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Rockburst disasters always have a great influence on engineering practice. In order
to accurately predict the occurrence of rockburst hazards, this paper proposes a
rockburst rating evaluation method based on principal component analysis (PCA)
and the catastrophe progression method, taking into account several influencing
factors. In this paper, 15 indicators, such as strength brittleness factor (R), stress
factor (P), and rock quality index (RQD) (reflecting the strength and fragmentation
degree of rock mass), were selected from seven samples and were analyzed and
downscaled by principal component analysis. Combined with the catastrophe
progression method, each layer index was dimensionless and normalized to
determine the mutation level value of each layer. Based on the principle of
complementarity or non-complementarity, to determine the total mutation
level value, the layer index was used to divide the rockblast-level interval and
predict the rockblast level. The results show that the method proposed in this
paper can be used to not only distinguish the importance of each of the same level
of indicators but also avoid the impact of superimposed factor correlations
between the same level of indicators, making the results more objective. This
paper presents accurate rock explosion assessment results and an actual
engineering situation. The number of factors affecting the assessment of the
rock explosion level provides new insights.
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1 Introduction

Many engineering geological disasters have been encountered in modern engineering,
such as tailings dam break (Wang et al., 2022a; Wang et al., 2022b; Wang et al., 2019; Lin
et al., 2022) and rockburst. A rockburst is a complex rock destabilization phenomenon
affected by a variety of factors. A rockburst occurs with a strong destructive force, and
rockburst hazards occur with sudden changes. During underground excavation, in a high-
stress environment, the sudden unloading of energy from hard rocks can lead to the ejection
of peripheral rocks, causing serious damage to equipment and engineers (Rehman et al.,
2021). The severity of damage caused by rockbursts can be affected by factors such as
excavation depth and stress levels (Naji et al., 2019), and the prediction of rockburst hazards
becomes particularly important.
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Rockburst hazard predictions can be broadly divided into two
types—single-indicator andmultiple-indicator—while the prediction of
indicators of multiple factors can determine various factors of rockburst
occurrence, making the discrimination more comprehensive. Using the
maximum shear stress in the surrounding rock, uniaxial compressive
strength and six other indicators were combined with the principles of
the principal component analysis and probabilistic neural network
analysis of multiple rockburst cases to predict the level of rock
bursts (WU et al., 2018). Considering the fuzzy nature of rockburst
grading predictions, combined with an SOFM (self-organizing feature
mapping) neural network, a rockburst predictionmodel was established
(YANG et al., 2021). CNNs (convolutional neural networks) were
combined with LSTM (long short-term memory) to first predict the
future state of the rockburst indicator eigenvolume, and this was then
combined with the particle swarm algorithm to optimize the
generalized neural network to predict the future state of the
rockburst level (LIU et al., 2021a). Principal component analysis and
the fuzzy integrated evaluation method were used for rockburst
prediction (PU et al., 2018). These methods are multi-indicator
rockburst comprehensive evaluation methods that take into account
uncertainties in rockburst predictions, and they include the interval
fuzzy comprehensive evaluation method (WANG et al., 2019), fuzzy
object element model (WANG et al., 2015), and attribute recognition
model (He et al., 2020). There are also some better but not used
methods for rockburst prediction such as real-time prediction using
GA-BP neural networks (Wu et al., 2022).

