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Landslide susceptibility assessment using machine learning models is a popular
and consolidated approach worldwide. Themain constraint of susceptibility maps
is that they are not adequate for temporal assessments: they are generated from
static predisposing factors, allowing only a spatial prediction of landslides.
Recently, some methodologies have been proposed to provide spatiotemporal
landslides prediction starting from machine learning algorithms (e.g., combining
susceptibility maps with rainfall thresholds), but the attempt to obtain a dynamic
landslide probability map directly by applying machine learning models is still in
the preliminary phase. This work provides a contribution to fix this gap, combining
in a Random Forest (RF) algorithm a static indicator of the spatial probability of
landslide occurrence (i.e., a classical susceptibility index) and a number of dynamic
variables (i.e., seasonality and the rainfall amount cumulated over different
reference periods). The RF implementation used in this work allows the
calculation of the Out-of-Bag Error and depicts Partial Dependence Plots, two
indices that were used to quantify the variables’ importance and to comprehend if
the model outcomes are consistent with the triggering mechanism observed in
the case of study (Metropolitan City of Florence, Italy). The goal of this research is
not to set up a landslide probability map, but to 1) understand how to populate
training and test datasets with observations sampled over space and time, 2) assess
which rainfall variables are statistically more relevant for the identification of the
time and location of landslides, and 3) test the dynamic application of RF in a
forecasting model for the spatiotemporal prediction of landslides. The proposed
dynamic methodology shows encouraging results, consistent with the actual
knowledge of the physical mechanism of the triggering of shallow landslides
(mainly influenced by short and intense rainfalls) and identifies some benchmark
configurations that represents a promising starting point for future regional-scale
applications of machine learning models to dynamic landslide probability
assessment and early warning.
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1 Introduction

Landslides are one of the most frequent natural hazards
worldwide and cause massive economic damage and human loss
every year (Kirschbaum et al., 2015). Froude and Petley (2018)
reported 55′997 fatalities from 4,862 landslide events that occurred
worldwide from 2004 to 2016, identifying rainfall as the main
triggering factor for 79% of cases, while Sim et al. (2022)
estimated a global average annual economic loss of 20 billion $
in the newmillennium, with Italy as first country with 2.6-5 billion $.
Indeed, the consequences of landslides in Italy are a real socio-
economic problem. According to EuroGeoSurveys (Herrera et al.,
2018), the Inventory of Landslide Phenomena of Italy (IFFI)
contains 2/3 of the approximately 900′000 landslides recorded in
the databases of various European countries, for a total of over
625′000 landslides. Franceschini et al. (2022), using an automated
web data mining engine, created a new landslides inventory
composed of 32′525 landslide news reported in Italy from
2010 to 2019, showing an average of about 260 days/year with at
least one landslide occurring in the national territory in the last
decade. The Italian National Research Council (CNR) also compiled
an inventory of landslides that caused direct consequences for
people in Italy. In the latest publication, considering the period
from 1972 to 2021, 1,071 deaths, 10 missing persons, 1,423 injuries
and almost 150′000 evacuated people have been reported (Bianchi
and Salvati, 2022). According to the ItaliaSicura web platform
(http://mappa.italiasicura.gov.it/ last accessed on 20 July 2022)
the economic damage due to landslides in Italy was about
8 billion € from 2013 to 2017.

One possible solution for landslide risk reduction is to establish
forecasting models for early warning purposes. Typically, regional
early warning systems are based on rainfall thresholds, which can be
defined as rainfall values identified by solid statistical analysis,
beyond which slope instability occurs (Segoni et al., 2018a;
Piciullo et al., 2018; Rosi et al., 2019; Abraham et al., 2020; Rosi
et al., 2021). This technique has the advantage of being suitable for
regional scale prediction but is less precise due to its empirical nature
and because the rainfall condition alone could be insufficient for
accurate predictions. A wider range of factors can be accounted by
physically based models, which combine rainfall data and several
geotechnical and hydrological parameters through complex
mathematical equations to simulate the slope failure mechanism.
Despite the theoretical complexity, the outcomes of this technique
are limited due to the difficulties in acquiring reliable input data, and
to date, its applications are mainly limited to small basins (Tofani
et al., 2017).

Another popular methodology is the landslide susceptibility
assessment, especially developed through machine learning
approaches (Lee et al., 2003; Brenning, 2005; Ermini et al., 2005;
Yilmaz, 2010; Catani et al., 2013; Tien Bui et al., 2016; Zhou et al.,
2018; Segoni et al., 2020). Machine learning is a branch of artificial
intelligence that uses statistical methods capable of progressively
improving the performance of an algorithm in recognizing a logical
scheme that links the input data (the independent variables, in our
case, the landslide predisposing factors) to the output (the
dependent variable, in our case the presence or absence of
landslides) (Bishop, 2006). Landslides susceptibility maps depict
the probability of occurrence of a given type of landslide in a given

area, accounting of several predisposing factors, but without taking
into consideration the probability of occurrence in time (Brabb,
1984): they only highlight where landslides are likely to occur in the
future, without specifying when. For landslide susceptibility
assessments, it is necessary to have a large landslide inventory
and overlay it with the independent variables, considered
constant throughout the study period and in the future. Among
the most used static parameters, there are geomorphological
parameters such as elevation, slope orientation (aspect), slope
gradient, slope curvature; thematic parameters such as land use/
cover and lithology; other parameters such as the distance from
faults, roads, and rivers (van Westen et al., 2008; Reichenbach et al.,
2018) and hydrological parameters, such as the stream power index,
flow directions, and drainage area (Frodella et al., 2022). Dynamic
parameters, such as cumulative rainfall, cannot be used directly as
input parameters because their time dependency is inconsistent with
the static approach used in susceptibility analyses. In literature, there
are only a few attempts to include static rainfall parameters as
proxies for climate variability. For example, Catani et al. (2013) uses
maps of the return period for a given total rainfall amount over a
given time lapse, whereas Schicker and Moon (2012); Günther et al.
(2013); Sabatakakis et al. (2013) and Feizizadeh and Blaschke (2013)
use maps of the mean or maximum annual rainfall.

