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Numerically solving seismic wave equations is vital to large-scale forward
modeling and full waveform inversion. In this paper, a new modified
symplectic discontinuous Galerkin (MSDG) method is proposed to solve the
acoustic and elastic equations. The MSDG method employs a symmetric
interior penalty Galerkin formulation as the space discretization. The time
discretization is based on a modified symplectic partitioned Runge-—Kutta
scheme with minimized phase error. Thus, the MSDG method has the
advantages of high accuracy, being flexible to deal with complex geometric
boundaries and internal structures, and stable for long time simulations. The
numerical stability conditions, dispersion and dissipation are investigated in detail
for the MSDG method. To validate the method, we carry out several numerical
examples for solving the acoustic and elastic wave equations in various media. The
numerical results show that the MSDG method can effectively suppress the
numerical dispersion and is suitable for wavefield simulations.

KEYWORDS
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1 Introduction

Nowadays, full waveform inversion (FWI) is one of the important techniques to study
underground structures, which has been widely used in geophysical exploration
(Tarantola, 1984). FWI is essentially an optimization problem, the main goal of which
is to minimize the error between the observed waveform or travel time records and the
synthetic data. The synthetic data are mainly obtained by forward modeling. Therefore, the
accuracy of FWI strongly depends on the accuracy of forward modeling. A high-precision
forward-modeling method can greatly reduce the computation and storage requirements
in FWI. Many numerical algorithms have been developed, such as the finite difference
method (e.g., Dablain, 1986; Virieux, 1986; Yang et al., 2003; Liu and Sen, 2009; Igel, 2017),
finite element method (Chen, 1984; Yang, 2002; Meng and Fu, 2017), pseudo-spectral
method (Kosloff et al., 1982; Fornberg, 1998), and spectral element method (Komatitsch
and Vilotte, 1998; Tong et al., 2014; Liu et al., 2017). These methods have their own
advantages as well as drawbacks. For instance, the finite difference method has advantages
of convenient programming, small storage capacity and fast calculation speed, but it
usually generates serious numerical dispersion in case of coarse grids (e.g., Sei and Symes
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etal.,, 1995; Ma et al., 2011; Yang et al., 2007; Yang et al., 2012), and
the finite difference method cannot flexibly deal with the complex
geometric structures.

In recent years, the discontinuous Galerkin (DG) methods
have gained increasingly attention in computational geophysics.
The DG method has many advantages, such as high precision,
flexible handling of complex geometric boundaries and boundary
conditions, easy parallel calculation, small numerical dispersion,
etc. It is precisely because of these advantages that much research
work has been carried out on the DG methods (e.g., Cockburn
and Shu, 2001; Li, 2006). Among them, there are also many
studies on solving wave propagation problems (e.g., Kiser and
Dumbser, 2006; Riviére, 2008; Etienne et al., 2010; Wilcox et al.,
2010; Yang et al., 2016; Ferroni et al., 2017; Meng and Fu, 2018;
He et al., 2019; He et al., 2020a, 2020b; He X. J. et al., 2022, He
et al., 2022 X.).

DG methods can be divided into two categories when dealing
with boundary integrals: the flux-based DG method and interior
penalty DG method. This paper concentrates on the latter, which
adds a penalty term to the boundary integral. This method was
originally proposed by Riviere and Wheeler (2003) to solve the
scalar acoustic wave propagation problems. They proposed a
non-symmetric internal penalty Galerkin method. Afterwards,
Dawson et al. (2004) continued to carry out a series of analyses
on the penalty terms. Grote (2006) suggested a symmetric
penalty term in the DG spatial discretization. All the methods
mentioned above are used in computational geophysics. The
numerical properties of the interior penalty DG method for
solving scalar wave equation were first analyzed by Ainsworth
et al. (2006). They also discussed the choice of penalty function.
Detailed analyses of the numerical stability, numerical dispersion
and dissipation for solving elastic equations were carried out by
de Basabe et al. (2008) and de Basabe and Sen (2010). The above
analyses are limited to 1D and 2D. Ferroni et al. (2017)
generalized the analysis to 3D case, and they also compared
the hexahedral mesh with the tetrahedral mesh.