In summary, numerous researchers have refined the theory of
rockburst predictions from different perspectives. However, most of
the existing literature on rockburst predictions only takes into account
a few factors affecting the occurrence of rockbursts or only takes into
account the random nature of the occurrence of rockbursts and does not
combine this irregularity and the occurrence of a variety of factors
affecting rockburst hazards, so rockburst predictions are limited. As the
occurrence of rockbursts is usually irregular and uncertain, and there is a
certain degree of ambiguity and randomness in the process of taking and
evaluating rockburst indicators (LIANG and Guoyan, 2021), rockburst
predictions should be combined with the conditions of rockburst
occurrences and the problem of non-linearity of data between
samples and indicators. The catastrophe progression method cited in
this paper does not need to assign weights to the indicators, which greatly
reduces the subjectivity of the judging system andmakes the results more
scientific; but the catastrophe progression method does need to
differentiate the importance of indicators at the same level, so this
paper uses principal component analysis to assist in the evaluation.
The catastrophe progressionmethodmostly uses a low-dimensional data
model, and under the influence of multiple indicators, the dimensionality
of indicators is reduced by principal component analysis, and the
dimensionality is reduced to several composite variables to replace the
original multiple variables, so as to meet the needs of the catastrophe
progression method model, ensuring more objective results.

2 Principle of the method

2.1 Principal component analysis

The occurrence of rock blasts is subject to a variety of factors
acting together. As a result, the impact of rock blast occurrences is

far-reaching. In order to eliminate the impact of superimposed
factors between the same level of indicators, so that they are
independent of each other while reflecting the information
contained in the original data, the number of variables is
reduced, but the main information is also highlighted,
simplifying the relationship between indicators. Principal
component analysis is widely used to reduce the dimensionality
of data, mainly using linear algebra methods and theories to discover
the most important parts of the data, and is used to replace the
original data, so that the original data are moved into a new
independent comprehensive dataset (LIU et al., 2021b). That is, a
small number of uncorrelated quantities relative to the original data
sample carry enough information to reflect the information about
the process operating conditions contained in a large number of
process variables (LIANG et al., 2016). That is, the potential data
aggregation of the predictors can be analyzed by principal
component analysis (Wang et al., 2023), as in the following equation:

y1 � p11x1 + p12x2 + ... + p1mxm � p1
Tx,

y2 � p21x1 + p22x2 + ... + p2mxm � p2
Tx,

..

.

ym � pm1x1 + pm2x2 + ... + pmmxm � pm
Tx.

(1)

The basic steps of principal component analysis are as follows:

(1) For the matrix X:

X �
X12X12/X1m

X21X22/X2m

/////
Xn1Xn2/Xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Xij( )
n×m

. (2)

Normalization of the input sample data:

Xij′ � Xij − �Xj( )/Sj, (3)

where

Xj � 1
n
∑n
i�1
Xij. (4)

Sj �
�����������������
1

n − 1
∑n

i�1 Xij − Xj( )2√
. (5)

(2) Calculation of the symmetric matrix of correlation coefficients
after normalization:

R �
r12r12/r1m
r21r22/r2m
////
rn1rn2/rnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Calculation of correlation coefficients between variables rjk:

rjk �
∑n

k�1 xki′ − xi′( ) xkj′ − xj′( )�����������������������∑n
k�1 xki′ − xi′( )2∑n

k�1 xkj′ − xj′( )√ . (7)

(3) Finding the eigenvalues and eigenvectors of R:
λ1, λ2,/, λm, p1, p2,/, pm

(4) Calculation of the main element:

ti � Xpi. (8)

Frontiers in Earth Science frontiersin.org02

Lou and Li 10.3389/feart.2023.1163187

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1163187


(5) Calculation of the contribution rate and cumulative
contribution rate of each principal component:

Contribution rate � λi∑m
k�1λk

i � 1, 2,/,m( ). (9)

Cumulative contribution rate � ∑i
s�1λs∑m
k�1λk

i � 1, 2,/,m( ). (10)

2.2 Catastrophe progression method

The catastrophe progression method is a comprehensive
evaluation method developed on the basis of mutation theory.
Mutation types exist in theory in many ways, but for reasons
such as normalization, the values are too small to be ignored
when the number of control variables exceeds five (CUI and
Shasha, 2022). The catastrophe progression method is based on
the potential function, and the evaluation indexes are dimensionless.
Each index is then integrated from a low level to a high level, and for
the same index, the principle of integrated evaluation is adopted to
find out the value of each level affiliation function separately. The
total affiliation value is calculated using a normalization formula.