Recently, several methodologies have been proposed to provide
spatiotemporal landslides prediction directly or indirectly using
machine learning algorithms. Segoni et al. (2018c) combines the
susceptibility map with rainfall thresholds to develop a hazard
matrix to obtain a spatial and temporal definition of landslide
hazard, and a similar approach has been recently adopted by
others (Park et al., 2019; Lu et al., 2020; Pecoraro and Calvello,
2021; Palau et al., 2022). Ng et al. (2021) apply several machine
learning models only for a rainstorm-based landslides inventory
with related short and antecedent rainfalls. Similarly, Liu et al.
(2021) uses a landslides inventory related to the same triggering
rainstorm event for the application of various machine learning
models. Stanley et al. (2021) added snow water equivalent and soil
moisture content data as dynamic input parameters for an eXtreme
Gradient Boosting model, representing the non-occurrence of
landslide cells by selecting them across space and time. Distefano
et al. (2022) used Artificial Neural Networks to automatically
identify the intensity-duration rainfall thresholds with higher
predictive power. However, the spatiotemporal prediction of
landslides combining static and dynamic parameters in machine
learning algorithms is still in a preliminary phase (Collini et al., 2022;
Distefano et al., 2022; Tehrani et al., 2022).

This paper presents a series of tests and verification approaches
to analyse the sensitivity of a machine learning algorithm to different
dynamic parameters (cumulative rainfall recorded at various
reference time intervals) and to different definitions of non-
landslide events. The analysis was conducted for the territory of
the Metropolitan City of Florence (MCF), central Italy. Starting
from a detailed landslides inventory for the period 2010–2019
(composed mainly of rainfall induced landslide), we tested
6 different methods of considering non-landslide events (based
on the combination of positive/negative occurrences according to
the location and/or the reporting day of the known landslides) and
4 different model configurations (based on the number of non-
landslide events and the number of input variables). The prediction
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model is based on the Random Forest (RF) model, which is a widely
acknowledged machine learning algorithm first developed by
Breiman (2001). Among its advantages, there is the possibility to
estimate the Out-of-Bag error (OOBE) for each variable, a measure
of the error that would be committed if a given input variable was
excluded from the RF classifier (Liaw and Wiener, 2002), and to
realize the Partial Dependence Plots (PDPs) that show the
relationship between each class of an input variable and the
model outcome (Friedman, 2001). OOBE and PDPs were used to
rank the input variables and to identify the most representative
dynamic rainfall variables that seemed to be more correlated to the
triggering of landslide events. The variables’ importance is then
discussed from the perspective of developing a model based on the
proposed dynamic methodology, which could be able to capture the
physics of the triggering mechanism and improve the
spatiotemporal accuracy of warning systems. For this first
attempt, we did not realize a landslide probability map, but the
goals are to: i) understand how to populate training and test datasets
over space and time; ii) observe which rainfall variables have a
statistically significant influence on the time and location of
landslides occurrence; iii) verify the applicability of the RF model
based on the proposed dynamic approach for landslides probability
assessment.

2 Study area

The study area is the Metropolitan City of Florence (MCF),
located in the north-east of Tuscany (central Italy). This area was
chosen for the availability of a comprehensive landslides inventory,
described in Section 3.2, which contained information on the day
and location of each landslide occurrence. MCF covers an area of
3,514 km2, and presents a highmorphological variety, from flat areas
such as the Florence Plain, crossed by the Arno River, to peaks over
1,600 m (the highest peak: Falterona Mount–1,655 m a.s.l.)
(Figure 1A).

The MCF is located on the Tyrrhenian side of the Northern
Apennine, a fold and thrust mountain system with a very complex
geological structure, often prone to phenomena of instability (Rosi
et al., 2018). It originated from the closure of the Ligurian Ocean,
which began in the Cretaceous and lasted until the Oligo-Miocene
collision between the Corso-Sardinian continental block and Adria
microplate (Boccaletti et al., 1982). From the end of Miocene, due to
the relaxation of the tectonic stack, the Northern Apennine was
affected by deformations (Elter, 1975), still active nowadays, that
produced tectonic depressions (or graben) called neo-autochthon
basins, covered by fluvial and alluvial Pliocene-Quaternary deposits,
separated by dorsal (or horst) with a NW–SE trend (Bonini and Sani,

FIGURE 1
(A) elevation map of the MCF with the landslides inventory overlapped; (B) lithological map; three images of example of landslide events from the
inventory used, triggered in January 2010, February 2014 and May 2019.
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2002). The bedrock is made up of flysch units, such as the
arenaceous-marly flysch of the Tuscan and Umbro-Marchigian
Domain, which are prevalent in the mountainous areas of North-
East. The southern sectors of the area are occupied by hilly reliefs
composed of eroded alluvial Pliocene-Quaternary granular and
cohesive deposits (Carmignani et al., 2013) (Figure 1B).

From a climatic point of view, the MCF has a temperate climate
with mild and moist winters and hot and dry summers (class “Csa”
from the Köppen classification; Köppen, 1936). The mean annual
precipitation varies between 600 mm/year in the south areas and in
the Florence Plain and 1,200 mm/year in the mountainous areas of
the north (Maracchi et al., 2005). Seasonal rainfall peaks occur in
autumn and spring, particularly February and November, which are
the rainiest months, whereas the minimum rainfall peak occurs in
summer.

3 Materials and methods

3.1 Random Forest model

To analyse the influence of dynamic rainfall parameters on
landslides triggering through machine learning model, we used a
Random Forest implementation on MATLAB software code
(MathWorks version R2022a, TreeBagger object of Statistics and
Machine Learning Toolbox™). Random Forest model (RF) is a
nonparametric and multivariate machine learning algorithm
proposed by Breiman (2001) and widely used for landslides
susceptibility assessment (Brenning, 2005; Catani et al., 2013;
Lagomarsino et al., 2017; Canavesi et al., 2020; Luti et al., 2020;
Segoni et al., 2020; Liu et al., 2021). Its popularity is due to several
advantages, including the possibility of employing both numerical
and categorical variables without any assumptions regarding the
statistical distribution of the data. Moreover, it can automatically
perform validation by building a Receiver Operating Characteristic
Curve (ROC Curve) and calculating the relative Area Under the
Curve (AUC). The AUC is widely used as a quantitative indicator for
the predictive effectiveness of susceptibility models, ranging from
0.5 (completely random predictions) to 1.0 (perfect predictions)
(Frattini et al., 2010).