For numerically solving wave equations, traditional time
discretization methods usually introduce artificial dissipation,
which leads to changes in system conservation quantities such as
energy in long-term calculations. The symplectic time-stepping
method is constructed based on the Hamiltonian mechanics
system, which does not introduce artificial dissipation, so it is
especially suitable for long-time simulations. Many symplectic
time-stepping methods have emerged. (Hairer et al., 2006; Chen,
2009; Iwatsu, 2009; Feng and Qin, 2010; Liu et al.,, 2017; Ma et al.,
2017; He et al., 2019). Particularly, Ma and Yang (2017) investigated
the symplectic schemes, and suggested a series of modified
symplectic partitioned Runge-Kutta methods, and their results
suggest that these modified schemes have minimized phase
errors. Moreover, they conducted a numerical test on phase
accuracy after long-time simulations, and found that the
modified symplectic partitioned Runge-Kutta methods are more
stable than traditional methods.

This research is an advance based on the work of He et al. (2019),
in which they used a classic symplectic partitioned Runge-Kutta
method proposed by Iwatsu (2009), and they only considered the
acoustic wave equation. In this study, a modified symplectic
discontinuous Galerkin (MSDG) method is proposed for seismic
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wavefield modeling, which combines the interior penalty DG
method with a modified third-order partitioned Runge-Kutta
method proposed by Ma and Yang (2017). We first outline the
discontinuous Galerkin and time-stepping formulations, then we
investigate the stability condition, dispersion and dissipation in
detail. Finally, several numerical examples are presented to
validate the MSDG method.

2 Scheme
2.1 Space discretization

We first consider the spatial discretization of interior penalty
DG method for the acoustic case. The governing equation can be
written as:

Mpy =V (p7'Vp) = f (1)

where p denotes the wave displacement, A is the Lamé parameter, p is
the density, V is the gradient operator, and f is the external source.
The acoustic velocity ¢ is computed as: ¢ = 1/A/p. Let Q € R? be the
computational domain. We consider a non-overlapping partition of
Q and denote it by . The partition Q, is composed of
quadrangular or triangular elements denoted by {€;}. The union
of all element boundaries is denoted by I';,. The polynomial space
with degree no more than « is denoted by P*. We then consider the
following test function space:

Vi=1{q € L*(Q): qlz € P*(E),VE € O} (2)

As can be seen in Eq. 2 that the test function g is allowed to be
discontinuous across element interfaces.

We then multiply Eq. 1 with a test function ¢, and integrate on
Q. By applying the divergence theorem, the following equation can
be obtained:

J )f‘pn'qu+J pVp-Vqdv - Y J p'(n-Vp)gds
Q Q

FeT),
- [ feaav )

in which F €0E is the interfaces involved in I'j,, and n refers to a
normal vector on F. We define two notations p* and p~ to represent
the traces of p taken from internal and external of E, respectively.
Accordingly, we define two opposite normal vectors n* and n~ with
n" = n". Then, following the notations in Grote et al. (2006), de
Basabe et al. (2008) and de Basabe and Sen (2010), we can define the
average operator {} and the jump operator [] as:

()= 0"~ o Aphi=5 (0 + ) @

Following the theory of the interior penalty DG method, Eq. 3
can be rewritten as:

Z j /\_IPu'qu+ z J p*IVq-VpdV+ z Te (P a:7)

Eeq, * E Eeq, ¥ E Fel),

= 3 | £oa0v )

EeQy

where the term Jp is defined as:
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Je(vi9) == [ lal-fn-pVplds— | [p]-{n-p'Valds
ey [ 407} o] lalas. ©

In Eq. 5, the parameter y is related to the penalty term. In actual
computation, we can use y = (k + 1) (k + 2)/2r, where r is the length
of the edge. The method in Egs. 5, 6 is also called the symmetric
interior penalt‘y DG method Grote (2006).

Let {‘Pn E}i: be a basis function series that is only related to
space but independent of time, where dj,. denotes the number of

lo

basis functions. There are many choices for {(p,- | E}i:; (Cockburn and
Shu, 2001; de Basabe et al., 2008; Riviere, 2008), any of which can be
used. We now consider the basis function expansion of Eq. 5. We
first write the wave displacement p as p = Zil pi(t)g;, where
{pi (t)}i’"{ are the unknow coefficients. Then, we substitute the
expansion of p into Eq. 5. An ordinary differential equation

(ODE) system can be obtained (He et al., 2019):
M;0up; + Nip; + Jijp; = Fi 7)

where:

Mij = z J-EA_lq’j © ;i dv, N‘f = Z J;,Pilv<P}' : V(Pi dv,

EeQy, R EeQy
Jij = z ]F(‘Pj>‘Pi§’7>V)> Fi= Z .[Ef'(PidV’ bj=1. o dic
Fel), EeQy
(8)