(1) Determination of the mutation model:

The selected target is analyzed to determine the desired
mutation model. There are five main models of mutation that are
commonly used (Zhang et al., 2018a; Zhang et al., 2018b; LUO et al.,
2018), which are shown in Table 1.

(2) Dimensionless processing of parameter indicators:

The comprehensive evaluation indicators can be divided into
two types: positive indicators and negative indicators. With positive
indicators, the larger the data, the better the predictions will be; with
negative indicators, the smaller the data, the better the predictions
will be. Positive and negative indicators are calculated as shown in
Eqs 11, 12, respectively:

xi′ � xi − x min

x max − x min
, (11)

xi′ � x max − xi
x max − x min

. (12)

Here, xi′ is the dimensionless processed data, xi is the original
parameter, and x max and x min are the maximum and minimum
values in the sample data of a single variable, respectively.

(3) Calculation of mutation-level values.

The values obtained using the normalization formula for
different indicators of the same control variable can take three
principles: the principle of complementarity, the principle of
non-complementarity, and the principle of complementarity after
over-queuing. The first two principles are used in this paper, and the
formulas for the principle of complementarity and the principle of
non-complementarity are as follows:

x � x1 + x2 + x3 +/xi( )
i

i � 1, 2, 3, 4,/( ), (13)
x � min x1, x2, x3,/, xi{ }. (14)

Here, X is the state variable and (x1, x2, x3, . . . xi) is the
controlling variable.

2.3 The rockburst evaluation index system

In this paper, 15 variable indicators and seven sets of data are
selected from three aspects of lithology conditions, stress conditions,
and surrounding rock conditions to construct an evaluation model
(LIANG, 2004; JIANG et al., 2010; Qi-tao et al., 2014; Yu, 2016; LI
et al., 2020), as shown in Figure 1.

The main steps of the rockburst evaluation are as follows:

(1) Principal component analysis is used at the same level to reduce
the dimensionality of the impact factor indicators while dividing
several principal components.

(2) Dimensionless processing of the data is performed, and the desired
mutation model is selected according to the number of indicators.

(3) The reduced-dimensional indicators are ranked according to the
absolute value of the coefficients of the principal component score
matrix and then brought into the mutation model for calculation.

(4) Mutation-level values for each level are calculated to determine
the total mutation-level values according to the principles of
complementarity and non-complementarity.

(5) The resulting value of the total mutation level is used to divide the
rockburst grade interval and compare it with the actual project.

TABLE 1 Common mutation models.

Mutation model Control variable Potential function Normalization formula

Fold 1 F(x) � x3 + ax xa � a1/2

Cusp 2 F(x) � x4 + ax2 + bx xa � a1/2 , xb � b1/3

Swallow-tail 3 F(x) � x5 + ax3 + bx2 + cx xa � a1/2 , xb � b1/3 , xc � c1/4

Butterfly 4 F(x) � x6 + ax4 + bx3 + cx2 + dx xa � a1/2 , xb � b1/3 , xc � c1/4 , xd � d1/5

Wigwam 5 F(x) � x7 + ax5 + bx4 + cx3 + dx2 + ex xa � a1/2 , xb � b1/3 , xc � c1/4 , xd � d1/5 , xe � e1/6

aF(x) is the potential function, and (a,b,c,d,e) is the control variable for the state variable.
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Lithological conditions mainly include strength brittleness
factor R, deformation brittleness factor Ku, elastic energy index
Wet, rockburst energy ratio η, dynamic DT parameters, linear elastic
properties We, and energy storage and consumption index K. Stress
conditions mainly include T guidelines, stress coefficient P, and
stress index S. Surrounding rock conditions mainly include
rockburst strength factor W, rock quality RQD value, rock
integrity factor Kv, groundwater category, and surrounding rock
type (where the types of surrounding rock were I, II, III, IV, and V,
and the groundwater categories were gushing water, line flow,
dripping water, and no groundwater).