RF requires the subdivision of the input database into two
subsets: the training dataset, used first to train the algorithm to
recognize the target event (in our case, the presence or absence of
landslides), and the test dataset, used later to verify the predictive
capabilities of the model. The RF model is based on the bootstrap
aggregating technique, or bagging (Hastie et al., 2001): Bayesian
trees are generated by splitting each node (yes/no) through
observations randomly sampled from the training dataset.
Observations excluded from the sampling are called Out-Of-Bag
(OOB). This allows to calculate the Out-of-Bag Error (OOBE),
another powerful tool of the RF model. This index, in addition
to being used to find the tree with the greatest predictive capability
(Luti et al., 2020), can be used to assess the relative importance of
each independent variable, therefore, in our case to rank the
variables according to their influence on landslides triggering
(Catani et al., 2013). Essentially, for classification problems,
OOBE computes the Misclassification Rate for a selected tree (t)
built with the observations sampled from the training dataset,

comparing the number of erroneous classifications against the
total number of observations. MATLAB’s TreeBagger tool uses
the following equation to calculate OOBE (Loh, 2002):

OOBEt � 1
∑n

j�1wj
∑
n

j�1
wj yj ≠ytj( )

where (yj ≠ytj) represents the erroneous classifications, and wj is the
weight assigned to the jth observation; in our case equals to
1 because it is unknown a priori.

To estimate the importance of a variable (x), within the t-tree the
value of a variable is randomly permuted, that is, an OOB
observation is included, and then OOBE is computed again for
the resulting tree (OOBEtp). Subsequently, the difference (dt)
between the two errors is determined as:

dt x( ) � OOBEtp − OOBEt

This measure is computed for the selected variable for each tree,
then, mean (dx) and standard deviation (σx) are calculated. The
estimate of the importance of the selected variable x, called OOB
Permuted Predictor Importance Estimate, is:

OOBPermuted Predictor Importance Estimate x( ) � dx

σx

Finally, this procedure is repeated for each independent variable,
and the results are inserted into the histogram of the variables’
importance. This provides rough guidance for judging which
independent variables are significant and which are not. In fact,
if a variable is important in prediction, then permuting its values
should affect the model error. If a variable is not important,
permuting its values should have little or no effect on the model
error (Breiman, 2001; Gregorutti et al., 2017).

In addition to the variables’ importance, the RFmodel also provides
the Partial Dependence Plots (PDPs), which allow to identify the most
important classes or ranges of values within each individual variable.
PDPs show the relationship between each class of values from one
predisposing factor and the predicted outcome of a machine learning
model; therefore, they can show whether this is linear, monotonic or
more complex (Friedman, 2001). The partial dependency of a binary-
treemodel is estimated by assigning a weight equal to 1 to the root node
of a tree. Considering xs as a value of the independent variable x, if the
following node is split by xs, it is assigned the same weight as the
previous node. If a node splits by other values than xs, the weight of each
child node becomes the value of its parent node multiplied by the
fraction of observations corresponding to each child node. Then, the
algorithm computes the average weight for the individual tree, and for
an ensemble of bagged trees the estimated partial dependence is an
average of the weight over each tree (Hastie et al., 2001). PDPs are a
powerful tool useful for deeply analysing the variables’ importance and
therefore, in our case to prove that the statistical outcomes of the model
are consistent with the physics of landslides triggering.

3.2 Dependent variable

Regarding the dependent variable, which consists of the
presence or absence of landslides in a given space and in a given
time, it was decided to use the database of landslides reports
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collected from the diary of the situation room of the civil protection
of the MCF. It is an archive which collects all critical events,
landslides and not, reported to the situation room. The archive
contains the description of the events and the on-site interventions
to restore the ordinary situation. Initially, all landslide events were
selected; then, to obtain a landslides inventory suitable for the
proposed analysis, they were filtered based on the reporting day,
the location, and the type of landslide; and finally, they were
exported in a GIS environment. The archive entries with missing
information about the reporting day, location or type were
automatically discarded.

The landslide date is essential to associate each landslide to the
respective triggering rainfall. In the inventory generated, the reporting
days of the landslide events to the situation room are indicated, which
can be different from the real triggering day. The estimated temporal
accuracy is 1 day; in fact, some events can be reported later than the
real instant of triggering, in particular for those events occurred in
remote locations and during the night, without causing critical
damage and therefore reported only several hours later.

All the landslides contained into the inventory were georeferenced
according to the descriptions provided by the diary. Accurate
information is often available, such as the GPS coordinates of a
landslide point; however, in some cases, the information is incomplete
or absent, making georeferencing impossible. In these cases, the
landslides were discarded. Specifically, the landslides were
georeferenced as point geometry using GPS coordinates or through
meticulous research of the trigger points using Google Maps and all
the information contained in the diary, and lastly, using the road
references reported in the diary, usually containing the exact
milestone. Therefore, the estimated error is maximum 1 km for the
events georeferenced through the road references without the
milestone information but knowing only the road kilometres.

Another key feature is the correct description of the type of
landslide. It is necessary to use for the proposed analysis only those
events whose triggering is due to rainfall only, as shallow landslides
and debris or mudflows. Other types of landslides for which rainfall
is not the main triggering factor (for example, rockfalls or anthropic-
induced landslides) have been discarded. In the analysed period,
there were no landslide linked with main earthquake events, so the
presence of earthquake-triggered landslides can be excluded.

Therefore, from the diary of the situation room, a total of
410 landslides were extracted, mainly shallow landslides and
small debris or mudflows, for the period from 2010 to 2019; with
an estimated spatial and temporal resolution of 1 km and 1 day
(Figure 1A) respectively.

3.3 Independent variables

As independent variables, expressing the landslides predisposing
factors, it was decided to use the parameters listed below.

- Cumulative rainfall (CR_x [mm]): cumulative rainfall
computed at various time steps (with x ranging from 1 to
30 days). This represents the first dynamic parameter used in
this study to test the capability of the RF algorithm in
recognizing the importance of rainfall in landslide
triggering. In fact, landslides can be divided into two main

types: shallow landslides and deep-seated landslides. There is a
general agreement in literature that shallow landslides are
primarily triggered by short-term and intense rainfall,
which causes the rapid infiltration of abundant water into
the soil and determines the increase in water pressure. The
activation of deep-seated landslides, on the other hand, is
influenced by long-term rainfalls, even with a lower intensity,
as they require longer infiltration times (Martelloni et al., 2012;
Tehrani et al., 2022). The cumulative rainfall allows to consider
both short-term but intense rainfall (for instance, the
cumulative rainfall between 1–3 days) and long-term but
less intense rainfall (for instance, the monthly cumulative
rainfall), and therefore both types of landslides.