Next, we introduce the interior penalty DG scheme for the
elastic equations. We first consider a more general form of 2D P-SV
wave equations:

azul au1 au; aul au3
P Y v Cua‘*’ﬁsg C55$+C55a B <f1 )
aZu3 aul au3 aul au3 N f2
P? Css 3 + Cs5 3 C13 3 +C33 9z
)]

where c¢11,¢13,¢33,¢55 are elastic parameters. In fact, Eq. 9 can
represent the wave propagation in general anisotropic vertical
transversely isotropic media. To simplify the expression, we
introduce the following notation:

(i, us)' £ = (f1, f2)', 0 ()
ou, Oou; Oy Ous

u

B (351 Ix C13 9z Css5 9z Css5 Ix (10)
ou, . Oou; Oy N Ous
[ c Ci3—=— + C33—
) 55 B3 375,
then, Eq. 9 can be recast as:
puy —V-o(u)=f (11)

We then multiply Eq. 11 with a test function vector v, and
integrate over (). By applying the divergence theorem and the theory
of the interior penalty DG method, we obtain:

Z J‘pu[,-vdV+ Z jﬂc-VvdV+ Z Jr(w,v;)

Eeq, ¥ E Eeqy, Y E Fel),

DN ERTY

EeQy, E
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where the term Jp is now defined as:

Te@vi) ==[ W-fn-o@ids [ ] teoids+y| fu]

- [v]ds
(13)

For the basis function expansion of Eq. 12 in the case of elastic
waves, the reader can follow the derivation for the case of acoustic
wave. We can obtain an ODE system similar to Eq. 7. Here we omit
the detailed derivation and description in order to avoid redundant
narration.

2.2 Time discretization

We now continue to discretize the equations in time. To simplify
the notations, a vector P is introduced to represent all the unknown
coefficients. Then, Eq. 7 can be written as:

P,=L(P)+F (14)

where L is an operator related to the space discretization of interior
penalty DG method.

To implement the partitioned Runge-Kutta time-stepping
method, we first introduce an auxiliary intermediate vector V,
which is defined as: V = P;. Then we can obtain the following system:

P -V
{Vt —L(P)+F (15)

Afterwards, a modified third-order partitioned Runge-Kutta
method proposed by Ma and Yang (2017) is employed to
implement the time discretization, which reads:

Vi=V'+oA(L(P) +F)
P, = P" + d,AtV,

V, = Vi + &, AtL(P))

P, = P, + d,AtV,

V" =V, + c;AtL(P,)

P! = P, + d; AtV

where the coefficients are:

¢ = 0.46329510533007323

c; = —0.09414279831674241

1= 0.6308476929866692 (17)
d; = —0.3544544907366482

d, = 1.0941427983167424

d; = 0.2603116924199058

Theoretical analyses and numerical test show that scheme of
Egs. 16, 17 has small phase errors and the phase accuracy can be
maintained during long time simulation. Combining the temporal
discretization introduced here with the space discretization, we
obtain the MSDG method.

For the purpose of comparison, we also introduce two classic
third-order time-stepping methods. The first is the symplectic third-
order Runge-Kutta method proposed by Iwatsu (2009), which has the
similar form as Eq. 16 but with the following different coefficients:

1 11 1

== (V20972 - 7),¢, = —,c3 = — (8 - V20972),
12 12 12 (18)
2 2

d, = 5 (1+V38/11),d, = 5 (1-+/38/11),d; = g
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Incorporated with the interior penalty DG method in Section
2.1, we call this method the symplectic DG (SDG) method. He et al.
(2019) studied this method in great detail.

The other is the classical three-order Runge-Kutta method
proposed by Williamson (1980), which is:

Y =<V>[=<L(P)+ﬁ>=-g(w),

( At
Ynﬂ = yn + z (W1 + 4W2 + W3)
Wi =g(t"y")

At At
Wz = g(t” + 7,}’” + 7W1)

L W5 = g(t" + At y" — AtW, + 2AtW,)

TABLE 1 The maximum Courant numbers for the MSDG, SDG and CDG
methods.