3 Rockburst prediction model based on
the PCA–catastrophe progression
method

To validate the model, the data of selected indicators are shown
in Table 2.

3.1 Rockburst prediction index division and
ranking

Taking the stress condition as an example for principal
component analysis, the original data were standardized before
conducting the principal component analysis. The results are
shown in Table 3.

Two principal components, F2 and F3, were extracted, generally
taking indicators with loadings greater than 0.7, fromwhich it can be
concluded that the extracted principal component F2 includes T
guidelines and stress index S. Principal component F3 includes stress
coefficient P. The ranking of the indicators under the principal
components by the magnitude of the absolute value of the
coefficients of the principal component score matrix is derived
from the principal component F1: T guidelines > stress index S.
The numerical results are shown in Tables 4, 5.

Principal component F3 has only one indicator, so sorting is
not necessary. The rockburst evaluation system is shown in
Figure 2.

FIGURE 1
Overall evaluation system.
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3.2 Determination of the sudden change
level of rockburst predictors

(1) Determination of third-level catastrophe-level values

The determination of the catastrophe-level values first requires
dimensionless processing of the raw data. The original data is
dimensionless and processed according to Eqs 11, 12. Due to the

limited space of the article, this paper selects the indicators of the
Tianshengqiao II Hydropower Station Diversion Tunnel to specify
the catastrophe-level value method. The processed data are shown in
Table 6.

Normalization of dimensionless processed data: Taking the
stress condition as an example, two indicators, T and S, under
F2 are used to select the normalized formula for the cusp, and one
variable, P, under F3 is used to select the fold:

TABLE 2 Rockburst evaluation indexes of each project.

Project name R Ku Wet η DT We K T P S W RQD Kv Surrounding
rock type

Groundwater
category

Diversion tunnel of
the Tianshengqiao
II Hydropower
Station

23.97 7.8 6.6 0.043 89 134.12 105.23 0.63 0.34 0.18 0.92 0.6 0.63 3.5 4.02

Yuzi River
Hydropower Station
diversion tunnel

15.04 9.5 9 0.048 78 123.03 110.56 0.6 0.53 0.24 1.6 0.68 0.69 4 4.2

Jinping II
Hydropower Station
diversion tunnel

18.46 3.56 3.8 0.037 279 56.23 36.77 0.45 0.82 0.23 1.62 0.62 0.62 3.38 3.89

Ertan Hydropower
Station 2# branch
hole

29.73 2.56 7.3 0.036 356 48.67 25.45 0.32 0.41 0.13 0.32 0.28 0.59 3 2.03

Taipingyi
Hydropower Station
diversion tunnel

17.55 8.36 9 0.045 69 120.56 125.67 0.69 0.38 0.24 0.99 0.63 0.61 4 3.95

Pubugou
Hydropower Station
underground refuge

20.5 2.48 5 0.034 278 78.35 36.26 0.36 0.35 0.13 0.89 0.26 0.58 2.64 1.56

Underground plant
of the Laxiwa
Hydropower Station

24.11 2.63 9.3 0.035 296 49.67 23.36 0.47 0.32 0.16 0.78 0.29 0.54 2.36 1.89

TABLE 3 Total variance interpretation.

Ingredient Initial eigenvalue Extraction of the sum of squares of loads Sum of squared rotating loads

Total Percentage of
variance

Cumulative
%

Total Percentage of
variance

Cumulative
%

Total Percentage of
variance

Cumulative
%

1 1.887 62.904 62.904 1.887 62.904 62.904 1.678 55.941 55.941

2 1.083 36.086 98.990 1.083 36.086 98.990 1.291 43.049 98.990

3 0.030 1.010 100

TABLE 4 Component matrix.

Indicator Ingredient

1 2

T 0.992 0.031

S 0.788 −0.608

P 0.531 0.844

TABLE 5 Component score coefficient matrix.