Consequently, the cumulative rainfall from 1 to 30 days from
2010 to 2019 was calculated using the meteorological radar
data provided by the Italian Civil Protection Department
(Figure 2). Meteorological radars are ground-based remote
sensing systems that operate in the microwave band and
measure the electromagnetic pulse reflected by water drops
within a 200 km radius to estimate the rainfall intensity. In
fact, the measured reflectivity value is converted to rainfall
intensity using the Marshall-Palmer equation:

R � αZβ

where R represents the rainfall intensity (mm/h), Z is the
reflectivity calculated on the radar pulse duration (mm6/m3 or
decibel) and α and β are empirical coefficients that vary
according to the type of precipitation measured (whether
stratiform or convective), and regarding the state of the
water composing it (liquid, snow, or hail) (Marshall and
Palmer, 1948; Petracca et al., 2018). The Italian Civil
Protection Department manages a total of 24 radars
distributed throughout the national territory, and the
nearest meteorological radar station to the MCF is on the
Pizzorne Mount, in the Lucca province, which covers the
entire Tuscany region. Radar data were used instead of rain
gauges because they provide spatialized data, making the
association between landslides and related rainfall more
accurate. The data used is called Surface Rainfall Intensity
(SRI), which expresses the amount of water falling on the
ground surface for the duration of the radar pulse. The
database contains data at 5 min temporal resolution, from
2010 to 2019, in BUFR format (Binary universal Form for the
Representation of meteorological data). The data were
converted into ASCII format and then summarized to
obtain the cumulative rainfall from 1 to 30 days from 2010
to 2019. Unfortunately, the radar database contains some gaps;
therefore, only 315 out of 410 landslides can be associated with
30 day antecedent rainfall and can be fully used for the
proposed analysis.
The use of cumulative rainfall at various time steps as
independent variables allows to consider both the rainfall
occurred on the reporting day and those that occurred in the
previous days; therefore, the temporal error contained into the
landslide database can be considered negligible. In addition, the
spatial resolution of the radar data is 1 km, which is comparable
to the maximum spatial error of the used landslides.
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- The month of observation of the events (landslide or non-
landslide events) (Month [-]): this second dynamic parameter,
inserted as a categorical type (from 1 to 12), was used to observe
if the RF model can conveniently use the information on rainfall
seasonality to improve predictions. The seasonal variability is
considered one of the most influential factors in triggering
landslides (Gariano and Guzzetti, 2016), in fact, less intense
and short-term rainfall can trigger landslides if it occurs during
the wet season rather than in the dry season, because it will occur
into an already partially saturated soil with an already high water
pressure (Segoni et al., 2018b; Rosi et al., 2021).

- Landslide Susceptibility Index (LSI [-]) (Figure 3A): it represents
the landslide susceptibility map with a spatial resolution of
100 m2 developed for the study area by means of the RF
model application with the base independent variables, which
does not include the newly proposed dynamic parameters but
only a set of static parameters commonly used in literature:
elevation, slope, aspect, total curvature, profile curvature, planar
curvature, lithology, and land use (Reichenbach et al., 2018;
Segoni et al., 2021). It was decided to use a base LSI to
observe more clearly how the RF model considers dynamic
rainfall parameters respect to the main static geological
characteristics for the spatio-temporal landslides prediction. In
addition, the direct use of landslide susceptibility as input data,

instead of every single geomorphological parameter, reduces
computational time. Because LSI has only a spatial meaning,
while the dynamic application it will add the temporal
information, inserting LSI as input variable does not
intentionally help the dynamic model to make predictions,
since the landslides data are treated in a completely different
way in the two cases. For this reason it will be necessary to
perform in a further step the training and testing phases also for
the dynamic model. To create the LSI, as dependent variable, the
events contained in the abovementioned inventory were
integrated with other 69 events for the period 2000–2009,
chosen among those with higher spatial accuracy from Rosi
et al. (2015); for a total of 479 landslides. Each landslide is
geolocated as punctual geometry, and this might be a problem for
the susceptibility assessment, because the characteristics of the
area around these points are considered peculiar of stable area,
whereas they could belong to the landslides body with a high
probability; this misclassification can lead to unreliable results.
For this reason, it was decided to recreate the unstable area
affected by landslides through an alternative elaboration in GIS
environment and described in Figure 3B: using the Watershed
tool in ArcGIS PRO, the drainage areas upslope each landslide
point was defined, thus defining a portion of the slope upstream
of the landslide point in which the water flows into it. Some of

FIGURE 2
Example of radar daily cumulative rainfall (for 13/11/2019) from meteorological radar data.
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these polygons occupied large areas, so they were clipped with a
100 m buffer from the landslide point. The resulting polygon can
be considered a good approximation of the area subject to
instability, much more realistic than the simple buffer, and
can be proposed in cases such as this, where the polygonal
landslides database is not available.
The model for LSI was applied using 500 trees, in order to
obtain a more stable OOBE. Initially, a random parameter with
values between 0 and 1 was inserted among independent
variables in order to observe the model response. Then,
once it was verified the ability of the model to recognize
this variable as irrelevant in landslides triggering, it was
discarded. The database contains 479 landslide polygons,
which occupy a total of 30′167 pixels with a 10 m
resolution. The same number of pixels was selected to
identify the non-landslide points. The database was divided
into two portions: 70% for the training phase and 30% for the
test phase. Subsequently, the model was reapplied to all pixels
in the study area (35′128′678 pixels) for a further validation.
The map obtained was then resampled at 100 m resolution to
make it more homogeneous. This spatial resolution is adequate
to connect each landslide point with the correct susceptibility
value, in order to conduct the analyses proposed in this study.
The map obtained has an AUC value of 0.86, and the

Efficiency, which is the ratio between the number of correct
predictions (sum between True Positive or TP and True
Negative or TN) versus the number of total predictions
(sum between the abovementioned correct predictions and
wrong prediction, the False Positive or FP and False Negative
or FN), returns a value equal to 0.80, demonstrating an
accurate spatial prediction of landslides. The OOB variable’s
importance method classifies as the most significant variables,
in order: elevation, lithology, slope, and land use. The use of
LSI as an input to the dynamic model does not lead the latter to
overfitting problems, because it does not represent a faithful
map of the landslide’s perimeter. This is demonstrated by the
use of a larger landslide inventory to develop LSI than that
employed in the subsequent dynamic modelling, and by the
obtained value of AUC, far from 1, which would instead
indicate a prediction perfectly faithful to the landslide
inventory.

- Random variable (Random [-]): to monitor the effectiveness
of the variables used, was also included in the analysis a
random variable, with values between 0 and 1. This
parameter is used as a control to identify (and discard)
any independent variable with a predictive power similar to
the one assigned to the Random variable and evidently not
linked with landslide triggering.

