two confirmed Holocene eruptions,
both VEI 5 (Geoffroy et al., 2018). We consider Melimoyu a long-
dormant volcano (i.e., as defined in Burgos et al. (2022a): “an active
or potentially active volcano without recorded eruptions within the
last 100 years”); the last confirmed eruption took place more than
1,800 years ago. According to the Specific Volcanic Risk Ranking of
Active Volcanoes of Chile (SERNAGEOMIN, 2019), Melimoyu is a
Volcanic System Type II (i.e., high-risk volcanic system or volcanic
system with recent anomalous activity), ranking 28th out of
92 Chilean active volcanoes. The most recent, and only detected
unrest at Melimoyu, took place in May 2010, when there was an
increase in the seismic activity, leading to the Alert Level being raised
to Green Level 2 (GVP, 2010) out of the seven alert levels available at
that time (i.e., Green 1 and 2; Yellow 1 and 2; and Red 1, 2, and 3
(Bono, L. and Perales, C. personal communication)).

Estimating how often a data-limited volcano like Melimoyu
erupts and assessing its volcanic hazards is challenging since the
range of past eruptive styles is not well known (Loughlin et al., 2015).
Several factors can prevent us from having comprehensive eruption
records, such as historical events and socio-cultural factors, the
capacity to conduct geological studies, the presence of submarine
volcanism, environmental conditions, and accessibility to the study
areas (Siebert et al., 2011; Mead and Magill, 2014; Burgos et al.,
2022b). Ideally, we can improve the eruption record by collecting
new field data while the volcano is dormant and there is no
imminent threat of reactivation. In Melimoyu, a detailed
fieldwork campaign was carried out by Geoffroy (2017), which
focused on characterising the deposits from the two known
Holocene eruptions.

Despite these recent efforts, the data available for Melimoyu are
still scarce. The main causes are the high erosion rate in the
Patagonian Andes caused by the climatic conditions, especially
during glacial periods, resulting in poorly preserved deposits, and
the permanent ice cap covering most of Melimoyu’s edifice (Herman
and Brandon, 2015; Geoffroy and Kervyn, 2018). In addition, the

region of Aysén was occupied only from the late 19th century
(Marín, 2014), which could have contributed to the lack of
historical accounts of any potential activity in Melimoyu.
Therefore, we must rely on analogue volcanoes (i.e., volcanoes we
expect to behave similarly and which are identified through shared
characteristics) to supplement the eruption record.

Analogue volcanoes have been typically defined based on
location, tectonic setting, morphology, magma type, eruption
style, or a combination of these factors for 1) assessing local and
regional volcanic hazards (e.g., Newhall, 1982; Mastin et al., 2009;
Jenkins et al., 2012b; Sandri et al., 2012; 2014; Newhall and Pallister,
2015; Lindsay and Robertson, 2018; Tierz et al., 2020; Tennant et al.,
2021); 2) estimating eruption frequency-Magnitude (f-M)
relationship (e.g., Solow, 2001; Rodado et al., 2011; Jenkins et al.,
2012a; 2022; Runge et al., 2014; Whelley et al., 2015; Sheldrake and
Caricchi, 2017; Hayes et al., 2022); 3) conducting probabilistic
eruption forecasts (e.g., Marzocchi et al., 2004; Bebbington, 2014;
Sheldrake, 2014; Bebbington and Jenkins, 2022), and 4) identifying
unrest patterns (e.g., Acocella et al., 2015; Newhall et al., 2017).

One commonly used approach to identify analogues is
classifying volcanoes into categorical classes. For example,
Whelley et al. (2015) proposed five categories of volcanoes that
combined themorphology of the edifice, the state of the conduit, and
the dimension of the summit crater. One limitation of using
categorical classifications is that the ability to capture the
diversity across volcanoes is limited. For example, this method
suggests that 55% of the volcanoes in SE Asia (n = 441) are
analogues since they classify as semi-plugged stratovolcanoes.
Hayes et al. (2022) showed that classifying volcanoes into broad
categories result in large uncertainty in the eruption f-M relationship
estimations of SE Asia volcanoes, especially when using global
analogues. Similarly, Bebbington and Jenkins (2022)
demonstrated that intra-eruption forecasting did not improve
when using data from analogues identified from categorical
classes of morphology or composition instead of the entire
dataset once the current activity is accounted for.

Several studies have proposed different quantitative approaches
to identifying analogue volcanoes in the last 2 decades. For example,
Hone et al. (2007) carried out a cladistic classification of volcanoes in
Honshu (Japan) by combining multiple characteristics split into
states (e.g., the amount of basalt (compositional type characteristic)
is divided into five states that range from none to substantial) and
assigning them individually to each volcano. This approach would

Frontiers in Earth Science frontiersin.org02

Burgos et al. 10.3389/feart.2023.1144386

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1144386


be time-consuming to apply on a global scale (Hone et al., 2007).
Sobradelo et al. (2010) classified analogous calderas into three
groups with different geodynamic environments by analysing the
caldera area. Tierz et al. (2019) developed VOLCANS, which
combines up to five weighted volcanological criteria to obtain an
analogy metric. VOLCANS is designed to identify analogues for one
target volcano at a time since the analogy metric measures the
similarity between a given volcanic system in their database and the
target volcano (i.e., it does not provide groups of analogue
volcanoes). A limitation of VOLCANS is that the weights
assigned to each criterion are selected subjectively by the user.
This step can be crucial since the proposed analogues differ
depending on the weighting scheme (Tierz et al., 2019),
generating notably different eruption probability estimates (Tierz
et al., 2020). More recently, Wang et al. (2022) introduced the
concept of statistical analogues and proposed using a Weibull
renewal process to identify volcanoes with similar inter-eruption
repose times. This new approach, which was successfully
implemented for forecasting VEI ≥3 eruptions at Tongariro
(New Zealand), requires several observations (i.e., eruption dates)
to estimate the three model parameters with any degree of precision.

In this study, we propose using hierarchical clustering to identify
analogues quantitatively and objectively. Clustering algorithms have
been used in volcanology for various applications, such as detecting
patterns in seismic data (e.g., Unglert et al., 2016; Duque et al., 2020)
or classifying volcanoes based on morphometric data (e.g., Grosse
and Kervyn, 2018; Paguican et al., 2021). One of the main challenges
when clustering data is that the most used algorithms, such as
K-means, PAM, or GMM (Xu and Tian, 2015), require the optimal
number of clusters to be selected before the application. To avoid
this step, we used AGglomerative NESting (AGNES), a form of
bottom-up hierarchical clustering that produces a dendrogram
without having to pre-define the number of clusters. This
advantage allows us to cut the dendrogram at a height that
produces a cluster containing at least 50 potential analogues for
Melimoyu. Another important advantage of using AGNES is that
the dendrogram can be used to identify analogues for multiple target
volcanoes at the same time, which could also help us understand
why volcanoes are being grouped in each cluster.

Our application of hierarchical clustering focuses on identifying
analogues for Melimoyu with the purpose of estimating the eruption
f-M relationship. Finding analogues for data-limited volcanoes can
be challenging since we cannot use the eruptive history of other
volcanoes to identify analogues, especially if we want to avoid
clustering volcanoes based on the number of available eruptions.
For this reason, we rely on numerical variables that describe the
tectonic setting, morphology, and rock composition to find similar
volcanoes with the assumption that these factors control eruption
rates and/or reflect the eruptive style and recent eruptive activity
(Hughes and Mahood, 2008; Acocella and Funiciello, 2010; Hughes
and Mahood, 2011; Acocella, 2014; Whelley et al., 2015; Sheldrake
et al., 2020; Weber and Sheldrake, 2022). We compiled 181 variables
for 1,428 volcanoes from multiple sources and applied AGNES to a
selection of 37 numeric variables describing the rock composition,
tectonic setting, and morphology of 438 subduction zone volcanoes
(see Section 3.2).

The analysis consisted of three steps. First, a sensitivity analysis
was performed using three different datasets to assess how the input

data influence the definition of analogues and the performance of
the clustering. Then, we compared the dispersion in the absolute
eruption probability (i.e., the annual probability of an eruption of a
given VEI) from the three sets of potential analogues. Next, the
suitability of the analogue volcanoes was assessed by applying
specific criteria considered important by SERNAGEOMIN and
VB for being an analogue of Melimoyu (see Section 4.3), such as
having a history of large explosive eruptions (VEI≥4) in the
Holocene. Lastly, the eruption records from the analogues were
used to model the eruption f-M relationship given by the absolute
and conditional (i.e., relative probability of an eruption of a given
VEI, conditional on an eruption has already taken place) probability.

This approach allows us to objectively group volcanoes based on
similar volcanic characteristics, assess the goodness of the clustering
using quantitative metrics while accounting for expert knowledge,
and quantify the uncertainty in our analogue-derived estimates of
eruption probabilities. Furthermore, we provide the global database
(accessible in Supplementary Material S1) with 181 variables and
1,428 volcanoes so that our approach can be easily applied to other
volcanoes or a different selection of variables.

In summary, this paper aims to:

1. Automatically identify analogue volcanoes quantitatively and
objectively for Melimoyu.

2. Assess the influence of the input data on the clustering results
through a sensitivity analysis.

3. Combine quantitative metrics and expert knowledge to assess
analogue suitability.

4. Model the eruption f-M relationship for Melimoyu using
eruption records from a selection of analogues.

SERNAGEOMIN will use the set of analogues and the eruption
f-M relationship to inform the volcanic hazard matrix and official
hazard map for Melimoyu. Future work will explore the application
of Melimoyu’s analogues for populating an event tree and
identifying eruption source parameters for a probabilistic long-
term hazard assessment. The clustering results are also provided
to SERNAGEOMIN so that the suitability of different potential
analogues can be assessed for other data-limited volcanoes in Chile.

