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In the study of atmospheric dynamics, the vorticity equation in a rotating
coordinate system plays a crucial role. However, a paradox arises when one
considers the term related to spatial variations in Coriolis parameters known as the
“β-term”. The β-term should not appear in the vorticity equation because the
three-dimensional (3D) planetary vorticity is a constant vector. However, it is
always in the vorticity equation. In this article, the source of the β-term in different
rotating coordinates are investigated. The results show that in the spherical
coordinate system, the β-term comes from the directions changing of one of
the unit vectors ( �j) with the spatial position and originates from the tilting term. By
contrast, in the height coordinate system, the β-term cannot be derived from the
tilting term as the individual changes of the coordinate frames with time are
omitted, Instead it is proven to be related to the advection term. Although the both
coordinate systems are rotating coordinate systems, the sources of their β-terms
differ due to the simplification levels of the coordinate systems. Although the 3D
planetary vorticity is a constant vector in the spherical coordinate system, the
conversions between its components are allowable and spatial derivatives of its
components can be observed, eliminating the paradox of the β-term. However, in
the height coordinate system, the 3D planetary vorticity vector is not a constant
vector in order to maintain the conservation of the absolute angular momentum
and mechanical energy. To account for the influence of the earth’s curvature on
atmospheric motion, the β-term of the Coriolis parameters varying with the
latitude appears. So, the origin of the β-term paradox proposed in the height
coordinate system comes from a misunderstanding of the physical constraints of
the height coordinate system.
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1 Introduction

Ondaily weathermaps, the distribution of the pressure field or wind field in themiddle and
upper troposphere often exhibits wavelike patterns. In the middle latitudes of the Northern
Hemisphere, approximately 3–5 waves can be observed. These waves are known as
atmospheric long waves or Rossby waves. They are referred to as slow waves due to their
significantly slower propagation speed compared to acoustic waves and gravity waves. The β-
parameter is commonly defined as the northward gradient of the vertical component of the
three-dimensional (3D) planetary vorticity (2 �Ω). The spherical coordinate system is a rotating
frame but not a Cartesian system because the unit vectors are not constant (Martin, 2006). The
height coordinate system commonly used in meteorology is one of the Cartesian coordinates,
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which is a simplified form of the spherical coordinate system, known
as the Cartesian rectangular coordinate system. In the height
coordinate system, the β-term refers to the change in the planetary
vorticity (f) with the latitude resulting from the earth’s rotation.When
the atmosphere moves north–southward, the inter-transformation
between the planetary and relative vorticities can lead to variations in
the vortex intensity of synoptic systems. In 1939, Rossby first
theoretically studied the properties of atmospheric long waves and
identified the β-effect as the cause of such waves in the barotropic
atmosphere under the condition of the absolute vorticity conservation
(Rossby, 1939). Long waves are closely associated with large-scale
weather system evolution and represent themost important wave type
in the atmosphere. The development of the long wave theory has
significantly contributed to the advancement of the modern dynamic
meteorological theory and has provided a theoretical foundation for
numerical weather prediction. As a tribute to Rossby’s contributions
to the establishment of the long wave theory, these atmospheric long
waves were named Rossby waves. The formation and propagation of
the atmospheric Rossby waves are explained by a β-term in the non-
divergent barotropic vorticity equation (Rossby, 1939; Dickinson,
1978; Holton, 2004; Cai and Huang, 2013).