FIGURE 3
(A) map of Landslides Susceptibility Index (LSI); (B) magnification depicting the proposed method to recreate the landslides bodies.
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4 Methods

The application of the RF model requires a pre-processing of the
input data. The independent variables are placed in overlapping
layers, then sampled for each landslide point. In the same way we
proceed with nonlandslide points, which are chosen in equal
number to landslide points to balance the database, in a random
way. Finally, the samples are inserted into a matrix that represents
the input of the RF model. For the realization of a landslide
susceptibility map with this method both landslide events and
non-landslide events vary only in space and not in time, so it is
not possible to insert dynamic variables as input data. For this
reason, the resulting susceptibility map represents the spatial
probability of occurrence of landslides projected into the future
valid as long as the input variables remain constant over time (Fell
et al., 2008). In our research, several tests have been carried out to
account for both spatial and temporal variability of landslide and
non-landslide events. The goal is not to set up a landslide probability
map, but to observe which rainfall variables had a statistically
significant influence on the time and location where landslides
occurred, to verify the applicability of a forecasting model based
on the proposed dynamic approach.

4.1 Data pre-processing

Six different methods of pre-processing the data were analysed,
listed below and summarized in Table 1, based on the identification
of non-landslide events in comparison with the reporting day and
the location of the landslide. The first three tests are developed to use
a balanced database, so in our case, with 315 non-landslide events
and 315 landslide events.

- first test: the non-landslide events were selected in the same
pixels compared to the landslide events, but on different days
selected randomly;

- second test: the non-landslide events were selected on the same
day compared to the landslide events, but in different pixels
selected randomly;

- third test: the non-landslide events were selected at randomly
generated pixels and days, both different from the landslide
events.

The other three tests were performed by a mixed criteria,
merging the aforementioned datasets with different combinations,
accounting for all possible approaches to select non-landslide events:

both same and different pixels and/or both same and different days.
For the previous three tests, each landslide event was balanced by a
non-landslide event (1:1 ratio), but in the mixed criteria cases, we
used an unbalanced database (1:2 ratio between landslides and
non-landslide events) to better represent all possible definitions
of non-landslide events in the training dataset.

- fourth test: 315 non-landslide events were sampled in the same
pixels of the landslides and other 315 in different pixels, in both
cases on different days, compared to landslide events;

- fifth test: 315 non-landslide events were selected on the same
days of the landslides and other 315 on different days, in both
cases in different pixels, compared to landslide events;

- sixth test: test generated by merging the first two tests, but with
new non-landslide events chosen randomly; so, 315 non-landslide
events were chosen in the same pixels but on different days of the
landslides and another 315 were chosen on the same days but in
different pixels, compared to the landslides.

4.2 Model configuration

A crucial step in the model setting is the choice of the database
splitting method for training and test phases. It was chosen to
analyse four different model configurations, listed below and
summarized in Table 2

- first configuration: for the first run of the model, the analysis
was performed using all the independent variables listed above
(cfr. Section 3.3). The database of observations (landslide plus
non-landslide events) was divided into two datasets: one for
the model training (containing 70% of the observations) and
one for the model testing (containing the remaining 30%). For
the first three tests, with a balanced database (same number of
landslide and non-landslide events in each dataset), both the
training and testing datasets contained 50% landslide events
and 50% non-landslide events. Instead, for the other three tests
with an unbalanced database (number of non-landslide events
double than the number of landslide events), also the training
and testing subsamples are unbalanced, with the same
relationship 1:2, therefore with 33.3% of landslide events
and 66,7% for non-landslide events.

- second configuration: another run with all the independent
variables as input data was carried out, but with a highly
unbalanced database with a relationship of 1:10 for every test,
so containing all the 315 landslide events and 3,150 (ten times

TABLE 1 Summary table of the six tests used in the proposed methodology. Each non-landslide event was selected by comparison with the days and the pixels of
the landslide events.

Non-Landslide Events
Day

Same as landslides Different from landslides Both

Pixel

same as landslides — 1st test —

different from landslides 2nd test 3rd test 5th test

both — 4th test 6th test
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more) non-landslide events, and also the training and test
subsample are unbalanced with the same relationship, so with
9% of landslide events and 91% of non-landslide events. The
aim of using this strongly unbalanced databases is to verify if,
with a higher number of non-landslide events than landslide
events, the results in terms of variables’ importance do not vary
and if the model is still able to recognize the influence of
rainfall on the spatial and temporal occurrence of landslides. It
is important to test the capability of the model with unbalanced
datasets because they are more representative of the real
population of events, where pixels and days without
landslide are much more numerous than those with landslide.

- third configuration: the same as the first configuration (i.e.,: for
the first three test was used a balanced database 1:1 and for the
other three tests was used an unbalanced database 1:2, between
landslide and non-landslide events). The main difference lies in
the fact that for this configuration, the analysis was carried out
only with the most important short-term cumulative rainfall
found by applying the previous configurations, some symbolic
long-term cumulative rainfall (in particular, the ones at 7, 14, 21,
and 30 days), the Month and the LSI variables.

- fourth configuration: the same as the second configuration
(i.e.,: for each test was used an unbalanced database 1:10,
between landslide and non-landslide events). In addition, in
this case, fewer independent variables are used as inputs, as
well as the third configuration.

For each configuration, the model was run 7 times, to
observe whether the results vary with the random selection of
training and test database and to obtain the confidence interval;
for a total amount of 168 model applications. Finally, all runs
were carried out by building 2000 trees, until a more stable
OOBE is obtained.

5 Results

In this chapter, the results obtained are presented in two
consecutive steps. First, we compared the variables’ importance
by the histograms of OOB Permuted Predictor Importance
Estimate, to verify the consistency of the model with the
mechanism of triggering of the landslides analysed. Second, we
use the PDPs to compare not only the variables amongst
themselves, but also to compare each class or value of each
variable, to understand more deeply if the RF algorithm
follows a physically correct scheme to link dependent and
independent variables.

5.1 OOB Permuted Predictor Importance
Estimates

The variables’ importance for each test and configuration is
shown from Figures 4–7. The histograms were obtained by
averaging the outcomes of the 7 model runs, and the error bars
show the maximum and the minimum values of importance found
as confidence intervals.

First, for each figure, the Random variable shows low or
negligible importance. Negative OOB values identify pejorative
input variables that increase the error of the prediction: the
model recognizes the irrelevance of the Random parameter, as
expected, and allows recognizing, in a few configurations, some
variables that play a role less meaningful than a random number.
Thus, the Random variable and all parameters with similar
importance were removed for the analysis of third and fourth
configurations.