2 Geological setting

Melimoyu is a 2,408 m high ice-capped composite volcano with
a 1-km wide crater summit and several parasitic cinder cones (GVP,
2013). The characteristic oblique subduction in the Chile Triple
Junction, crustal thickness, and Liquiñe-Ofqui Fault Zone (LOFZ)
(Figure 1A) are responsible for the variable nature of the volcanism,
volcanic forms, and rock composition in this area (Cembrano and
Lara, 2009; Völker et al., 2011; de Pascale et al., 2021). The LOFZ
intra-arc fault system also controls the spatial distribution and the
type of volcanism of the southern segment of the Southern Volcanic
Zone (SVZ), from Villarrica in the north to Hudson in the south,
with contrasting eruptive styles between volcanoes on the
compressive side with wide ranges of compositions and volcanoes
on the extensive side with more primitive magmas (López Escobar
et al., 1995; Gutiérrez et al., 2005; Stern et al., 2007; Cembrano and
Lara, 2009; de Pascale et al., 2021). The paleo-seismic Holocene
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record in the Aysén region shows that the triggering of several
Holocene volcanic eruptions could be closely linked to earthquakes
from the LOFZ and megathrust earthquakes (Watt et al., 2009; Wils
et al., 2018).

The nearest towns of La Junta [1,431 inhabitants; Instituto
Nacional de Estadísticas (2019)] and Puerto Raúl Marín
Balmaceda [239 inhabitants; Instituto Nacional de Estadísticas
(2019)] are located around 40 km to the east and 33 km to the
northwest from the volcano (Figure 1B), respectively, in the sparsely
populated region of Aysén [e.g., total population of
103,158 according to the last census from 2017 (Instituto
Nacional de Estadísticas, 2019)]. Tephra fall deposits are found
around these localities, suggesting that future eruptions could affect
the population in this area and disrupt the Carretera Austral
(Naranjo and Stern, 2004), which is the only road access to
Aysén region (Rojas Hoppe and Subiabre, 1998). The little village
of Villa Melimoyu, with around 100 inhabitants (Instituto Nacional

de Estadísticas, 2019), located at Marchant River valley around
19 km southwest of the volcano, could also be affected by PDCs
or lahars, given the explosive nature of Melimoyu (Naranjo and
Stern, 2004; Watt et al., 2009) and the size of the glaciers in the
volcanic edifice (Daros Idalino et al., 2020).

The Holocene record fromMelimoyu contains two confirmed
eruptions: 1) Mm-1 dated around 2.8 ka BP, and 2) Mm-2 dated
around 1.6 ka BP (Naranjo and Stern, 2004; Geoffroy et al., 2018).
Geoffroy et al. (2018) reported that the column height for Mm-1
and Mm-2 ranged between ~30–35 km and ~26–30 km,
respectively, establishing that both eruptions had a VEI 5. In
addition, several tephra layers found in lakes and rivers in the
area, which dated ~4.6–4.8 ka BP, ~8.3 ka BP, and before the Last
Glacial Maximum at >19,670 BP, have been attributed to
Melimoyu due to similarities in the geochemistry, although
their origin and size have not been confirmed (Stern et al.,
2015; Weller et al., 2017).

FIGURE 1
Map of the Southern Volcanic Zone (SVZ) (33°–46°S) (A) and surroundings of Melimoyu (B). Holocene volcanoes from the Volcanoes of the World
Database (VOTW) are marked with black triangles, Melimoyu is marked with a yellow triangle in (A) and with a black triangle in (B), and analogues of
Melimoyu in the SVZ are marked with a red triangle. Aysen region is highlighted in dark grey. Plate boundaries extracted from Bird. (2003), and active and
potentially active faults from the Liquiñe-Ofqui Fault Zone (LOFZ) extracted fromMaldonado et al. (2021) are represented with black lines. Basemap
(A) ESRI Shaded Relief, (B) ALOS PALSAR DEM 12.5 m resolution.
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3 Data

3.1 Global database

The global database (Supplementary Material S1) includes
1,428 volcanoes categorised as Holocene in the VOTW database
(v. 4.8.5; 11 February 2020) (GVP, 2013). We excluded 31 volcanoes
from the analysis since they were discontinued from the Global
Volcanism Program (GVP) Holocene Volcano List as of August
2021 because their evidence of Holocene activity was discarded. Our
database contains 181 variables describing general information from
each volcano and its Holocene eruption record, rock composition,
tectonic setting, and morphology.

3.1.1 General information (53 variables)
General information about each volcano and its Holocene

eruptive history was obtained from the VOTW database (GVP,
2013). We included categorical variables describing the tectonic
setting, morphology, and rock composition, the volcano location,
date of the most recent eruption, range of VEI in the Holocene,
number of eruptions as a function of VEI, and number of hazards
and processes (i.e., events in GVP terminology).

3.1.2 Rock composition (17 variables)
The composition was compiled from the VOTW database

(GVP, 2013) and the EarthChem Portal (http://www.earthchem.
org, downloaded on 31 October 2022, using the parameters: Volcano
Name = All volcanoes, Age = Holocene (0 Ma—0.01 Ma), Material=
Whole rock/rock, and normalization=Major Elements as Reported).

The GVP lists a maximum of five rock types for each volcano,
which were extracted by scraping the profiles from their website.
Siebert et al. (2011) classified the composition into ten rock types:
Andesite/Basaltic Andesite, Basalt/Picro-Basalt, Dacite, Foidite,
Phono-tephrite/Tephri-phonolite, Phonolite, Rhyolite,
Trachyandesite/Basaltic Trachyandesite, Trachybasalt/Tephrite
Basanite, and Trachyte/Trachydacite. This categorical information
was transformed into numerical data using a weighting scheme that
accounts for the diversity of compositions and the relative
abundance. Since the rock types in the GVP are listed in
descending order of abundance (Siebert et al., 2011), we assumed
that rock type 1 is five times more abundant than rock type 5 and
assigned a weight ranging from five to one to each of the up to five
rock types. We normalised the weights considering the number of
rock types available per volcano and assigned them to each rock
type. For example, West Eifel Volcanic Field (Germany) has the
following rock types listed in order of descending abundance:
Foidite, Trachybasalt/Tephrite Basanite, and Phonolite. Since
there are three out of five possible rock types, we add 5, 4, and
3 to a total weight of 12. Then, we assigned 5/12 to Foidite, 4/12 to
Trachybasalt/Tephrite Basanite, 3/12 to Phonolite, and zero to the
remaining rock types not listed in theWest Eifel Volcanic Field GVP
profile.

From the dataset downloaded from EarthChem Portal, we
filtered the igneous and volcanic samples and extracted the SiO2

wt%, from which we calculated the minimum, maximum, median,
mean, mode, standard deviation, and variance across all the available
samples per volcano. One limitation we found when downloading
data from multiple volcanoes from the EarthChem portal is that the

volcano name is not associated with the sample name. Therefore, we
assume that a given sample belongs to the nearest volcano. To
identify the nearest volcano, we used the distance matrix tool from
QGIS, which calculates the distance between objects, setting the
nearest target (k) to one. This distance can be saved by selecting the
option linear in the output matrix type parameter of the tool. As a
result, we have 2,090 samples distributed across 125 volcanoes. The
number of samples per volcano ranges from 1 for each of
34 volcanoes to 281 for Vesuvius.

3.1.3 Tectonic setting (44 variables)
One of the variables compiled for the tectonic setting is the total

crustal thickness (excluding the water layer) extracted from the
Global Model of Earth’s Crust CRUST1 (Laske et al., 2013). We used
the distance matrix tool in QGIS to identify the nearest data point
(pair of coordinates set at 1°) from each volcano.

We also calculated the distance to the closest plate boundary
classes (i.e., oceanic spreading ridge (OSR), oceanic transform fault
(OTF), oceanic convergent boundary (OCB), continental rift
boundary (CRB), continental transform fault (CTF), continental
convergent boundary (CCB), and subduction zone (SUB)) from
each volcano (Bird, 2003). We used the midpoints of each
digitisation step [end point of PB2002.dat in Bird (2003)] as the
reference point to calculate the distance. We also extracted the plate
boundary identifier and the plate boundary class for the closest
boundary class.

For volcanoes in subduction zones, we extracted 17 variables
from Heuret (2006) describing the relative and absolute movement
of plates at the nearest subduction arc segment (e.g., normal
component of the subducting velocity), the age of the slab and
the thermal parameter. The study by Heuret (2006) only includes
non-perturbed subduction zones, which are those distant from a
collision zone, ridge, or plateau subduction. Additionally, we used
the same arc segment names from Heuret. (2006) to extract the
variables slab length, slab pull force, Upper Plate Strain (UPS), and
Upper Plate Nature (UPN) from Lallemand et al. (2005).

Lastly, we extracted the depth, dip, strike, and thickness of the
slab at each subduction zone volcano from the Slab2 model
developed by Hayes et al. (2018), which is available in the USGS
ScienceBase catalogue (Hayes, 2018).

3.1.4 Morphology (64 variables)
To describe the morphology, we used the database from Grosse

et al. (2014) and Grosse and Kervyn (2018), which characterises the
morphometry of composite, calderas, and shield volcanoes. The
variables included in these databases describe the edifice size, profile
shape, plan shape, and slope (Grosse et al., 2014). We updated the
values in Grosse et al. (2014) with those from Grosse and Kervyn
(2018) for volcanoes included in both studies. Seventeen of the
64 variables compiled from these studies are only available for
calderas or composite volcanoes with large summit craters.