When the 3D vorticity equation is derived from the 3D vector
motion equation in the rotating coordinates (the spherical coordinate
system and the height coordinate system), the 3D planetary vorticity,
known as the planetary vorticity vector generated by the Earth’s
rotation, remains constant and equals twice the angular velocity of
the Earth’s rotation. Consequently, the 3D planetary vorticity vector is
always zero in theory, under the full derivative operation, allowing it to
be eliminated from the equation. In the widely used height coordinate
system, if the full derivative of the 3D planetary vorticity vector also
equals to zero, it implies the absence of the full derivative term of the
Coriolis parameter in the vorticity equation or the variation term of the
vertical component of the 3D planetary vorticity (2 �Ω) with latitude.
This absence suggests that the crucial β-term, which is vital for
atmosphere motion would not exist. This scenario is known as the
β-term paradox (Viudez, 2003). Viudez (2003) proposed redefining the
β-term as the northward component of the planetary vorticity vector.
By doing so, the spatial derivative of the planetary vorticity are no
longer involved in the vorticity equation, thus resolving the paradox.
Viudez (2003) substantiated this redefinition to avoid encountering the
derivatives of planetary vorticity by demonstrating the consistency
between the northward component of planetary vorticity and the
northward derivatives of the vertical component of planetary
vorticity in the spherical coordinate system. Viudez (2003)
emphasized that the β-term originates from the tilting term of the
planetary vorticity, asserting that this conclusion is independent of the
coordinate system. Unfortunately, the proof of the source of the β-term
in the commonly used vorticity equation in the height coordinates has
not been demonstrated. In the vorticity equation derived in the
spherical coordinates, the expression of the β-term is not provided,
and the derivation in the spherical coordinates cannot be directly
extended to the height coordinates. In the vorticity equation in the
height coordinate, the β-term represents the advection term of vertical
planetary vorticity (Yang et al., 1980; Lv et al., 2004; Martin, 2006). The
objective of this study is to investigate the origin of the β-term in the
commonly used rotating coordinate system and provide an explanation
for the underlying paradox of the β-term. Section 2 will focus on
analyzing the origin of the β-term in the spherical coordinate and

height coordinate systems. In Section 3, the emphasis will be put on
clarifying the β-term paradox in the height coordinate system.

2 Source of the β-term in the rotating
coordinate system

2.1 Source of β-term in the spherical
coordinates

The Coriolis force is an important “apparent force” and plays a
crucial role in rotating coordinate systems. The spherical coordinate
system takes into account the complete influence of the Coriolis
force. The β-term is fundamentally derived from the curl of the
Coriolis force.

After the vector formula, ∇×(A × B) = B(∇·A) - A(∇·B) + (A·∇)B
- (B·∇)A is applied, the curl vector of the Coriolis force can be
decomposed into

∇3 × 2 �Ω × �V3( ) � − �V3 · ∇3( )2 �Ω − 2 �Ω ∇3 · �V3( )+ �V3 ∇3 · 2 �Ω( )
+ 2 �Ω · ∇3( ) �V3. (1)

Since the rotation vector �Ω is divergence-free, so �V3(∇3 · 2 �Ω) � 0.
Here, −( �V3 · ∇3)2 �Ω is referred to the planetary vorticity advection
term, −2 �Ω(∇3 · �V3) represents the divergence-related term, and
(2 �Ω · ∇3) �V3 is the tilting-related term, coined as the planetary
vorticity tilting term by Viudez (2003).

The expression for the Coriolis force in the spherical
coordinates is

−2 �Ω × �V � 2Ωv sin ϕ − 2Ωwcos ϕ( ) �i − 2Ωu sin ϕ �j + 2Ωu cos ϕ �k .

(2)
By applying the curl formula in the spherical coordinates, we

obtain the curl of the Coriolis force in the spherical coordinates, as
shown in the equations as follows:

∇× −2 �Ω× �V( ) � 1
r

2Ω cos ϕ
∂u
∂ϕ

( ) + 2Ω sin ϕ
∂u
∂r

[ ] �i
+ [2Ω sinϕ

∂v
∂r

− 2Ω cos ϕ
∂w
∂r

+ 2Ωv sin ϕ − 2Ωwcos ϕ( )
r

− 2Ω
r

∂u
∂λ

] �j

+[ − 2Ω tanϕ

r

∂u
∂λ

−1
r

2Ωv cos ϕ + 2Ω sinϕ
∂v
∂ϕ

− 2Ω cos ϕ
∂w
∂ϕ

( )