P! 0.458 0.444 0.288
‘ 0.251 0.243 0.158
‘ 0.162 0.157 0.102

P ‘ 0.11 0.107 0.069

A
1.18
—*—MSDG
—&—8DG
—CDG
1.16
x 1.14
1.12
L b
1.1 -
0 1 2 3 4 5 6
[
C
1.0035
| —*—MSDG
|—e—SDG
1.003 —co6 |
1.0025
1.002 -
o
1.0015 -
1.001
1.0005 -
1
0 1 2 3 4 5 6
[
FIGURE 1

10.3389/feart.2023.1145353

Similarly, incorporated with the interior penalty DG method in
Section 2.1, we name this method the classic DG (CDG) method.

3 Numerical properties

To discuss the numerical properties including the stability
condition, dispersion and dissipation, plane wave analysis should
be carried out first. Many studies have focused on the plane wave
analysis of the interior penalty DG method for acoustic and elastic
cases (e.g., Ainsworth et al., 2006; de Basabe and Sen, 2010; Ferroni
etal,2017; He etal.,, 2019; He et al., 2020a). One can follow the steps
in the above listed studies to analyze the numerical properties of
MSDG method. Here, we do not show the details of derivation, but
only present the relevant results for the scalar wave equation in
isotropic case. The results are based on the uniform rectangular
elements and employ Gauss-Legendre polynomials as basis
functions (Cockburn and Shu, 2001).

3.1 Stability conditions

Satisfying the numerical stability condition is an essential
prerequisite for a numerical algorithm to keep the calculation
stable. Typically, the numerical stability condition is given by the
constraint relationship among wave speed ¢ and the spatial and

1.06 weng| T
—— ©
oS0C | osteas !
1.05F |—cDG ' 2.39/ 2.395
1.04

o 1.03

1.02¢

1.01

1.0002

1.00016

1.00012
14

1.00008 -

1.00004 -

Numerical dispersion changing with the propagation direction. (A=D): k = 1~ 4.
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FIGURE 2

Numerical dissipation changing with the propagation direction. (A-=D): k¥ = 1~ 4.

temporal steps i and At, known as the Courant-Friedrichs-Lewy
(CFL) condition, which reads:

c % < Opax (20)
where o, is the maximum Courant number.

We study the numerical stability of the MSDG method and list the
maximum Courant numbers in Table 1 for P* with ¥ = 1~4. For
comparison, the maximum Courant numbers for the CDG and SDG
methods are also presented, which are obtained directly from the
studies by He et al. (2019). From Table 1, we see that as « increases, the
maximum Courant numbers decreases significantly. We also observe
that the maximum Courant number for the MSDG method is larger
than that of SDG method, and the maximum Courant number of the
CDG method is the smallest. Particularly, the maximum Courant
number for the MSDG method have a 3% increase compared to the
SDG method, and a 59% increase compared to the CDG method. The
stability analyses show that the proposed MSDG method has
superiority over traditional methods.

3.2 Dispersion and dissipation

When we discretize the wave equation in space and time,
numerical dispersion and dissipation usually appear. Here, we

Frontiers in Earth Science

define the numerical dispersion R by the ratio between the
numerical speed and the true speed. We also use the ratio of a
numerical amplitude to the true amplitude to denote the numerical
dissipation S. According to the definitions, closer values of R and S to
1 indicate smaller dispersion and dissipation, meaning a better
numerical method. Generally, R and S are related to the spatial
sampling ratio S,, the Courant number « = cAt/h, as well as the
direction of wave propagation 6. In the following analysis, the
Courant number « is set to 0.1 for x = 1~3, «a is 0.05 for x= 4.
This measure can guarantee that for all methods « is within the
maximum Courant number. We also assume that the spatial
sampling ratio S, = 0.4.

Figure 1 exhibits the numerical dispersion R of the MSDG
method changing with propagation direction 6 for x = 1~4. The
results of the SDG and CDG methods are also presented for
comparison. It is obvious that R decreases as x increases.
Moreover, R varies with the value of 6, meaning that the
numerical dispersion has anisotropic character. Figure 1 also
indicates that the values of R for these three methods are similar
when « = 1, 2; however, when « = 3, 4, the values of R for CDG are
obviously larger than that of MSDG and SDG, meaning that using
symplectic Runge-Kutta time-stepping method has certain
advantages over non-symplectic scheme. For MSDG and SDG
methods, we observe some minor differences. Figure 1B shows
that the numerical dispersion of MSDG is slightly smaller than

05 frontiersin.org
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FIGURE 3

(A) Snapshots of the acoustic wavefields at t = 0.8 s, and (B)
normalized waveform records in [0 s, 1.4 s] computed by the MSDG
method in homogeneous acoustic medium.

that of SDG, demonstrating the slight advantage of MSDG method
in numerical dispersion.