3.2 Input dataset

The input dataset for the clustering contains only volcanoes with
data for all the selected variables since we do not allow missing
values in the clustering. In addition, we only considered numerical
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variables in the analysis, excluding 16 categorical variables, three
textual variables, and 13 identifiers. We also excluded ten
uninformative variables, such as the number of elevation
contours in Grosse et al. (2014). As discussed in the
introduction, we want to avoid clustering volcanoes based on
their degree of completeness, which, in the case of Melimoyu,
would presumably produce analogues that are also data-limited
volcanoes. Therefore, we excluded 36 variables related to eruptive
history or style. We also excluded two sets of coordinates since we
want to avoid grouping volcanoes by their proximity. Lastly, since
our application of AGNES is targeted at Melimoyu, we excluded
31 variables with missing data for Melimoyu, among which we have
the eight variables calculated from the data extracted from
EarthChem.

The remaining variables are considered of interest for our case
study. Since we do not allow missing data in the clustering and most
tectonic setting variables describe characteristics of subduction
zones, we automatically exclude volcanoes from other tectonic
settings. Therefore, we only retain the distance to the nearest
plate boundary (i.e., subduction zone) and exclude the other
seven variables that measure the distance to different plate
boundary types. Lastly, for variables accounting for duplicated
information [e.g., edifice height, basal width, and height/basal
width ratio from Grosse et al. (2014)], we preferentially selected
variables not calculated as a function of other variables in the
database, leading us to exclude 22 variables.

As a result of this filtering, we have 38 numerical variables
(10 for rock composition, 14 for tectonic setting, and 14 for
morphology) available for 438 subduction zone volcanoes. Note
that Foidite is not included in the clustering because none of these
volcanoes has records of this rock type in the VOTW database. The
input dataset for Melimoyu can be accessed in Supplementary
Material S2, and the complete list of 37 variables after excluding
Foidite is listed in Table 1 and Figure 3.

4 Methodology

4.1 Hierarchical clustering

In this study, we used AGNES, a bottom-up hierarchical
clustering approach (Kaufman and Rousseeuw, 1991). The main
advantage of hierarchical clustering is that it does not require the
number of clusters to be pre-defined. We selected agglomerative
instead of divisive hierarchical clustering because the former tends
to identify smaller clusters (Boehmke and Greenwell, 2019). One
disadvantage of agglomerative clustering is that it can be sensitive
to outliers and noise, which we try to minimise by standardizing
the data and using an appropriate distance metric. Another thing
to consider is that the time and space complexity
(i.e., computational cost) is high (Tan et al., 2016), which limits
the size of the input data.

The first step before applying AGNES is to calculate the (dis)
similarity matrix, which contains the distance among pairs of
volcanoes. We selected the Manhattan distance metric because it
performs better than the Euclidean distance for high-dimensional
datasets (Aggarwal et al., 2001), and is less sensitive to outliers
(Strauss and Von Maltitz, 2017).

In AGNES, each observation (volcano) starts as a single
cluster (leaf). Then, based on the Manhattan distance, the
most similar pair of volcanoes are grouped into a bigger
cluster (node or branch). Lastly, the most similar clusters are
merged iteratively until all the volcanoes are grouped into one big
cluster (root). The (dis)similarity between clusters is determined
by the linkage method. Some commonly used methods are
average linkage, single linkage, complete linkage, and Ward’s
linkage (we refer the reader to Kaufman and Rousseeuw (1991)
for more details on each method). To select the best linkage
method, we ran AGNES using these four methods and retained
the results that produced the highest agglomerative
coefficient–Ward’s linkage. The agglomerative coefficient
describes the strength of the clustering structure, with values
closer to 1 indicating a strong clustering structure (Kaufman and
Rousseeuw, 1991).

The agglomerative coefficient can be considered a form of
internal validation of the clustering since it measures the quality
of the clustering structure without reference to external information
(Boehmke and Greenwell, 2019). Another form of internal
validation is assessing the clustering tendency of the input data
(Banerjee and Davé, 2004). The clustering tendency evaluates if the
dataset contains an inherent grouping structure. One metric used to
assess the clustering tendency is the Hopkins statistic (H), which
estimates the probability that the dataset is generated by a random
uniform distribution (Lawson and Jurs, 1990). The input data are
highly clusterable when H is close to 1. We used the agglomerative
coefficient and Hopkins statistic metrics to compare the quality of
the clustering results from the sensitivity analysis.

The output of AGNES is a dendrogram, a tree-based
representation containing leaves, nodes, and the root. The
height of the dendrogram (horizontal axis in Figure 2;
Figure 5; Figure 6) represents the distance (i.e., (dis)similarity)
between clusters. Note that the height values are not comparable
between the dendrograms presented in this study because they
are constructed using different input data. Therefore, the height
can only be used to interpret the similarity between clusters
within their dendrogram. The height at which we cut the
dendrogram controls the number of clusters generated.
Instead of searching for the optimal number of clusters, which
is the main challenge when using other clustering algorithms, we
found the height that generates a cluster of at least 50 potential
analogues for Melimoyu. In this study, we want to avoid retaining
larger numbers of potential analogues so the suitability
assessment of individual volcanoes is not excessively time-
consuming. Thanks to the flexibility of AGNES, future
applications can adjust the number of analogues to fit their goal.

To compare the similarity between Melimoyu and the potential
analogues, we normalised the Manhattan distance (Mnorm) via min-
max normalisation as follows:

Mnorm � 1 − M −Mmin

Mmax −Mmin
(1)

where the maximum, Mmax, and minimum value, Mmin,
corresponds to the highest and lowest Manhattan distance,
respectively, within the set of potential analogues, including
Melimoyu (i.e., Mnorm ranges from 0 for the least similar volcano
to 1 for Melimoyu).
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4.2 Sensitivity analysis

We performed a sensitivity analysis on three different input
datasets to assess how they change the outcome of the clustering,
which are the proposed analogue volcanoes, and the quality of the
results in terms of internal validation metrics.

4.2.1 Raw dataset
The first application of AGNES was made on the selection of

37 variables. Each variable was standardised (i.e., centred and scaled) so
that the distribution of the transformed data, known as z-score, had a
mean of 0 and a standard deviation of 1 (Han et al., 2012). Standardising
the data is an essential pre-processing step when using clustering
models on data measured with different units, covering wide ranges
of values, or in the presence of outliers since it has been shown to
improve the quality of the clustering (Mohamad and Usman, 2013).

4.2.2 Reduced dataset
The preparation of the second input dataset consisted of two

steps aimed at capturing the most important variables by excluding
redundant variables and reducing noise in the data.

Firstly, we removed five redundant variables from the original
dataset of 37 variables and standardised the dataset. The redundant
variables were identified from the correlation between variables. As
almost all the variables are non-normally distributed, we used Kendall’s
Tau correlation coefficient (Chen and Popovich, 2002). Lastly, we
classified the strength of the correlation as very weak (0<|r|<0.2),
weak (0.2≤|r|<0.4), moderate (0.4≤|r|<0.6), strong (0.6≤|r|<0.8), and
very strong (0.8≤|r|<1). We used |r|≥0.8 as the threshold to identify
which redundant variables should be excluded from the Principal
Component Analysis (PCA) so that there are no pairs of very
strongly correlated variables in the input data. We remove the
variable with the largest mean absolute correlation for very strongly
correlated variables via the correlation_threshold function in cytominer
R package (Becker et al., 2020). Although PCA can handle redundant
variables, we preferred to include this step to ensure that all detrimental
redundancies were removed from the dataset.

Secondly, we applied a PCA to the dataset derived from the first
step. This approach is used to deal with the ‘curse of dimensionality’
before using clustering algorithms (Assent, 2012) by transforming the
original variables into uncorrelated Principal Components (PC)
through linear combination (Abdi and Williams, 2010). The PCA
helps to improve the interpretability of high-dimensional datasets by
reducing the dimensions and capturing the maximum possible
variance of the original data. The number of PCs to retain for the
analysis is often based on an arbitrary percentage of the cumulative
variance. In this study, we used a threshold of 70% since it is a
commonly used value (Jollife and Cadima, 2016), although other
thresholds could be tested to assess the influence of the variance of the
input data on the clustering. The coordinates or scores from each
volcano in the retained PCs were used as input data for the clustering.

4.2.3 Weighted dataset
For the third dataset, we applied a weighting scheme on the raw

dataset (i.e., 37 standardised variables) tuned to minimise the
dispersion of the absolute probability from the set of potential
analogues. With this approach, we acknowledge that each
variable is unlikely to have an equal influence on the clustering

of volcanoes with analogous eruptive behaviour (i.e., similar
eruption f-M relationship).

The steps we followed were:

1. Draw a set of 37 weights from a uniform distribution and
normalise so all weights add to one.

2. Apply AGNES using the best linkage method identified from the
raw and reduced dataset (Ward’s linkage) with variables weights
from step 1.

3. Extract a set of at least 50 potential analogues.
4. Estimate the absolute probability per VEI (i.e., the annual

probability of an eruption of a given VEI) (PABS) for each
analogue volcano i:

PABS ij � nij
tij

(2)

where nij is the number of recorded eruptions of a given VEI j
(VEI<=1, VEI 2, VEI 3, VEI 4, and VEI>=5) and tij is the number of
years between the Relative Completeness Date (RCD) and 2019. We
calculate the regional RCDs (i.e., the most complete portion of the
catalogue) from the VOTW database (GVP, 2013) as a function of
each VEI j using the most abrupt change point method from Burgos
et al. (2022b) and the 31 new regions proposed in their study
(Supplementary Material S3).

5. Calculate the Interquartile Range (IQRj) of the absolute probability
per VEI for the set of potential analogues, which captures the
spread of the probabilities between the 25th and 75th percentile.

6. Calculate the total IQR by adding all IQRj.
7. Use 10,000 vectors of weights to identify the set of weights that

minimises the total IQR.