+ 2Ωv sinϕ tanϕ − 4Ωw sinϕ(
r

]k.→ (3)

Considering f � 2Ω sin ϕ and ∂y � r∂ϕ, then

−v
r

2Ω cos ϕ( )k. � −v
r

∂ 2Ω sin ϕ( )
∂ϕ

k
. � −v ∂f

∂y
k
. � −vβk. . (4)

This implies that the β-term originates from the decomposition
of the curl of the Coriolis force in the �k-direction.
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Using the formula for the advection derivative term in spherical
coordinates (referring to Formula A1 in the Appendix A), we can
obtain

− �V3 · ∇3( )2 �Ω � 0. (5)

Furthermore, it is worth noting that the 3D planetary vorticity in
spherical coordinates remains a constant vector, confirming the
validity of Eq. 5.

By applying the spherical coordinate divergence formula (refer
to Formula A2 in the Appendix A), we obtain

−2 �Ω ∇3 · �V3( )
� −2Ω

r

∂u
∂λ

− 2Ω cos ϕ

r

∂v
∂ϕ

− 2Ω cos ϕ
∂w
∂r

+ v2Ω sin ϕ

r
− 4wΩ cosϕ

r
[ ] �j

+ [ − 2Ω tan ϕ

r

∂u
∂λ

− 2Ω sin ϕ

r

∂v
∂ϕ

− 2Ω sin ϕ
∂w
∂r

+ v2Ω tan ϕ sin ϕ

r

− 4wΩ sin ϕ

r
] �k .

(6)
From Eq. 6, it is evidently seen that −2 �Ω(∇3 · �V3) represents the

divergence-related term without involving the β-term.
Similarly, by utilizing the advection derivative term formula in

the spherical coordinates (referring to Formula A3 in the Appendix
A), we derive

2 �Ω ·∇3( ) �V3� 1
r

2Ωcosϕ
∂u
∂ϕ

( )+2Ωsinϕ
∂u
∂r

[ ] �i

+ 2Ωcosϕ

r

∂v
∂ϕ

+2Ωsinϕ
∂v
∂r

+2wΩcosϕ

r
[ ] �j

+ 2Ωcosϕ

r

∂w
∂ϕ

+2Ωsinϕ
∂w
∂r

−1
r

2Ωvcosϕ( )[ ] �k.

(7)

As seen in Eq. 7, 1r (2Ωv cos ϕ) is incorporated on the right-hand
side of the equation, which is the β-term, and it is derived from the
curl vector decomposition of the Coriolis force. In other words, the
β-term is from the tilting term. This conclusion aligns with the
findings of Viudez (2003). The planetary vorticity tilting term can
also be decomposed as follows:

2 �Ω ·∇3( ) �V3 � �i 2 �Ω ·∇u( )+ �j 2 �Ω ·∇v( )+ �k 2 �Ω ·∇w( )+u 2 �Ω ·∇( ) �i
+ v 2 �Ω ·∇( ) �j+w 2 �Ω ·∇( ) �k.

(8)
The last three terms on the right-hand side of Eq. 8 are due to the

spatialvariationin theunitvectorsalongthe threecoordinateaxes inthe
spherical coordinate system. In the spherical coordinate system, the
formula for the spatial derivatives of the three-unit vectors is given by

∂ �i
∂λ

� sin ϕ �j − cos ϕ �k;
∂ �i
∂ϕ

� ∂ �i
∂r

� 0,

∂ �j
∂λ

� −sinϕ �i; ∂ �j
∂ϕ

� − �k;
∂ �j
∂r

� 0,

∂ �k

∂λ
� cos ϕ �i;

∂ �k

∂ϕ
� �j;

∂ �k

∂r
� 0 . (9)

Regarding the β-term which is in direction �k, let us focus on the
term in the direction k,