For the first configuration, Figure 4 shows that the short-term
rainfall (i.e., the cumulative rainfall at 1, 2, and 3 days) are the most
important rainfall variables for the first and fourth tests, which have
in common the choice of non-landslide events on different days
from the landslides. In addition, for them, the Month variable is the
most important, and the LSI is the least important. This result is not
surprising and is explained by the model configuration: if non-
landslide events are chosen in the same pixel but on different days
with respect to the landslide events, then the difference between
stable and non-stable instances depends only on the rainfall
characteristics at the time of the sample. In fact, the susceptibility
index cannot be effectively used to discriminate between stable and
unstable instances in this case because all samples were taken in
unstable zones, but at different times, and LSI cannot take this
dynamic factor into account. Conversely, for the second and fifth
tests, which have in common the choice of non-landslide events in
different pixels from the landslide events, rainfall has a low value of
importance, the Month variable is the least important, and the LSI is
the most relevant. Instead, in these cases, the difference between
stable and non-stable instances depends mainly on the susceptibility
value in the location of the sample, and secondly on the spatial
variability of rainfall. The seasonal variability, expressed by the
Month variable, cannot be used to explain this spatial variability.
Indeed, for the third and sixth tests, which have in common the use
of both different pixels and days to identify non-landslide events
against landslide events, the results are a merge of those of previous
tests. In both cases the short-term rainfalls are the most important
rainfall, and the Month variable has a high importance, as in the first
and fourth tests; but also the LSI has a very high importance, as in
the second and fifth tests.

TABLE 2 Summary table of the four configurations used in the proposed methodology, summarizing the ratio between training and test samples and the number
of independent variables used as input for the RF application.

1st test 2nd test 3rd test 4th test 5th test 6th test

1st configuration 1:1, all variables 1:1, all variables 1:1, all variables 1:2, all variables 1:2, all variables 1:2, all variables

2nd configuration 1:10, all variables 1:10, all variables 1:10, all variables 1:10, all variables 1:10, all variables 1:10, all variables

3rd configuration 1:1, selected variables 1:1, selected variables 1:1, selected variables 1:2, selected variables 1:2, selected variables 1:2, selected variables

4th configuration 1:10, selected variables 1:10, selected variables 1:10, selected variables 1:10, selected variables 1:10, selected variables 1:10, selected variables
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FIGURE 4
Histograms of OOB Permuted Predictions Importance Estimates for each test for the first configuration.

FIGURE 5
Histograms of OOB Permuted Predictions Importance Estimates for the second configuration.
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These results are also confirmed for the second configuration,
shown in Figure 5, but here the differences of importance are fading
due to the effects of using a highly unbalanced database. The most
important short-term rainfall is the 2-day cumulative rainfall, while
for longer rainfall durations, the cumulative rainfalls in a weekly step
(namely, at 7, 14, 21, and 30 days) were selected as the most
representative parameters. This is because, for long periods, the
values of importance are very similar, and it is not possible to
identify which of these cumulative rainfalls is the most
representative. These data, along with the month and the LSI
variables, were used to carry out the configurations 3 and 4. As
mentioned above, the Random variable, as well as the other less
relevant cumulative rainfalls, were removed from the analysis.

These outcomes are confirmed in the third (Figure 6) and the
fourth (Figure 7) configurations, in which it’s observed an increased
difference between long-term rainfalls, the least important variables,
and the short-term rainfalls, the Month and the LSI variables, which
are the most important, even with the use of a highly unbalanced
database.

5.2 Partial Dependence Plots

Due to space constrains, from Figures 8–10 are depicted the
PDPs only for the first, second, and third tests and the first

configuration, that is, of the most representative cases. They
showed the results for the most representative variables, namely,
the cumulative rainfall at 1, 2, 3, 7, 14, 21, and 30 days, the Month,
the LSI and the Random variables, to observe the general
relationships among them and the model output. The graphs
contain the curves obtained for each of the 7 models run to
account for the confidence interval.

The PDP of the first test (Figure 8), which identifies the non-
landslide events in the same pixels but on different days from the
landslides, shows a convex shape for the short-term rainfalls,
indicating a lower importance for the less intense rainfalls and a
greater importance for the most intense rainfalls, as expected,
until a peak is reached, greater for the 2 days duration, beyond
which the importance assumes a constant value. For the
cumulative rainfall at 7 days, it is still possible to recognize the
convex trend, even if with a lower peak; then, for the other
cumulative rainfall values the PDP graphic is almost flat,
demonstrating that longer durations do not have any clear
relationship with the model outcome. The Month variable
presents a multivariate behavior, with the main positive peak
in February, March (end of winter and beginning of spring) and
November (autumn) and the lowest peak during the summer
(June, July, and August). The PDP of LSI is flat, confirming the
results found in the variables’ importance analysis for the same
test, in which LSI has no importance in this case.

FIGURE 6
Histograms of OOB Permuted Predictions Importance Estimates for the third configuration.
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For the second test, which identifies the non-landslide events
on the same days but on different pixels from the landslides, the
PDPs of each cumulative rainfall are flat, as shown in Figure 9,
indicating the absence of a relationship with the model outcome.
Even for the Month variable, it is not possible to recognize a
clear relationship. For LSI the curve starts from a low and
flat importance that remains constant until a rapid
increase among LSI value equal to 0.5, reaching a peak
at about 0.75 and again continue with a constant
and flat trend, showing a strong relationship with the model
output.

The PDP of the third test (Figure 10), which identifies the
non-landslide events both on different days and different pixels
from the landslides, seems to be a combination of the previous
two tests. The short-term cumulative rainfalls and the Month
variables show a strong relationship, for the first ones with a
convex curve, with the intense rainfall events as the most
important against the low intense ones, and the second one
with positive peaks during the months of February, March,
and November, and a negative peak during the summer,
similar to the first test. While the LSI shows a trend starting
from a low and flat importance under the LSI value of 0.5; then
shows a rapid increase until a peak at about 0.75, as well as the
second test. The long-term rainfall and the Random variables are

flat, showing no relationship with the model outcome, as well as
both first and second tests.

Figure 11 shows the PDPs obtained for variable CR_2, for the
third test, for all configurations. Between first and third
configurations, no significant differences can be observed: the
peak of importance of CR_2 is reached for values of rain
around 2.5 mm. Instead, moving from balanced to
unbalanced dataset, a shift of the peak to higher values of
rain is observed: for second and fourth configurations, it
reaches values of about 30 mm.