When the target volcano is well-studied and has comprehensive
records, this approach can be modified to identify the weights that
maximise the similarity of the analogues’ absolute probabilities to the
target volcano. We discarded this option for Melimoyu because it only
has data to calculate the absolute probability of VEI 5 eruptions,
meaning that we would be aiming to find other data-limited volcanoes.

4.3 Analogue selection

The selection of analogues was made by assessing the dispersion
in the absolute probability derived from the potential analogues
(Figure 7) and applying criteria deemed as important by
SERNAGEOMIN and VB to estimate the eruption f-M
relationship for Melimoyu. These criteria were applied after the
clustering to 1) avoid introducing subjectivity in the first stage of the
analogue identification, and 2) identify potential analogues for other
applications (e.g., hazard modelling).

For the purpose of estimating the eruption f-M relationship, a
particular volcano had to meet the following criteria to be
considered an analogue of Melimoyu:

a) The volcano has confirmed Holocene eruptions with an assigned
VEI in the VOTW (GVP, 2013) or LaMEVE database
(Crosweller et al., 2012). Otherwise, the eruptive behaviour
cannot be evaluated.
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b) The volcano is not categorised as frequently active [i.e., “confirmed
to have erupted at some point during at least 25 of the past
100 years (since 1921)” (GVP, 2013)] on the set of noteworthy
volcanoes of the GVP (https://volcano.si.edu/faq/index.cfm?
question=eov_noteworthy). This criterion is especially relevant
for estimating the eruption f-M relationship for Melimoyu since
there is no evidence of eruptions in the last 100 years. With this
criterion, we may be excluding analogue volcanoes that can be
used for other purposes (e.g., retrieving eruption source
parameters for hazard modelling).

c) The volcano has records of large explosive Holocene eruptions
(VEI≥4) in the VOTW (GVP, 2013) or LaMEVE database
(Crosweller et al., 2012).

d) The volcano has produced similar compositions to Melimoyu in
the past. The GVP lists, in order of descending abundance, the
following rock types for Melimoyu: Andesite/Basaltic Andesite,
Dacite, and Basalt/Picro-Basalt. Depending on the information
available in the GVP, if the volcano has data for:
• Rock types 1, 2 and 3: it must have at least two rock types in
common with Melimoyu, and the most abundant rock type
must be intermediate or felsic.

• Rock types 1 and 2: it must have both rock types in common
with Melimoyu, independently of the order, but the most
abundant rock type must be intermediate or felsic.

• Rock type 1: it must be Andesite/Basaltic Andesite.

4.4 Frequency-magnitude relationship

Once we had the selection of analogues for Melimoyu, we
manually updated the start date for those large magnitude
eruptions (M≥4) that had corrected dates in the latest version of
LaMEVE (retrieved 17 August 2022) (Crosweller et al., 2012). We
also included M≥4 Holocene eruptions that were missing in the
VOTW database but available in the LaMEVE database.

The updated record of confirmed eruptions since the RCDs from
the selection of analogue volcanoes was used to re-calculate the absolute
probability per VEI (PABS). The sum of the absolute probabilities per
VEI from each analogue gives us the absolute probability of having an
eruption of any VEI (P) at a given analogue volcano i:

Pi � ∑
k

PABS ik (3)
Using the absolute probability, we calculated the conditional

probability PCOND (i.e., the relative probability of a given VEI j,
conditional on an eruption occurring) per analogue volcano i as follows:

PCOND ij � PABS ij

∑k PABS ik
(4)

where k indicates the VEI j with a PABS ij ≠ 0.
The absolute and conditional probabilities from the set of

analogues were used to estimate the eruption f-M relationship for
Melimoyu as follows:

1. Model the empirical absolute probability P from the set of
analogues by a Gamma distribution, as proposed by Solow
(2001) and Rodado et al. (2011), with parameters α (shape)
>0 and λ (rate)>0 estimated via maximum likelihood. The
probability density function of a gamma distribution is given by:

f x( ) �
λxα−1e−λx

Γ α( ) , x> 0

0, x≤ 0

⎧⎪⎪⎨
⎪⎪⎩ (5)

We extract the 5th, 50th, and 95th percentiles from the
Cumulative Distribution Function (CDF), which reflects the
uncertainty in the absolute probability for Melimoyu.

2. Quantify the variability in the conditional probability PCOND via
bootstrapping with replacement (i.e., a datapoint can be included
more than once in a resampled dataset). From the empirical
conditional probabilities for n analogue volcanoes calculated from
Eq. 4, we draw 5,000 bootstrap samples of size n and calculate the
average conditional probability per VEI from each resampled
dataset. We extract the 5th, 50th, and 95th percentiles from the
marginal empirical CDF of the conditional probability for each VEI.

3. Calculate the absolute probability per VEI j for Melimoyu using
the percentiles extracted from the modelled probabilities:

PABSj � P × PCONDj

5 Results

5.1 Analogues from the raw dataset

The agglomerative coefficient of the hierarchical clustering
ranges from 0.778 for the single linkage method to 0.949 for
Ward’s linkage method, indicating that the latter is the best
linkage method. The agglomerative coefficient close to 1 indicates
a strong clustering structure in the dendrogram derived from the
raw dataset. This indication of good quality of the clustering is
corroborated by the Hopkins statistics (H) of 0.848, which indicates
that the raw dataset is highly clusterable.

We cut the dendrogram at the minimum height that contains at
least 50 volcanoes, approximately 80, generating a set of 56 potential
analogues, includingMelimoyu (Figure 2). Within this set of potential
analogues, we find seven nodes connected to Melimoyu’s smaller
cluster (Node 1), which indicate different levels of similarity (i.e., the
higher up in the tree the least similar to Node 1). Forty-two potential
analogues are in the region of South America, 13 in Canada and
Western United States, and 1 in Honshu (Japan).

Based on the normalised Manhattan distance shown in Figure 2
(i.e., the closer to 1, the more similar to Melimoyu), Mocho-
Choshuenco (Chile) is the most similar volcano to Melimoyu
(Mnorm=0.65) and therefore, the best analogue when using this
method. The dendrogram captures this similarity since it is the
first volcano to be grouped with Melimoyu. Osorno, Yanteles,
Michinmahuida, Calbuco, and Callaqui, also located in Chile,
follow closely with relatively similar distances.

5.2 Analogues from the reduced dataset

Using Kendall’s Tau correlation coefficient to assess the
relationship between the variables, the correlation matrix shown
in Figure 3 shows that several variables describing the morphology
of the base and the summit’s edifice are very strongly correlated.
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FIGURE 2
Dendrogram generated from the application of AGNES using Ward’s linkage method to the raw dataset. The value in parenthesis shows the
normalised Manhattan distance (Mnorm). The closer Mnorm is to 1, the most similar to Melimoyu (highlighted in bold). The node number indicates the
different levels of similarity between a given cluster and the smaller cluster that contains Melimoyu (Node 1). The asterisk indicates if a volcano has
VEI≥4 Holocene eruptions records in the VOTW or LaMEVE database.

Frontiers in Earth Science frontiersin.org09

Burgos et al. 10.3389/feart.2023.1144386

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1144386


TABLE 1 Variable contribution (%) of each variable to explain the variability for the 11 PCs retained for the analysis. The value in parentheses in the first row
indicates the percentage of explained variance by that PC. Values in bold indicate the top 5 variables with the higher contribution to each PC. Variables are
grouped by category and ordered by descending contribution in PC 1.

Variables PC1
(11.7%)

PC2
(10.7%)

PC3
(8.9%)

PC4
(7.8%)

PC5
(6.2%)

PC6
(5.5%)

PC7
(4.8%)

PC8
(4.2%)

PC9
(3.9%)

PC10
(3.6%)

PC11
(3.5%)

Tectonic
setting

Age of the
subducting plate

17.07 0.55 0.01 5.56 0.27 3.01 0.04 0.37 0.05 2.37 0.42

Thickness of the
slab

14.67 0.56 1.38 8.23 0.36 2.55 0.22 1.11 0.01 1.94 0.34

Normal
component of the

subducting
velocity

8.9 0.12 5.38 9.91 1.59 0.18 5.52 0.16 0.93 0 0.04

Crustal thickness 7.85 0.13 11.03 0.9 0.53 2.62 1.83 0.39 0.02 0.65 0.07

Obliquity of the
subducting
velocity

7.75 0.39 11.2 0.46 0.64 2.01 0.03 0.19 0.2 0.37 6.39

Obliquity of the
convergent
velocity

7.1 0.31 16.09 0.15 1.46 1.28 0.9 0 0.07 0.05 1.1

Normal
component of the

convergent
velocity

5.1 0.47 14.22 0.83 0.56 0.74 3.01 0.11 0.02 0 0.55

Normal
component of the
velocity at the

trench

3.96 0.3 4.12 16.07 0.61 0.28 3.09 0 0.84 0.7 1.8

Strike of the slab 3.41 0.6 1.86 3.99 1.32 0.73 1 3.43 2.46 3.74 0

Normal
component of the
back arc strain-

rate

1.7 0.13 1.02 7.97 5.62 1.43 21.17 0.03 1.24 0 1.31

Obliquity of the
velocity at the

trench

1.08 0.01 12.34 1.42 0.25 4.69 0.05 0.05 1.63 0.17 2.55

Dip of the slab 0.88 3.46 7.95 2.37 4.03 11.81 0.22 1.83 0.19 1.61 2.04

Depth of the slab 0.13 6.6 0.06 0.23 5.49 0.54 1.49 11.86 1.58 0.11 1.21

Distance to
nearest plate
boundary

0.02 0.55 0.26 8.23 2.1 4.1 1.7 0 2.7 4.78 0.21

Rock
composition

Basalt/Picro-
Basalt

5.26 2.8 1.74 1.91 4.11 3.62 1.92 6.54 0.12 1.6 8.9

Rhyolite 0.69 0.11 0.06 0.07 0.01 0.16 2.01 1.02 8.29 19.8 31.81

Trachyte/
Trachydacite

0.53 1.94 0.01 0.01 4.53 10.1 1.27 0.59 13.95 1.71 0.59

Phono-tephrite/
Tephri-phonolite

0.31 0.29 0.05 0.01 1.91 1.73 5.38 2.64 39.67 1.96 5.81

Trachyandesite/
Basaltic

Trachyandesite

0.16 2.79 0.02 0 8.06 3.9 3 1.24 6.48 0.46 3.19

Andesite/Basaltic
Andesite

0.12 5.77 0 1.5 7.33 1.74 1.02 6.47 1.69 30.59 2.43

Trachybasalt/
Tephrite Basanite

0.07 5.11 0.07 0.17 8.7 7.34 9.46 0.14 10.49 0.29 1

Phonolite 0.03 1.01 0.01 0.62 3.69 2.78 1.52 10.04 1.8 1.25 5.17

(Continued on following page)
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TABLE 1 (Continued) Variable contribution (%) of each variable to explain the variability for the 11 PCs retained for the analysis. The value in parentheses in the
first row indicates the percentage of explained variance by that PC. Values in bold indicate the top 5 variables with the higher contribution to each PC. Variables
are grouped by category and ordered by descending contribution in PC 1.