Figure 2 shows the variation of numerical dissipation S. The
anisotropy along with the propagation direction can also be
identified. Unlike the case of numerical dispersion, the numerical
dissipation of the three methods is quite different. Both MSDG and
SDG methods do not introduce numerical dissipation, indicating
that these two methods can maintain energy conservation and are
beneficial to long-term simulations. However, the CDG method
introduces a large numerical dissipation, indicating that the energy
will attenuate in the wave propagation, which is not conducive to
long-term simulation. The results of the numerical dissipation
analysis fully illustrate the importance of adopting the symplectic
scheme.

4 Numerical examples

We now carry out several tests to illustrate the validity and
efficiency of the proposed algorithm.

4.1 The acoustic model with long time
simulation test

In the first example, the computational domain is a square with
0<x,z<6km. The domain is discretized with uniform rectangles

Frontiers in Earth Science
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FIGURE 4

(A) Snapshots of the wavefields generated by the MSDG and CDG
methods at t = 2 s, where the left part is generated by the MSDG
method and the right part is generated by the CDG method. The arrow
indicates that there is a slight phase shift. (B) Normalized
waveforms within the time interval of [11 s, 13 s].

with 21.7 m x 21.7 m. The acoustic speed is 3 km/s. A point source is
set at (3.0 km, 3.0 km), and its evolution equation is:

f () =-576f3[1-16(0.6fot — 1)°] exp[-8(0.6fot — 1)°] (21)

where f, = 20 Hz. A receiver is set at (4.26 km, 4.26 km) to
record the waveforms. We use a MSDG method with order x =
2 of the basis function. The time increment is At = 1.138 ms. We
do not make any special treatment to the boundary conditions,
and we just implement the simplest Dirichlet zero boundary
condition.

We show the wavefield snapshot at £ = 0.8 s in Figure 3A, from
which we observe clear wave fronts without visible numerical
dispersion. We also plot the normalized waveforms in the time
interval of [0's, 1.4 s] in Figure 3B. The solid line is the numerical
result generated by the MSDG method, and the dotted line is the
analytical result using Cagnidard-de Hoop algorithm (de Hoop,
1960). Comparing the two solutions, we find that they fit well,
illustrating the correctness of our method. In addition, the
waveforms exhibit no visible pseudo fluctuations, demonstrating
the availability of our method for restraining the numerical
dispersion.

Next, we intend to examine the long-time simulation
capability of our method. We first plot the snapshots of the
acoustic wavefields generated by the MSDG and CDG methods at
t=2sin Figure 4A, where the left part is generated by the MSDG
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Normalized waveforms in time intervals of (A) [12.27 s, 12.31 s] and (B) [12.86 s, 12.90 s], which are clear observations of Figure 4.
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@)
N

Snapshots of the elastic wavefields in homogeneous isotropic medium. (A) u; and (B) u».

method and the right part is generated by the CDG method. The
arrow indicates that there is a slight phase shift. To illustrate the
performance of the two methods more clearly, we extend the
simulation time to 13s. Now the total time iteration steps is
11427. Figure 4B shows part of the waveform records in [11s,
13 s]. The records produced by the CDG method are provided as
well for comparison. The solutions obtained by reducing the time
step by half for both methods are taken as two reference solutions,
which show more accurate results. It is indicated that although
the general waveform trends of these methods are consistent,
there are subtle differences. Figure 5 gives closer observations of
the waveforms in time intervals of [12.27 s, 12.31 s] and [12.86 s,
12.90s], from which we clearly see that the CDG method
provides the worst results, with significant deviations in phase
and amplitude compared to the other results, whereas the results
of MSDG method are close to the other two reference solutions.
This experiment demonstrates the effectiveness and reliability of
our method in preserving phase and amplitude.
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4.2 Elastic wave propagation models

Here, the elastic wavefield propagation in two models are
considered. The first
0<x,z<6km. The
rectangles with 20 m x 20 m. The density is p = 1.8 g/cm’. P and
SV wave speeds are ¢, = 3.456 km/s and ¢; = 2.160 km/s. A point
source is set at (3.0 km, 3.0 km) with similar time variation function
asin Eq. 21 where f, = 20 Hz. We set a receiver at (2.4 km, 3.8 km) to
record the synthetic seismogram. The MSDG method with order x =

model is a square domain with

domain is discretized with uniform

2 of the basis function is used for computing. The time increment is
At = 1.16 ms.