It was decided to further investigate how the peak of
importance of PDPs of the CR_2 variable varies by increasing
the degree of imbalance. Imbalanced datasets were generated by
considering a number of non-landslide events equal to 3, 5, 7, 20,
50 and 100 times the landslide events. The configuration with
only the selected cumulative rainfalls was tested. The results are
shown in Figure 12 (the symbology x3, x5, x7, x10, x20, x50 and
x100 indicate the degree of imbalance of the database). It was
observed that as the degree of imbalance increases, there is a
progressive shift of the peak of importance of CR_2 to higher
values of rain: from a peak of approximately 2.5 mm for the
balanced database, a rapid increase is observed, up to about
20 mm for the unbalanced database x5, and up to
approximately 30 mm for the unbalanced database x7. After

FIGURE 7
Histograms of OOB Permuted Predictions Importance Estimates for the fourth configuration.
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that, as the degree of imbalance increases, the peak remains quite
stable, at about 30–35 mm. By increasing the number of
observations available, a more accurate frequency distribution

of rainfall is obtained, at which the model is readapted, finding a
new logical scheme used to discriminate ordinary events from
those that trigger landslides.

FIGURE 8
PDP for the first test and the first configuration.

FIGURE 9
PDP for the second test and the first configuration.
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6 Discussions

Regarding the results obtained from the histograms of
variables’ importance, they show a clear influence of short-term
cumulative rainfall and the Month variable for first and fourth
tests, while for second and fifth tests LSI is the most important one.
These differences are lead by the method used for the identification
of non-landslide events; in fact, the common feature between first
and fourth tests is the choice of non-landslide events on different
days from the landslides; therefore, in these cases, the analysis is
focused on the temporal prediction, for this reason the dynamic
parameters are the most important and LSI has no influence. The

opposite situation can be verified in the second and fifth tests, that
have in common the choice of non-landslide events in different
pixels from the landslide events. In these cases, the analysis is
focused on the spatial prediction, so the static parameter, the LSI, is
the most important one, and the dynamic ones are the least
important. The third and sixth tests account both different
pixels and days from landslide events to identify the non-
landslide events, even if in different proportions, so these
analyses are focused both for spatial and temporal forecasting,
and in fact, both dynamic and static parameters show an influence
on the model outcome; and this is a more realistic situation in
respect to the other tests.

FIGURE 10
PDP for the third test and the first configuration.

FIGURE 11
PDPs obtained for variable CR_2, for the third test, for all configurations.
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The most important short-term rainfall is the cumulative
rainfall of 2 days. This means that, generally, to initiate a
landslide, a certain time interval after a rainfall event is
needed to build the necessary pore water pressure, which is
obtained after more than 24 h. This result can also be
influenced by the dating accuracy of some landslides, which
can be reported the day after the triggering. LSI is the most
important parameter for the majority of the tests, proving the
high influence of the geological and geomorphological
characteristics of the study area on the assessment of the exact
location where landslides may be triggered.

For the third test, the PDPs show a convex trend for short-term
rainfalls, this means that the less intense rainfalls are less important
than the more intense rainfall, as expected. The long-term rainfalls
seem not to have any relationship with the model outcome; this is in
line with what was expected, because this study was carried out for a
landslide inventory composed of shallow landslide, mainly affected
by short-term but intense rainfalls. With regard to the Month
variable, the PDPs show a multivariate trend, with positive peaks
during the wet seasons and negative peaks during the dry seasons.
This result is in line with what was expected, because during the wet
season, even less intense rainfall is sufficient to trigger landslides,
due to the presence of an already partially saturated soil, and the
opposite occurs during the dry season, in which a higher rainfall
amount is necessary to trigger landslides, because the soil is
completely or almost dry. The use of the Month variable can
contribute to enhancing the results in a logical way, showing that
this variable is used by the machine learning algorithm as an
empirical proxy for the humidity of the soil. As expected, the
PDPs of the LSI variable show an ascending importance with the
increase of the susceptibility value.

It was also verified that the peak of importance of the PDPs of
the variable CR_2 by increasing the degree of imbalance of the
database progressively moves towards higher values of rain. It goes
from a value of 2.5 mm for the balanced database to 30 mm for the
unbalanced database x7; the peak then remained stable until the
unbalanced database x100. This behavior can be interpreted
considering that, by increasing the number of observations, the
model recognizes the 2.5 mm rains as actually more frequent than
those observed with a balanced database. In response, the model
shifts the peak of importance towards higher values of rain to better
discriminate the rain that causes the triggering of landslides,
generally more intense, from the ordinary ones, less intense. The
use of an unbalanced database is also consistent with the real
frequency distribution of landslide and non-landslide events, the
latter more frequent than the former; however, considering an
incomplete landslides inventory, it could be potentially possible
to identify not reported landslides as non-landslide events. These
erroneous classifications could lead to a greater uncertainty of the
results, so the imbalance should be carefully evaluated. For instance,
this test shows that the x7 imbalance seems to be the optimal one to
be used in similar analyses: an increase in the unbalanced proportion
did not produce significant modification.

These results are in line with the actual knowledge of the physical
mechanism of the triggering of shallow landslides and debris or mud
flows, which are mainly influenced by short and intense rainfalls, the
seasonality that reflects the degree of saturation of the soil, and the
predisposition to landslide of the study area. The tests that seem to
have the highest capability of representing the real situation are the
third and sixth tests, for each configuration: they account for non-
landslide events that vary over both space and time and show a high
importance of both dynamic (short-term rainfall and Month) and

FIGURE 12
PDPs of the CR_2 variable obtained by applying the third test, with only the selected cumulative rainfalls, and using a balanced database or different
degree of imbalance (x3, x5, x7, x10, x20, x50 and x100).
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static (LSI) variables. Using an unbalanced dataset can also help to
better represent the real situation, because landslide events are much
less numerous than non-landslide ones and increasing the
observations allows to consider a more representative frequency
distribution of rainfall. Therefore, the RF model applied through
the proposed methodology shows encouraging results, representing a
promising basis for understanding how to sample non-landslide
events over space and time for the population of training and test
datasets, identifying the most important variables and to verify the
applicability of machine learning models for landslides probability
assessment.

To verify again the results obtained and to better understand
which is the test and the configuration with the highest predictive
power, looking for a future application of the model for landslides
forecasting activities, a performance analysis is mandatory. The
AUC value is calculated for each test and configuration; for each
of the 7 model runs, then averaged. The results are shown in
Figure 13. We observed that the highest AUC value is obtained for
the third test, the one with non-landslide events chosen both in
different pixel and days from the landslides, and for the third and
fourth configurations, those with a lower number of input
variables, but only the most representative ones, namely, with
AUC values equal to 0.90 and 0.91 respectively. The third test
results the better once again, confirming the results described
above.