Variables PC1
(11.7%)

PC2
(10.7%)

PC3
(8.9%)

PC4
(7.8%)

PC5
(6.2%)

PC6
(5.5%)

PC7
(4.8%)

PC8
(4.2%)

PC9
(3.9%)

PC10
(3.6%)

PC11
(3.5%)

Morphology Basal irregularity 3.1 0.83 1.79 0 2.35 0.13 2.88 14.29 0.04 0.67 3.84

Edifice height 1.81 1.24 2.87 8.52 0.01 6 8.96 3.59 1.62 0.05 0.05

Low flank mean
slope

0.82 10.16 1.19 0.28 2.41 3.5 4.1 1.51 0.02 4.45 8.49

Number of peaks 0.56 13.2 0.55 2.33 3.93 3.21 0.17 3.93 0.35 1.23 0.3

Edifice volume 0.48 13.39 1.14 4.68 4.62 4.44 4.03 0.02 0.03 0.42 1.04

Summit mean
slope

0.2 1.61 0.28 5.82 4.5 7.81 5.25 0.16 2.11 0.01 4.21

Main flank mean
slope

0.06 11.57 1.14 0.57 6.94 5.23 7.28 0.01 0.59 1.78 2.38

Basal ellipticity 0.04 0.12 0 6.56 0.29 0.05 0.12 26.64 0.36 5.15 1.56

Summit area 0.03 12.67 0 0.56 8.17 0.65 0.43 1.02 0.29 1.72 0.42

FIGURE 3
Kendall’s Tau correlation coefficient plot. Blue values indicate a negative correlation, and red values a positive correlation. The variables are grouped
into three main categories: morphology, tectonic setting, and rock composition.
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Since we aim to exclude redundant variables (i.e., |r|≥0.8), the
following variables are not considered for the PCA: minor and
major basal axis, basal width, basal area, and summit width.

Other variables with a strong positive correlation are the age of
the subducting plate and slab thickness, normal convergent and
subducting velocity components, and the convergent and
subducting obliquity. For the rock composition, we observe that
Trachy-Andesite/Basaltic Trachyandesite and Trachybasalt/
Tephrite Basanite have a moderate positive correlation. In
contrast, Basalt/Picro-Basalt and Dacite have a moderate negative
correlation. Basalt/Picro-Basalt and Dacite also show a weak
correlation with the crustal thickness, slab dip, and the normal
component of the back arc strain-rate.

The standardised dataset of 32 variables (without redundant
variables) was used as input for the PCA. The results of the PCA
show that the first two components explain around 22% of the
variance (Figure 4). We require 11 PCs to capture at least 70% of the
variance, which is one of the commonly used thresholds in PCA
(Jollife and Cadima, 2016). Furthermore, the 11 PCs have an
eigenvalue (i.e., variance retained by each PC) higher than one,
indicating that they account for more variance than the original
variables. The new spatial projection (Figure 4) does not show any
obvious spatial clusters of volcanoes, which can be due to the low
variance retained by PC 1 and 2. A low variance in the main PCs
could indicate that our dataset does not lie within a two-dimensional
linear subspace. One solution we explored was using non-linear
dimensionality reduction techniques [(e.g., UMAP; (McInnes et al.,
2020)]. However, these techniques required tuning hyper-
parameters by looking at how the data is distributed in the space,
leading to a biased selection that could influence the clustering
results.

Table 1 shows the percentage with which each variable
contributes to explaining the variability in each PC (e.g., the age
of the subducting plate explains ~17% of the variability in PC1). We
observe that variables describing the tectonic setting (e.g., age of the
subducting plate, slab thickness, normal component of the

subducting velocity, crustal thickness, and obliquity of the
subducting velocity) contribute the most in accounting for the
variability in PC1. In contrast, variables describing the volcano
morphology (e.g., edifice volume, number of peaks, summit area,
low flank mean slope, and main flank mean slope) have the highest
contributions in PC2. Lastly, we observe that the composition
contributes more to the later PCs.

The reduced dataset containing the coordinates of 438 volcanoes
at the 11 PCs was used as input data for AGNES. The agglomerative
coefficient ranges from 0.885 for single linkage method to 0.944 for
Ward’s linkage method. As we did for the raw dataset, we select the
hierarchical clustering results from Ward’s linkage method since it
generates the strongest clustering structure. In addition, the Hopkins
statistic (H=0.836) indicates that the reduced dataset is highly
clusterable.

We cut the resulting dendrogram (Figure 5) at an approximate
height of 40, producing a cluster of 51 volcanoes, including
Melimoyu. This dendrogram contains groups of volcanoes with
seven different levels of similarity relative to the smaller cluster
containing Melimoyu (Node 1). Twenty-one potential analogues are
in the region of Mexico, Guatemala, Nicaragua, Costa Rica, and
Panama; 14 in South America; 13 in El Salvador and Honduras; 2 in
Luzon; 1 in North Luzon, Central Philippines, Mindanao, and SE
Asia; and 1 in Canada and Western United States. The volcano with
the highest normalised Manhattan distance (i.e., best analogue)
(Mnorm=0.73) is Tolhuaca (Chile). Other volcanoes with relatively
high distance values (e.g., Mnorm=0.60–0.66) are Lonquimay,
Callaqui, Mocho-Choshuenco, and Llaima.

5.3 Analogues from the weighted dataset

To optimize the set of weights that minimise the spread in
calculated absolute eruption probabilities across the set of analogues,
we first need to account for the completeness of the eruption record.
The most complete portion of the VOTW database was identified by
calculating regional RCDs as a function of VEI≤1, VEI 2, VEI 3, VEI
4, and VEI ≥5 using the change point method from Burgos et al.
(2022b). The RCDs (Supplementary Material S3) define the time
windows required for estimating absolute probabilities for the set of
potential analogues. The resulting RCDs range from a few centuries
[e.g., 1979 for VEI 3 eruptions in Africa (northern, western, central)]
to thousands of years (e.g., 4700 BCE for VEI 4 eruptions in
New Zealand), and they are highly variable across regions and
eruption sizes.

We use Ward’s linkage method, which produced the highest
agglomerative coefficients in the previous two datasets, instead of
testing the four linkage methods to reduce the computation time in
optimising the weighting scheme. The complete set of weights that
generates the set of analogues with the lowest total IQR (0.01214) is
available in Supplementary Material S4. Another 11 weighting
schemes that can also be found in Supplementary Material S4
produce similar IQR (0.1224). We will focus on the results
derived from the weighting scheme that produces the lowest
IQR. We observe that the three most ‘important’ variables
(i.e., top 3 highest weights) are the obliquity of the velocity at the
trench, the basal irregularity, and the normal component of the
convergent velocity.

FIGURE 4
Representation of individual volcanoes projected in the PC1 and
PC2. The value in parentheses indicates the percentage of explained
variance by that PC.
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The dendrogram obtained from the weighted dataset has an
agglomerative coefficient of 0.947 and a Hopkins statistic of
0.833, indicating a strong clustering. We cut the dendrogram at
an approximate height of 2 generating a set of 61 volcanoes,
including Melimoyu (Figure 6). We find seven levels of
similarity relative to the smaller cluster containing Melimoyu
(Node 1). Fifty-nine potential analogues are in the region of
South America; 1 in Luzon; and 1 in North Luzon, Central
Philippines, Mindanao, and SE Asia. The most similar volcano
based on the normalised distance metric is Mocho-Choshuenco
(Mnorm = 0.62). Other similar volcanoes are Michinmahuida,
Callaqui, Calbuco, and Osorno, with a normalised distance
ranging from 0.54 to 0.58.

5.4 Analogue selection for Melimoyu

The sensitivity analysis shows that the quality of the results, in
terms of clustering performance, is very similar for the three
datasets, with slightly higher values of the agglomerative
coefficient and Hopkins statistic for the raw dataset. In the three
cases, these internal validation metrics indicate inherent clustering
in the data and a strong clustering structure in the dendrograms.
These results were obtained using Ward’s linkage method, which
groups clusters with minimum total-within variance, known for its
tendency to produce compact clusters (Kaufman and Rousseeuw,
1991).