→
as mentioned previously. Combined with

Eq. 9, the expressions for the third, fourth, and fifth terms on the
right-hand side of Eq. 8 can be deduced as follows:

2 �Ω · ∇w( ) �k � 2Ω sin ϕ
∂w
∂r

+ 2Ω cos ϕ
∂w
r∂ϕ

( ) �k, (10)

u 2 �Ω · ∇( ) �i � u 2Ω cos ϕ
∂ �i
r∂ϕ

+ 2Ω sinϕ
∂ �i
∂r

( ) � 0, (11)

v 2 �Ω · ∇( ) �j � v 2Ω cos ϕ
∂ �j
r∂ϕ

+ 2Ω sinϕ
∂ �j
∂r

( ) � −2Ω cos ϕ
v

r
�k.

(12)
In Eq. 12, the right-hand side of Eq. 12 corresponds to the β-term,

indicating the β-term originates from v(2 �Ω · ∇3) �j in the spherical
coordinates and is caused by one of the unit vectors ( �j) of the three
coordinate frames in the spherical coordinate system, which varies
with the spatial position.

Even though our approach differs from Viudez’s (2003)
method, we achieve the same conclusion. It can be stated that
the β-term in the spherical coordinate system is derived from the
tilting term of the curl decomposition of the Coriolis force.
Furthermore, we provide further clarification that the β-term
in the spherical coordinate system arises from the variation in the
coordinate axis. Although the planetary vorticity vector remains
constant, the change in the coordinate axis direction allows
components in different directions to be transformed into
each other. This implies that even if the vector is zero, its
components can still have spatial differential quotients. The
Taylor–Proudman constraint, which asserts that the tilting
vector of the planetary vorticity in the spherical coordinate
system is zero, indicates a balance between the different
components of the tilting term of the planetary vorticity
(Viudez, 2003). This provides a physical explanation for the
constant vector of the planetary vorticity in the spherical
coordinate system, where its vertical component can have
spatial differential quotients. Consequently, the northward
differential quotient of planetary vorticity is not necessarily
zero. In other words, the β-term can exist in the spherical
coordinate system.

2.2 Source of β-term in the height
coordinates

During the simplification process of converting the equation of
motion from the spherical coordinates to the height coordinates,
certain terms of the Coriolis force are neglected in order to satisfy the
“constraints of absolute angular momentum conservation and
mechanical energy conservation.”, which means implies that the
height coordinate system only partially accounts for the influence of
the Coriolis force and can be considered an approximate inertial
coordinate system. The Coriolis force in the height coordinates can
be expressed as

−2Ω.× V
.

3 � 2Ω sin ϕv �i − 2Ω sin ϕ u �j, (13)
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∇× −2 �Ω× �V3( ) � ∂ 2Ω sinϕu( )
∂z

�i + ∂ 2Ω sinϕv( )
∂z

�j

− ∂ 2Ω sin ϕu( )
∂x

+ ∂ 2Ω sinϕv( )
∂y

[ ] �k.

(14)

By introducing the variable f � 2Ω sinϕ, Eq. 14 can be
written as

∇× −2 �Ω× �V3( ) � −f ∂u
∂x

+ ∂v
∂y

( ) − v
∂f
∂y

[ ] �k + ∂ fv( )
∂z

�j + ∂ fu( )
∂z

�i .

(15)
Based on Eq. 15, the β-term is derived from the decomposition

of the curl of the Coriolis force in direction �k.
Here, we can investigate the origin of the β-term through the

vector decomposition in the height coordinate system, as given by
the following equations:

− �V3 · ∇3( )2 �Ω � − u
∂f
∂x

+ v
∂f
∂y

+ w
∂f
∂z

[ ] �k � −v ∂f
∂y

k,
→

(16)

−2 �Ω ∇ · �V( ) � −f ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

( )k,
→

(17)

2 �Ω · ∇3( ) �V3 � f
∂u
∂z

�i + f
∂v
∂z

�j + f
∂w
∂z

k.
→

(18)