For the performance analysis, we calculated the number of TP,
FP, TN and FN for each test and configuration, for each model run,
then averaged. They are used to calculate several statistical indices
that are commonly used for model prediction performance
evaluations (Calvello and Piciullo, 2015; Piciullo et al., 2020;
Bulzinetti et al., 2021). The extremely high number of TN for the
tests and configurations with an unbalanced database could lead to
unreliable results of performance analysis. To avoid this issue,
statistical indicators that do not account for the number of TN
have been mainly used, with the exception of the Efficiency, where
the TN number is used both at numerator and denominator. In

Table 3 all the used performance indicators are listed along with
their equations, and in Figure 14 the graphs obtained for each test
and configuration are shown.

As regard the tests, the highest values of E (Efficiency), S
(Sensitivity) and TS (Threat Score) have been observed in the
third test, due to the high number of TP obtained for this test.
Instead, for FNR (False Negative Rate) and MFB (Missed and False
alerts Balance) the third test shows the lowest values, which indicate
a low number of FN. The lowest values of FPR (False Positive Rate)
indicates the lowest number of FP and is reported for the second and
third tests.

As regard the configurations, E is high for the third and fourth
configurations, because of the high values of TN associated with the
unbalanced database. The first and second configurations have the
highest values for S and TR, indicating a high number of TP. They
have the lowest value for FNR and MFB, indicating that they have
the lowest number of FN. For FPR the second configuration presents
the lowest value, but only for the second and sixth tests, with a very
low difference with the third configuration, who are on the same
level for the third test.

Observing the trend of TP, FN, and FP with the increase in
the degree of imbalance (Figure 15), it is possible to notice,
beyond a gradual decrease in TP and a consequent increase in FN,
also a decrease in FP, which is already halved with an unbalanced
database x3, which can represent a positive result with the
prospect of using such model in an early warning system.
Therefore, the imbalance of the database could be a factor on
which it worth to focus for the calibration of the model, in order
to obtain more realistic landslide probability maps, with a reliable
predictive capability.

In a previous research (Collini et al., 2022), the SIGMA model
(Martelloni et al., 2012), a rainfall thresholds-based landslides
forecasting model, was applied to the same study area using the
same source to collect the landslide inventory. A comparison of the
evaluationmetrics of the SIGMAmodel and of the method proposed
in this study was carried out, to further validate the results obtained.
The values of AUC and S obtained with the proposed method are
greater than the ones obtained by applying the SIGMA model
(0.91 and 0.83 against 0.53 and 0.06, respectively); while the
value of E is slightly lower (0.84 against 0.99). This shows that
the proposed approach can compete with the traditional statistical
methods. Further comparisons with different models will be
essential in order to move toward a LEWS based on the

FIGURE 13
Mean AUC value for each test and configuration.

TABLE 3 List of performance indicators used in the analysis and their
equations.

Performance Indicators Equation

Efficiency E � (TN+TP)
(TN+TP+FN+FP)

False Positive Rate FPR � FP
(TP/FP)

Sensitivity S � TP
(TP+FN)

False Negative Rate FNR � FN
(TP+FN)

Threat Score TS � TP
(TP+FN+FP)

Missed and False alerts Balance MFB � FN
(FN+FP)
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proposed approach. Summing up, this analysis of the model’s
performance indicates that the third test, which defines non-
landslide events both in different pixels and days from landslide,
leads the machine learning model to get the highest predictive
power; especially when a configuration that balances the possible
occurrences of landslide and non-landslides in the input datasets is

used and when only a selected ensemble of significant explanatory
variables is selected. This is in line with the results obtained for the
variables’ importance and PDPs analysis, which highlighted the
third test as the most suitable to represent the real situation and to
account for both a spatial and a temporal prediction at the
same time.

FIGURE 14
Trend of the various performance indicators analysed based on each test and combination.

FIGURE 15
Variation of the number of TP, FP and FN varying the degree of imbalance of the database.
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7 Conclusion

Machine learning models are widely used to devise susceptibility
maps, representing the spatial probability of occurrence of
landslides, but to date have not been established as a consistent
approach to obtain spatiotemporal prediction of landslides over
wide areas. We propose a methodology for the application of a
machine learning model including dynamic variables, such as
cumulative rainfalls at various time steps, to observe the model
behaviour and verify the possibility of a future application of this
methodology not only for spatial but also temporal prediction
purposes.

We used the RF algorithm, in an implementation that allows to
calculate OOBE and PDPs, two statistical indexes used in this study to
verify whichmodel configuration andwhich variables are consistent with
the physical mechanism of the triggering of the modelled landslides.

The study area is the MCF, located in Central Italy, chosen for
the availability of a comprehensive landslides inventory reporting
more than 300 landslides in the last decade, mainly rainfall-induced
shallow landslides.

The first dynamic independent variables are the cumulative
rainfall at various time steps, from 1 to 30 days, to consider both
critical and antecedent rainfalls. The second dynamic variable is the
Month, which is used to consider the seasonality of the rains and
therefore the soil saturation conditions. As a static variable, a
susceptibility map, named LSI, was inserted directly as an input
variable to compare the dynamic rainfall variables with the static
predisposition to landslide of the study area.

The proposed methodology is based on the evaluation of several
tests conducted to account both spatial and temporal variability of
landslide and non-landslide instances. Namely, we identified
6 possible tests based on different combinations for the
individuation of non-landslide events. In addition, each test was
applied for 4 different model configurations, based on the number of
non-landslide events and the number of variables used. The results
were analysed using the histograms of variables’ importance, the
PDPs, and some performance indicators to verify if are consistent
with the mechanism of triggering of the landslides analysed, and to
identify which test and configuration show the highest predictive
power, in the perspective of a future application for spatio-temporal
forecasting of landslides.

We conclude that the results are consistent with our knowledge
of the physics of the slope failure mechanism for shallow landslides.
In fact, the most important rainfalls are the short-term ones, with
an increase in importance for the more intense rainfall, the rainfall
seasonality results extremely important, particularly during the
wet months in which the landslides probability is expected to
increase and LSI is also extremely important, confirming the key
role of a well-developed landslide susceptibility analysis. The third
test, characterized by the choice of non-landslide events both
in different pixels and days from the landslide events,
was identified as the method that led the model to obtain the
highest predictive capabilities, and it was observed that the
degree imbalance of the database plays a key role in the model
calibration, as it allows to consider a more realistic characterization
of the events. Therefore, the RF model employed through the
proposed methodology shows encouraging results and represents
a promising preliminary research for what is the final goal: the

landslide probability mapping through machine learning approach.
The original methodology proposed in this manuscript represents a
general approach that can be applied elsewhere to accomplish spatial
and temporal prediction of landslides at the same time; however, the
specific results obtained are highly site-specific and for other
applications it is advisable to calibrate the method from the start
to identify a specific optimal parameters’ configuration, especially if
other landslide typologies and other dynamic parameters are
considered.
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