A comparison of the potential analogues derived from the
sensitivity analysis shows that 13 volcanoes are present in the
three sets of potential analogues (Antuco, Callaqui, Corcovado,
Hornopiren, Llaima, Michinmahuida, Mocho-Choshuenco,
Osorno, Lonquimay, Puntiagudo-Cordon Cenizos, Quetrupillan,
Tolhuaca, and Villarrica), all of them located in the SVZ. In
addition, another 14 volcanoes are present in the sets derived
from the raw and weighted dataset, two in the sets derived from
the reduced and weighted dataset, and one in the sets derived from
the raw and reduced dataset.

As a first step for selecting the analogues for Melimoyu, we
analyse the dispersion in the absolute probabilities per VEI
estimated from each set of potential analogues (Figures 2, 5, 6).
The dispersion in the absolute probability shown in Figure 7 informs
us about the difference in the eruptive behaviour between the
volcanoes in the three sets of potential analogues. The absolute
probabilities for all the potential analogues generated from the three
different input datasets can be found in Supplementary Material S5.
As expected, the set of potential analogues derived from the
weighted dataset, which was tuned to obtain the lowest aggregate
IQR, produced lower uncertainties, except for VEI≥5 eruptions. In
contrast, the set of analogues from the reduced dataset produced the
most dispersed absolute probabilities, indicating that the volcanoes
proposed as analogues have notably different recurrence rates per
VEI class. These results could indicate that the retained PCs did not
preserve the information that is more important for constructing
clusters of similar volcanoes. Meanwhile, the dispersion from the
analogues derived from the raw dataset is between that of the other
two datasets. We observe that the absolute probability decreases with
the eruption size, with a difference of several orders of magnitude
between some volcanoes with VEI≤1 and VEI≥5.

After analysing the dispersion in Figure 7, we apply the criteria
for being an analogue of Melimoyu (Section 4.3). In addition to
Melimoyu, we find that 20 out of 55 volcanoes, 8 out of 50 volcanoes,
and 13 out of 60 volcanoes obtained from the raw dataset, reduced
dataset, and weighted dataset, respectively, meet these criteria (see
Supplementary Material S5 for the three lists of potential analogues).

Due to the large dispersion in the absolute probability and the
low number of volcanoes meeting the criteria, we discard the set of
potential analogues derived from the reduced dataset. The other two
sets of potential analogues have a similar range of absolute
probabilities, although the dispersion is slightly lower for the
analogues derived from the weighted dataset (Figure 7). However,
more volcanoes derived from the raw database meet the criteria for
being analogues. Therefore, we retain the results from the raw
dataset and conclude that it contains the best selection of
analogues to calculate the empirical eruption f-M relationship for
Melimoyu.

The selection of 20 analogues that meet the criteria, ordered
from more to less similar (i.e., highest to lowest normalised
Manhattan distance in Figure 8), are Mocho-Choshuenco,
Yanteles, Michinmahuida, Calbuco, Callaqui, Corcovado,
Quetrupillán, Nevado del Tolima, Rainier, Cerro Azul,
Hornopirén, Glacier Peak, Planchón-Peteroa, St. Helens, Cerro
Bravo, Doña Juana, Soche, Three Sisters, Shasta, and Yakedake.
These volcanoes are located in the regions of South America (n =
14), Canada andWestern United States (n = 5), and Honshu (n = 1).

5.5 Eruption probabilities for Melimoyu

The eruption records from the selection of analogues derived
from the raw dataset are used to calculate the empirical eruption f-M
relationship (Figure 8). All the 20 analogues, except for Hornopirén,
have at least one confirmed eruption within the complete portion of
the eruption record (i.e., since the RCD in Table 2). From a total of
133 eruptions produced by all these volcanoes since the regional
RCDs, nine eruptions missing in the VOTW database were added
from LaMEVE, and the start date from 11 eruptions was updated
with the corrected radiocarbon dates from LaMEVE. As a result of
these modifications, we changed the RCD for VEI≥5 eruptions in
South America, which was defined as the oldest eruption in the
region (i.e., from −8,460 to −9,941). Therefore, the VEI≥5 absolute
probabilities estimated for volcanoes in South America are slightly
higher than those estimated with the updated RCD (e.g., 1.9 × 10−4

vs. 1.7 × 10−4 for Michinmahuida in tabs “Analogues raw dataset”
and “Analogue selection” in Supplementary Material S5).

The eruption record presented in Figure 8 and the RCDs in Table 2
were used to estimate the absolute and conditional probability for each
analogue (Figure 9). We observe that, with the exception of VEI≤1, the
absolute probability decreases as the eruption size increases (Figure 9A).
The absolute probability varies up to one order of magnitude between
analogues, except for VEI≤1 and VEI 5 eruptions, which vary up to two
orders of magnitude. Following the trend observed in Figure 9A, the
overall range of conditional probabilities decreases for larger VEIs
(Figure 9B). We observe that several volcanoes, such as Corcovado,
have a 100% conditional probability of VEI 4 or VEI≥5 eruptions
because they do not have records from other eruption sizes within the
complete portion of the catalogue (Figure 8).
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FIGURE 5
Cut dendrogram generated from the application of AGNES using Ward’s linkage method to the reduced dataset. The value in parenthesis shows the
normalised Manhattan distance (Mnorm). The closer Mnorm is to 1, the most similar to Melimoyu (highlighted in bold). The node number indicates the
different levels of similarity between a given cluster and the smaller cluster that contains Melimoyu (Node 1). The asterisk indicates if a volcano has
VEI≥4 Holocene eruptions records in the VOTW or LaMEVE database.
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FIGURE 6
Cut dendrogram generated from the application of AGNES usingWard’s linkagemethod to the weighted dataset. The value in parenthesis shows the
normalised Manhattan distance (Mnorm). The closer Mnorm is to 1, the most similar to Melimoyu (highlighted in bold). The node number indicates the
different levels of similarity between a given cluster and the smaller cluster that contains Melimoyu (Node 1). The asterisk indicates if a volcano has
VEI≥4 Holocene eruptions records in the VOTW or LaMEVE database.
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The eruption f-M relationship and eruption probability estimate for
Melimoyu is shown in Figure 10 and Table 3. The absolute probability
of having an eruption of any VEI at Melimoyu can be modelled by the
gamma distribution in Figure 10A with shape parameter (α) 0.369 and
rate (β) 32.96. The 5th, 50th, and 95th percentiles extracted from the
CDF give an absolute probability of 6.55 × 10−6, 3.68×10−3, and 4.78 ×

10−2, respectively. The low value of the median probability (i.e., on
average, one eruption every 272 years) reflects the low frequency of
eruptions at Melimoyu, indicating that long periods of dormancy are
common across the selection of analogues.

Meanwhile, the empirical CDFs in Figure 10B derived from
bootstrap sampling show that the median conditional probability is

FIGURE 7
Comparison of the absolute annual probability (pij) per VEI for the three sets of potential volcanoes derived from the raw, reduced, and weighted
dataset. The number in parentheses below the boxplots indicates the number of data points (i.e., the number of volcanoes with at least one eruption of a
given VEI within the complete portion of the record in Supplementary Material S3). Note: y-axes are in different scales.

FIGURE 8
Confirmed eruptions within the most complete eruption record from the analogue selection. These data were used for estimating the absolute and
conditional probabilities in Figure 9. Volcanoes are listed in descending order of Mnorm in parenthesis (i.e., more to less similar to Melimoyu). The origin of
the x-axis corresponds to 2019.

Frontiers in Earth Science frontiersin.org16

Burgos et al. 10.3389/feart.2023.1144386

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1144386


the highest for VEI 2 eruptions, likely because it is the default value
assigned in the VOTW database to explosive eruption without
detailed descriptions (Siebert et al., 2011). The lowest conditional
probabilities correspond to VEI 3 followed by VEI≤1, which might

be explained by the lower number of volcanoes (n = 6) with records
from eruptions of these sizes. Assuming that an eruption occurs at
Melimoyu, there is a 49% probability that the VEI is equal to or
larger than four (50th percentile of the conditional probability)

FIGURE 10
Cumulative Distribution Function (CDF) of the absolute probability of an eruption of any VEI (A) and empirical CDF of the conditional probability of a
VEI given there is an eruption (B).

TABLE 2 Relative Completeness Dates (RCDs) used to calculate the probabilities in Figure 8. Dates in regular font indicate that the RCD corresponds to the most
abrupt change point, dates in cursive indicate that the RCD corresponds to the oldest eruption, and dates with an asterisk in cursive indicate that the RCD
correspond to an alternative change point. See Burgos et al. (2022b) for the method.

Region VEI≤1 VEI 2 VEI 3 VEI 4 VEI≥5

Canada and Western United States −5,890 1820 900 −950 −5,900

South America 1745* 1,384 1,535 −1,310 −9,941

Honshu 1863 1,582 250 −2,750 −8,250

FIGURE 9
Absolute (A) and conditional probability (B) per VEI from each volcano in the analogue selection with eruption data within the complete portion of
the catalogue. The number of data points for VEI≤1, 2, 3, 4, and ≥5 is 6, 10, 6, 11, and 11, respectively.
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(Table 3). The distribution of the conditional probabilities derived
from the analogue volcanoes captures the tendency to produce large
explosive eruptions at Melimoyu.

By multiplying the absolute and conditional probability, we
obtain the absolute probability of an eruption of a given VEI,
which ranges from 1.45 × 10−4 for VEI 3 eruptions to 1.2 × 10−3

for VEI 2 eruptions (Table 3). The absolute probability for VEI 4 and
VEI≥5 eruptions is similar, with a median average recurrence
interval given by the inverse of the absolute probability of
1,024 and 1,204 years, respectively.