From Eq. 16, it is evident that the β-term arises from the
advection term of the curl vector decomposition of the Coriolis
force, rather than the tilting term. As mentioned previously, in the
spherical coordinate system, the β-term is derived from the tilting
term. However, in the height coordinate system, the β-term is
contributed by the advection term. In the spherical coordinate
system, since the planetary vorticity is a constant vector, the
advection term is zero, making it impossible to obtain the β-term
from the advection term. When the spherical coordinate is
simplified to a height coordinate, it is approximately regarded as
d �i
dt � d �j

dt � d �k
dt � 0, and the individual changes of the three coordinate

frames over time are neglected. Consequently, in the height
coordinates, the β-term cannot be derived from the tilting term.
If planetary vorticity is a constant vector in the height coordinate
system, −( �V3 · ∇3)2 �Ω should be zero. Accordingly, the β-term
cannot be obtained from the vorticity equation. In the following
discussion, we aim to demonstrate that the planetary vorticity in the
height coordinate system is not a constant vector.

3 The β-term paradox in the height
coordinates

The paradox surrounding the β-term arises from the physical
law that the planetary vorticity is a constant vector in a rotating
coordinate system. As discussed in Section 2.2, in the height
coordinate system, the source of the β-term is originated from
the advection term of the planetary vorticity vector, However this
term will be zero if the physical law or physical constraint is obeyed.
It is evident that the 3D planetary vorticity vector is not a constant
vector (referring to Appendix B) in the height coordinate system,
and there is no inherent paradox regarding the β-term. In the

following discussion, we will briefly explore the reasons why the
3D planetary vorticity vector is not a constant vector in the height
coordinate system.

The planetary vorticity is not a constant vector in the height
coordinate system, which can be understood by examining the
principles that must be satisfied when simplifying the motion
equations from spherical coordinates to height coordinates. In
the process of applying the thin-layer approximation, it is
necessary to adhere to the principles of absolute angular
momentum conservation and mechanical energy conservation.
Consequently, certain Coriolis force terms related to the 3D
planetary vorticity are neglected. For instance, the vertical
Coriolis force ~fu and the term involving ~fw in the horizontal
Coriolis force are omitted, thus violating the physical constraint
that the 3D planetary vorticity vector is a constant vector. In
other words, the simplification of the motion equation from the
spherical coordinates to the height coordinates compromises the
physical constraint that the angular velocity of the Earth’s
rotation (i.e., the 3D planetary vorticity vector) is a constant
vector. Because the height coordinate system fails to fully
incorporate the planetary vorticity vector, the planetary
vorticity differential quotient term appears in the vertical
vorticity equation. The spherical coordinate system fully
incorporates the Coriolis force resulting from the earth’s
rotation.

4 Conclusion

Using a different approach from Viudez (2003), we have
deduced the origins of the β-term in both spherical and height
coordinate systems, clarifying the misconception surrounding the
β-term paradox. The following conclusions are arawn as follows:

The β-term in the spherical coordinate system arises from the
tilting term of the planetary vorticity and is caused by one of the unit
vector directions that vary with the spatial position, specifically a
polar-pointing unit vector that changes with the latitude. The β-term
in the height coordinates originates from the planetary vorticity
advection term.

The spherical coordinate system fully incorporates the
Coriolis force resulting from the earth’s rotation. In this
system, the 3D planetary vorticity vector is a constant vector;
but, there is a mutual transformation among its components,
resulting in the existence of spatial differential quotients.
Therefore, the existence of the β-term in the spherical
coordinate system does not contradict with the constant
planetary vorticity vector. On the other hand, the height
coordinate system is a simplified coordinate system that only
partially considers the influence of the Coriolis force, so the
planetary vorticity is not a constant vector. To uphold the
conservations of absolute angular momentum and mechanical
energy, the constant vector of the planetary vorticity cannot be
maintained. The physical constraint that the vorticity vector of
the Earth’s rotation is a constant vector fails to be support for the
height coordinate system, allowing for the existence of spatial
differential quotients of planetary vorticity. Therefore, the β-term
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representing the spatial differential quotient of the planetary
vorticity vector can exist in both of the spherical coordinate
and the height coordinate systems, which resolves the paradox
of the β-term.
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Appendix A Formula of the advection
derivative term in spherical coordinates