Figure 6 shows the elastic wavefield snapshot at time 0.85 s, from
which we see clear wavefronts without visible numerical dispersion.
To observe more clearly, we plot the normalized waveforms at ¢ €
[0s, 1.4s] in Figure 7. The solid line is the numerical result
generated by the MSDG method, and the dotted line is the
reference result generated by the staggered grid method (Virieux,
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FIGURE 12
Snapshots of the acoustic wavefields at (A) t = 0.35 s and (B)
t=07s.

1986) on fine grids. We see that the two solutions fit well, illustrating
the correctness of our method.

The second homogeneous elastic model is the Lamb’s model, in
which the long side extends 4 km, and the left boundary has a
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length of 2 km. The surface is a slope with a tilt angle 6 = 10°. P and
SV wave speeds are ¢, = 3.2 km/s and ¢, = 1.848 km/s, respectively.
A point source is located at the upper surface, and its evolution
equation is:

f(t) = (t - to)exp(=(mfo (t —t5))"), with (f1, f2)

= (-sin 6, cos 0) f (t) (22)
where fo = 12 Hz, and ¢, is the decay time with f, = 0.08s. We
discretize the model with unstructured triangles, and the average
length is 30 m with a time step of 0.938 ms.

For the upper surface boundary, we use a free surface boundary
condition (FSBC) which says: ¢ (u)-n = 0. According to the practice
of Riviere (2008), the integral term in Eq. 12 related to this boundary
vanishes, so that the FSBC is automatically obtained. Figure 8 shows
the elastic wavefield snapshots at t = 0.6 s. The wavefronts are clear
without visible numerical dispersion. Particularly, the Rayleigh wave
can be clearly observed, demonstrating that the MSDG method is
convenient and effective to deal with FSBC.

4.3 Anisotropic model

This experiment considers a vertical transversely isotropic mode
with surface topography (notice that He et al., 2019 used a similar
model to study the acoustic wavefields). This model is divided by
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66,051 triangles, and the average length is 30 m. A point source with
central frequency fo = 20 Hz is used with similar time variation
function as in Eq. 21, and it is located at (3.6 km, 2.5km). The
material parameters are: p = 2.1 g/cm’, ¢;; = 18.9 GPa, ¢;3 =
8.96 GPa, ¢33 = 4.725 GPa, and cy4 = 28.35 GPa. The time step is
0.3 ms. We use FSBC to deal with topography.

The resulting snapshots at ¢ = 0.35s and 0.7 s are shown in
Figures 9, 10, respectively. The wave fronts are clear. Moreover, the
obvious anisotropic propagation of wavefields can be observed. This
experiment shows that that the MSDG method is appropriate for
wavefield simulations in complicated anisotropic medium.

4.4 Heterogeneous case

The last experiment concentrates on the acoustic wave
in 2D SEG/EAGE model.
heterogeneous model with large speed contrast. The speed

propagation This is a typical
structure is shown in Figure 11, the maximum speed of which is
4.482 km/s and the minimum speed is 1.5 km/s. The domain is
discretized by regular quadrangular meshes with length of 15 m. The
time step is 0.84 ms. The source is located at the center of the domain
with similar evolution equation as in Eq. 21 where f, = 20 Hz. The
MSDG method with order x = 2 of the basis function is used for
simulation. Figure 12 presents the wavefield snapshots at = 0.35 and
0.7 s. Clear wavefronts are observed, and the reflected, refracted, and
scattered waves can be clearly identified. This test demonstrates that
the MSDG method is promising for wavefield modeling in
complicated heterogeneous medium.

5 Conclusion

We propose a new MSDG method for 2D seismic wavefield
modeling, the temporal discretization of which employs a modified
symplectic partitioned Runge-Kutta scheme which has minimized
phase error, and the space discretization is based on the symmetric
interior penalty Galerkin formulations. The numerical stability
condition of the MSDG method is investigated in detail. We
compare the stability results with classic SDG and CDG
methods, and it is indicated that the proposed method has more
relaxed maximum Courant numbers than the other two methods.
We study the dispersion and dissipation of the MSDG method, and
find that MSDG produces smaller dispersion than SDG and CDG.
Moreover, both MSDG and SDG methods are non-dissipative that
have beneficial effect on long-term simulations, whereas the CDG
method introduces a large numerical dissipation. These conclusions
confirm the advantages of symplectic time-stepping method over
non-symplectic scheme in keeping energy conservation. Finally, we
perform some tests on wave propagation in homogeneous and
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