6 Discussion

6.1 Data availability

One limitation of hierarchical clustering is that it does not
allow for missing values in the input data, limiting our
application to complete cases (i.e., we only include volcanoes
without missing data for the selected variables). Therefore, the
variables and number of potential analogues used as input in the
clustering are limited by the available data for each volcano. For
example, when searching analogues for Melimoyu, only
volcanoes in subduction zones are considered potential
analogues since we include variables in the clustering that are
only descriptive of this tectonic setting (e.g., the geometry of the
slab). This is not considered a significant limitation in this study
since the tectonic setting plays a key role in factors such as the
magma budget, plumbing system configuration, and the rock
composition, which partly controls the eruption style and
recurrence in volcanic arcs (Acocella, 2014; Sheldrake and
Caricchi, 2017; Sheldrake et al., 2020; Weber and Sheldrake,
2022). Similarly, the morphometric variables included in the
global database are available only for shields, calderas, and
composite volcanoes (Grosse et al., 2014; Grosse and Kervyn,
2018). Other volcano types are not included in the analysis, even
though composite volcanoes, like Melimoyu, often have
secondary volcanic features, such as parasitic cones and
fissures. Unfortunately, these secondary features are rarely
characterised and not included in global databases.

Not considering volcanoes in other tectonic settings or with
different morphologies does not mean that they cannot be analogues
of Melimoyu. These volcanoes could have been included in the
clustering at the expense of excluding numerical variables that

capture the variability across volcanoes within subduction zones
and across composite and shield volcanoes. However, increasing the
number of volcanoes included in the input data implies reducing the
number of input variables since few are available across all
volcanoes. For example, only the primary volcano type and
tectonic setting from the VOTW database (GVP, 2013), which
are categorical variables, the crustal thickness from Laske et al.
(2013), and the distance to plate boundaries from Bird (2003) are
available for the 1,428 volcanoes listed in the global database. Even
the variable rock type 1 from the VOTW database is missing for
76 out of 1,428, meaning that rock composition would not be
considered in the clustering if we included all the volcanoes. A
potential solution would be to identify the input dataset that
maximises the number of variables and volcanoes.

The flexibility of AGNES and the straightforward application allow
us to adjust the variables based on the available data for future
applications of this approach to other target volcanoes. The number
of variables for target volcanoes with data mostly limited to categorical
information can be increased by transforming these variables into
numerical variables via one-hot encoding or gathering new data
(e.g., spreading rate for mid-ocean ridges or morphometric
parameters for other volcano types). Alternatively, other clustering
algorithms that allow combining categorical and numerical variables
could be tested (e.g., k-prototypes), although they require pre-defining
the number of clusters, adding another level of iteration.

6.2 Analogue suitability

The dendrograms from the raw and weighted dataset (Figures 2,
6) indicate that the most similar volcano, and, therefore, best
analogue, is Mocho-Choshuenco (Chile). Mocho-Choshuenco is a
compound stratovolcano covered by glaciers, located 460 km from
Melimoyu. The morphology of both volcanoes is very similar
(Figures 11E,H), except for the summit area and edifice height
(Figures 11G,H). The difference in the summit area can be explained
by the fact that Grosse et al. (2014) calculated the morphology of the
summit of Mocho-Choshuenco including both peaks. Like
Melimoyu, Mocho-Choshuenco also has parasitic craters and
basaltic scoria cones on the flanks, indicating monogenetic
volcanism (Rawson et al., 2015). Both volcanoes have similar
values for multiple parameters of the tectonic setting [e.g., crustal
thickness, slab dip, slab depth, and normal component of the
velocity of the subducting plate (Figures 11A–D)]. We also see a

TABLE 3 Conditional and absolute probability of having an eruption of a given VEI at Melimoyu.

Eruption size Conditional probability Absolute probability

50th percentile [5th,95th] 50th percentile [5th,95th]

VEI≤1 1.31 × 10−1 [5.06×10−2, 2.23 × 10−1] 4.82 × 10−4 [3.32 × 10−7, 1.07 × 10−2]

VEI 2 3.27×10−1 [1.97 × 10−1, 4.62 × 10−1] 1.20 × 10−3 [1.29 × 10−6, 2.21 × 10−2]

VEI 3 3.93 × 10−2 [1.29×10−2, 7.78 × 10−2] 1.45 × 10−4 [8.45 × 10−8, 3.72 × 10−3]

VEI 4 2.66 × 10−1 [1.19 × 10−1, 4.22 × 10−1] 9.77 × 10−4 [7.81 × 10−7, 2.02 × 10−2]

VEI≥5 2.26 × 10−1 [8.99 × 10−2, 3.79 × 10−1] 8.30 × 10−4 [5.89 × 10−7, 1.81 × 10−2]
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strong similarity in the rock composition, with the rock types
included in the GVP being identical in both volcanoes.

The VOTW database only reports two confirmed Holocene
eruptions from Mocho-Choshuenco, the most recent in 1937 of
unknown eruption size. The previous eruption, reported from
historical observations in 1864, was classified as a VEI 2. Both
eruptions were reported for Mocho stratovolcano. In addition,
LaMEVE reports another three Holocene eruptions dated in
1265 BP ± 110, 1580 BP±115, and 8202 BP±220, with a
Magnitude of 4.6 (VEI 4), 5 (VEI 5), and 5.3 (VEI 5),
respectively. Close to the Holocene boundary, there are two more
Plinian eruptions dated in 10189 BP ±1,361 and 11391 ± 1,002, of
Magnitude (M) 5.3 (VEI 5), and 5.7 (VEI 5), respectively. In addition
to the data reported in the global databases, Rawson et al. (2015)
report at least 34 post-glacial explosive eruptions, making Mocho-
Choshuenco one of the most hazardous volcanoes from Chile in
terms of the capacity to produce Plinian eruptions.

Using the reduced dataset as input, the dendrogram (Figure 5)
shows that the most similar volcano to Melimoyu is Tolhuaca (Chile).
Tolhuaca is a snow-capped stratovolcano in the vicinity of Lonquimay,
also a potential analogue, 648 km from Melimoyu. We observe similar
morphometric variables of Tolhuaca and Melimoyu (Figures 11E–H).
Regarding the tectonic setting variables, both volcanoes share similar
values of slab depth, slab dip, and normal component of the velocity of
the subducting plate (Figures 11B–D). The composition from the GVP
indicates that Tolhuaca produces mostly Andesite/Basaltic Andesite

and Basalt/Picro-Basalt, although there is evidence of Dacites (Polanco
et al., 2000). According to the VOTW database, Tolhuaca has four
confirmed eruptions in the Holocene, the most recent corresponding to
the post-glacial (after 4000 BCE) basaltic activity (VEI 0) from the
Pumehua volcanic trend located in the NW flank of Tolhuaca (Naranjo
(pers, comm. 2000) in Melosh et al. (2012)). The remaining eruptions
have been classified as VEI 3. There is no evidence of historical
eruptions, but there is currently fumarolic activity at the summit
(Polanco et al., 2000; Sanchez-Alfaro et al., 2016).

The selection of the 20 analogues forMelimoyu derived from the
raw dataset was made by assessing the similarity in the eruptive
behaviour reflected in the dispersion of the absolute probability
(Figure 7) and filtering the set of potential analogues with the set of
criteria in Section 4.3. The variability in the results obtained from
different input datasets shows the importance of combining expert
knowledge with quantitative and objective approaches when
assessing the suitability of analogue volcanoes.

From the 55 potential analogues in Figure 2, 14 volcanoes were
excluded because they lack confirmed eruptions in the VOTW and
LaMEVE database or only have eruptions without VEI, and we cannot
use them to estimate an eruption f-M relationship. Therefore, 25% of
the set of potential analogues are data-limited volcanoes. This could be
seen as a limitation in our approach since we are not excluding
volcanoes with scarce records from the clustering by not considering
the eruptive history when defining analogues. However, we think this is
an advantage of our approach since it allows for finding potential

FIGURE 11
Empirical CDF for a selection of tectonic setting parameters (A–D) and morphological parameters (E–H) from the 438 subduction zone volcanoes
included in the input dataset of the clustering. The red, blue, and green lines indicate the value for Melimoyu, Mocho-Choshuenco, and Tolhuaca,
respectively. Note: x-axes are in different scales.
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analogues for data-limited volcanoes and identifying where future
geological studies could focus, assuming that these analogues have
similar eruptive behaviour, and we are missing eruptions from these
data-limited volcanoes. Furthermore, by not accounting for the eruptive
behaviour in the input data, we can also identify analogues for
potentially active volcanoes. This advantage is especially important
for regions where eruptions from potentially active volcanoes are
relatively frequent. This is the case for the volcanic region of South
America, where nearly 40% of all theHolocene volcanoes are potentially
active, and on average, a potentially active volcano has its First Recorded
Eruption in the Holocene (FRESH) every 8 years (Burgos et al., 2022a).

The criteria for filtering volcanoes into the analogue selection
were defined with the goal of finding suitable analogues for
estimating the empirical eruption f-M relationship. This approach
led to excluding Llaima and Villarrica, two frequently active
volcanoes with a history of large explosive eruptions (VEI≥4) in
the Holocene. Due to their current persistent activity and open-vent
state (Witter et al., 2004; Ruth et al., 2016), they cannot be
considered analogues of Melimoyu in terms of eruption
recurrence, especially from small explosive eruptions in Villarrica
(see outlier for VEI≤1 and 2 eruptions from the raw dataset in
Figure 7). However, the activity in Villarrica and Llaima has shifted
between predominantly explosive to effusive and explosive episodes
over time (Lara and Clavero, 2004; Lohmar et al., 2005; Lohmar
et al., 2006; Schindlbeck et al., 2014). These changes in eruption
regimes suggest that Villarrica and Llaima might be in a different life
stage than Melimoyu, meaning they could be analogues over longer
timeframes covering regime changes with varying activity levels.

New methods for identifying analogues could integrate a
temporal component to account for volcanic system life stages
and cyclical changes, moving from a static to a dynamic
analogue concept. Future work could explore the possibility of
identifying ‘timeless’ and ‘contemporary’ analogues depending on
whether the variables used remain constant or change within time
windows shorter than the geological time scale (e.g., tectonic setting
vs. morphology).