The curl formula in the spherical coordinates can be
expressed as

∇× �A � 1
r

∂Ar

∂ϕ
− ∂Aϕ

∂r
− Aϕ

r
( ) �i + ∂Aλ

∂r
+ Aλ

r
− 1
r cos ϕ

∂Ar

∂λ
( ) �j+

1
r cos ϕ

∂Aϕ

∂λ
− 1
r

∂Aλ

∂ϕ
+ Aλ tanϕ

r
( )k.

→

(A1)
The divergence formula in the spherical coordinates is

given by

∇ · �A � 1
r cos ϕ

∂Aλ

∂λ
+ 1
r

∂Aϕ

∂ϕ
+ ∂Ar

∂r
− Aϕ tanϕ

r
+ 2Ar

r
. (A2)

The formula of the advection derivative term in the spherical
coordinates is as follows:

�A · ∇ �B � Aλ

r cos ϕ

∂Bλ

∂λ
+ Aϕ

r

∂Bλ

∂ϕ
+ Ar

∂Bλ

∂r
+ AλBr

r
− tanϕ

r
AλBϕ[ ] �i

+ Aλ

r cos ϕ

∂Bϕ

∂λ
+ Aϕ

r

∂Bϕ

∂ϕ
+ Ar

∂Bϕ

∂r
+ AϕBr

r
+ tanϕ

r
AλBλ[ ] �j

+ Aλ

r cos ϕ

∂Br

∂λ
+ Aϕ

r

∂Br

∂ϕ
+ Ar

∂Br

∂r
− AϕBϕ

r
− AλBλ

r
[ ] �k .

(A3)

Appendix B Derivation of conservation
of the three-dimensional planetary
vorticity vector in a rotating coordinate
system

a. The 3D planetary vorticity vector in the spherical coordinate system

In meteorology, in the spherical coordinate system, the
planetary vorticity vector is a constant vector, and it can be
represented as

�Ω � Ω cos ϕ �j +Ω sin ϕ  �k, (B1)

dΩ
.

dt
� d Ω cos ϕ( )

dt
�j + d Ω sin ϕ( )

dt
�k +Ω cos ϕ

d �j

dt
+Ω sin ϕ

d �k

dt
. (B2)

In the spherical coordinates

d �j

dt
� −utgϕ

r
�i − v

r
k,
→

(B3)
d �k

dt
� u

r
�i + v

r
�j. (B4)

So,

dΩ
.

dt
� 0. (B5)

Consequently, it can be inferred that the 3D planetary vorticity
vector is a constant vector in the spherical coordinate system.

b. The 3D planetary vorticity vector in the height coordinate system

The direction of the coordinate axis is the same as the spherical
coordinate; however, the unit vector is assumed to be constant in
space, denoted as

d �i

dt
� d �j

dt
� d �k

dt
� 0. (B6)

Similarly, we have

dΩ
.

dt
� d Ω cos ϕ( )

dt
�j + d Ω sin ϕ( )

dt
�k, (B7)

d Ω cos ϕ( )
dt

� −vΩ sin ϕ

a
. (B8)

By extension, it follows that

d Ω sin ϕ( )
dt

� vΩ cos ϕ

a
, (B9)

then

dΩ
.

dt
� −vΩ sin ϕ

a
�j + vΩ cos ϕ

a
�k . (B10)

The right-hand side of Eq. B10 is not always zero, indicating that
the 3D geostrophic vector is not a constant vector in the height
coordinate system.
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