Despite the differences in the current eruptive behaviour, the
eruption history from volcanoes like Villarrica and Llaima can be
useful for probabilistic modelling of volcanic hazards at Melimoyu,
providing data that inform the range of eruption characteristics that
may be expected in the future. For example, eruption source
parameters to model scenarios lacking in Melimoyu’s records
(e.g., effusive, or low explosive eruptions).

6.3 Importance of the tectonic setting

Ten out of 20 of the analogues, including Melimoyu, are in the
SVZ (Figure 1A), suggesting that the characteristics of the tectonic
setting strongly control the clustering. The influence that the Chile
Triple Junction and the LOFZ have in the nature and distribution of
volcanism in the SVZ (López Escobar et al., 1995; Gutiérrez et al.,
2005; Stern et al., 2007; Cembrano and Lara, 2009; de Pascale et al.,
2021), may explain why numerous volcanoes in this area share
similar characteristics with Melimoyu.

Similarities in the tectonic setting are also observed among
the volcanic arcs where the 20 analogues are located (Cascades,
Northern Andes, Southern Andes, and Honshu). The range of

some tectonic setting variables for our analogues, such as the age
of the subducting plate (from 10 to 42 Ma) or the crustal
thickness (from ~32 to 54 km), seems large. However, this
range is relatively small compared to the global values from
all the volcanic arcs (~5–156 Ma; ~6–73 km). The similarity in
these values from analogues in distinct geographic settings
shows that the clustering can identify patterns in the data
describing the tectonic setting while making distinctions
among volcanic arcs.

Numerous studies have discussed the role tectonics play in the
volcanism of subduction zones (e.g., Hughes and Mahood, 2008;
Hughes and Mahood, 2011; Acocella. 2014; Sheldrake et al., 2020).
Heuret and Lallemand (2005) and Lallemand et al. (2005) discussed
the relationship between the different components of subduction
zones, some of which have also been found among the 438 volcanoes
from our study (Figure 3) (e.g., age of the subducting plate and the
slab thickness). The importance of the tectonic setting in the
generation of different magma compositions (Hughes and
Mahood, 2008; Sobradelo et al., 2010; Hughes and Mahood,
2011; Sheldrake et al., 2020) is also reflected in the weak
correlation between the crustal thickness, slab dip, the normal
component of the back arc strain-rate, and the presence of
Basaltic and Dacitic magmas (Figure 3). The age of the
subducting plate, slab and crustal thickness, subducting velocity,
and convergence obliquity were also highlighted by the PCA as
variables contributing the most to explaining the variance in PC1
(Table 1). Some of these variables also had more importance
(i.e., higher weights in Supplementary Material S4) when
producing the minimum dispersion in the absolute probability
from the analogues derived from the weighted dataset (Figure 7).

The conditions of the tectonic setting are key to developing
long-lived and large plumbing systems capable of generating large-
magnitude explosive and caldera-forming eruptions (de Silva,
2008; Hughes and Mahood, 2008; Hughes and Mahood, 2011;
Weber and Sheldrake, 2022). According to Sheldrake et al. (2020),
the crustal thickness, the age of the subducting plate, and the
convergent obliquity influence the production of large-magnitude
eruptions (4≤M≤7). Their study establishes that volcanic arcs can
be classified into two groups with a distinct potential of having
large magnitude eruptions based on the parameter H (i.e., a
combination of the age of the slab and movement of the
subduction plate). High-H regime volcanic arcs, characterised
by low obliquity and moderate slab ages, are more likely to
generate large-magnitude eruptions. The probability of
producing large-magnitude eruptions in these volcanic arcs is
strongly controlled by the convergent obliquity. In contrast, in
low-H regimes, volcanic arcs with low mantel productivity and
oblique convergence, the probability of generating large
magnitude eruptions is lower and increases with the crustal
thickness. Honshu arc, where Yakedake is located, is classified
as High-H regime by Sheldrake et al. (2020). In contrast, the
Cascades, Northern Andes, and Southern Andes arcs, where
19 analogues are located, are classified by Sheldrake et al.
(2020) as low-H regimes and have notably similar slopes of the
eruption f-M relationship (2.5<α<3 in their Figure 9D). These
findings further support our decision to consider these volcanoes
as analogues and explain why many potential analogues can
produce large explosive eruptions.
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6.4 Uncertainty in eruption probabilities

Using eruption records from multiple analogues allows for
defining the uncertainty around the eruption f-M relationship
estimations for Melimoyu. Relying on a small selection of
analogues, as we do in this study, instead of global analogues
defined from broad categories, has been proven effective for
reducing the uncertainty in the probability estimations (Hayes
et al., 2022). However, we must be cautious when interpreting the
range of probabilities given by the eruption f-M relationship since,
for some eruption sizes, the difference between the 5th and 95th
percentile can be of several orders of magnitude (Table 3). This
uncertainty can result from the variability in the eruption
recurrence resulting from distinct eruptive behaviour or
different degrees of data completeness among volcanoes, which
is partially accounted for by using only eruption records since
the RCD.

The discrepancies in the eruption data reported for Mocho-
Choshuenco in the VOTW database, the LaMEVE database, and
Rawson et al. (2015) show the importance of not relying only on
global databases when assessing the volcanic hazard at individual
volcanoes. While we used all available eruption data for Melimoyu
and restricted our calculation of eruption probability to only the
most complete portion of the VOTW database for all the analogues,
we still recognise that the eruption probabilities presented in this
study may have been under-estimated if eruption records are
missing from any of the analogues. Differences among sources
further support our decision to exclude the eruptive history from
the VOTW database in the clustering input. Under-reporting in
global databases can limit the ability of methods that define
analogues based on eruption data from the VOTW database or
LaMEVE (e.g., Tierz et al., 2019; Wang et al., 2022) to capture all or
even the most appropriate analogues.

7 Conclusion

Identifying analogues for data-limited volcanoes is essential to
reduce the uncertainty of volcanic hazard assessments. Analogues
have been typically defined using categorical information and broad
classes, which can lead to numerous analogues and large
uncertainties in probability estimations. We have combined an
objective and quantitative approach to identify groups of
analogues that include Melimoyu, our volcano target of study,
using agglomerative hierarchical clustering with an assessment of
suitability based on the dispersion of probability estimates and
expert knowledge.

This algorithm was applied to 37 variables describing the
tectonic setting, rock composition, and morphology of
438 subduction zone volcanoes, including Melimoyu. A
sensitivity analysis was performed using a raw, reduced, and
weighted dataset to assess how the potential analogues change
with the input data. We found that applying a PCA before the
clustering (i.e., reduced dataset) generates a group of potential
analogues with highly dispersed absolute probabilities. In
contrast, the dispersion for the absolute probability estimated
from the analogues derived from the raw and weighted dataset is
lower. As expected, the dispersion is the lowest for the analogues

from the weighted dataset since the weights were tuned to minimise
the variability in the absolute probabilities across the set of
analogues.

After applying the set of criteria deemed as important by
SERNAGEOMIN and VB for modelling the eruption f-M
relationship for Melimoyu (i.e., available eruption data, history of
large explosive eruptions, not frequently active, and a similar range of
magma composition), we retain 20 analogues from the raw dataset,
eight from the reduced dataset, and 13 from the weighted dataset.
Considering the dispersion and the number of volcanoes thatmeet the
criteria, we select the set of 20 volcanoes from the raw dataset as the
best analogues for Melimoyu. The clustering of these volcanoes is
strongly controlled by the characteristics of the tectonic setting at the
volcanic arcs where they are located, which plays a key role in the
eruption f-M relationships (Sheldrake et al., 2020). Furthermore, the
influence of the Liquiñe-Ofqui Fault Zone on the volcanism of the
Southern Volcanic Zone in Chile (Cembrano and Lara, 2009; Völker
et al., 2011; de Pascale et al., 2021) explains whymost of the analogues
are from this area.

The eruption f-M relationship modelled from the analogue’s
eruption data reflects the low frequency of eruptions at Melimoyu
and the history of highly explosive eruptions. For example, the
probability of an eruption of any VEI is 3.68 × 10−3 (50th percentile)
(i.e., average recurrence interval of ~272 years), which indicates long
periods of recurrence between eruptions. Additionally, the
conditional probability distribution indicates that in the event of
an eruption atMelimoyu, there is a 49% probability that it will have a
VEI≥4 (50th percentile), reflecting the potential for large explosive
eruptions at Melimoyu. Lastly, the product of the absolute and the
conditional probability produces an annual probability of 4.8 × 10−4,
1.2 × 10−3, 1.5 × 10−4, 9.8 × 10−4, and 8.3 × 10−4 (50th percentile) for
VEI≤1, VEI 2, VEI 3, VEI 4, and VEI≥5 eruptions at Melimoyu,
respectively.

The eruption f-M relationship presented in this study constitutes
an important step towards preparing the official hazard map for
Melimoyu. In addition, the probabilities and the analogues reported
in this study will be used by SERNAGEOMIN to establish the
recurrence of different eruptive scenarios that could be expected if
Melimoyu reactivates. Future work will explore using the proposed
analogues forMelimoyu to build a probabilistic event tree and define
ESP for modelling volcanic hazards.

This study shows that using quantitative variables when
defining analogues is essential to capture the diversity among
volcanoes, helping to find smaller groups of volcanoes within
broad categories and reducing the uncertainty in the eruption
f-M relationship estimates. This approach can be combined with
other proposed methods and expert knowledge to fine-tune the
selection of analogues. Furthermore, the agglomerative
hierarchical clustering can be easily applied to other volcanoes
allowing the user to select multiple variables from the global
database made available here.
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