Indicator Ingredient

1 2

T 0.645 −0.271

P −0.155 0.814

S 0.438 0.292
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xT � 0.8378381/2 � 0.915335, xs � 0.4545451/3 � 0.768881.

The complementarity principle is satisfied under the
F2 condition, and catastrophe-level values of F2 are calculated
according to Eq. 13:

VF2 � xT + xS
2

� 0.842108.

Only one indicator exists under the F3 condition, from which
the mutation level can be derived:

VF3 � 0.041/2 � 0.02.

Similarly, calculated under the lithology condition, five
indicators exist under the F1 condition, and the normalized
formula for the Wigwam is calculated in turn as follows:

xKu � 0.7578351/2 � 0.870537, xDT � 0.9303141/3 � 0.97621,

xK � 0.8002151/4 � 0.945804, xη � 0.56251/5 � 0.891301, xWe � 11/6

� 1.

The F1 condition satisfies the principle of complementarity, and
the catastrophe-level values in F1 are calculated:

FIGURE 2
Rockburst evaluation system of the principal component analysis–catastrophe progression method.
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UF1 � xKU + xDT + xK + xη + xWe

5
� 0.936771.

Calculated under the surrounding rock conditions and under
the same lithological conditions, there are five indicators, according
to the complementary principle, used to calculate the mutation level
of F4:

NF4 � xRDQ + xGroundwater category + xSurrounding rock type + xKv + xW
5

� 0.914308.

The calculated data for all the indicators of the seven projects are
shown in Table 7.

(2) Determination of the second-level catastrophe-level values and
first-level catastrophe-level values.

According to the aforementioned calculation process, the
second-level catastrophe-level values can be calculated, and the
specific data are shown in Table 8.

Under the stress condition, there are two variables, F2 and F3,
that need to be accounted for, according to the principle of non-
complementarity. The second-level catastrophe-level values are
derived according to Eq. 14:

V′ � min VF2,VF3{ }.

TABLE 6 Data after dimensionless processing.

Indicator Diversion tunnel of the Tianshengqiao II Hydropower Station

R 0.607897

Ku 0.757835

Wet 0.597615

η 0.5625

DT 0.930314

We 1

K 0.800215

T 0.837838

P 0.04

S 0.454545

W 0.461538

RQD 0.809524

Kv 0.6

Surrounding rock type 0.695122

Groundwater category 0.931818

TABLE 7 Third-level catastrophe-level values of each project.

Project name Third-level catastrophe-level values

UF1 VF2 VF3 NF4

Diversion tunnel of the Tianshengqiao II Hydropower Station 0.936771 0.842108 0.2 0.914308

Yuzi River Hydropower Station diversion tunnel 0.980203 0.934959 0.648074 0.999484

Jinping II Hydropower Station diversion tunnel 0.604381 0.780739 1 0.93099

Ertan Hydropower Station 2# branch hole 0.228913 0 0.424264 0.474778

Taipingyi Hydropower Station diversion tunnel 0.962924 1 0.34641 0.932001

Pubugou Hydropower Station underground refuge 0.41641 0.164399 0.244949 0.456423

Underground plant of the Laxiwa Hydropower Station 0.358102 0.642607 0 0.321655
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The second-level catastrophe-level values are calculated in
the same way for the surrounding rock conditions and lithology
conditions. The first-level catastrophe-level values are calculated
by applying swallow-tail to lithological conditions, stress
conditions, and envelope conditions and can be calculated
according to the principle of complementarity:

U � UF1
1/2,V � V′1/3,N � NF4

1/4.

The first-level catastrophe-level values are calculated by
satisfying the complementarity principle:

A � U + V +N
3

.

Table 9 shows the actual grade of the project rock explosion.
According to Tables 8, 9, the sample rockburst total mutation-level
value (A) is the horizontal coordinate and the actual occurrence level of
rockburst is the vertical coordinate. The scatter plot is shown in Figure 3.

As shown in Figure 3, rockbursts are divided into four intervals: level
I [0, 0.5], level II [0.5, 0.82], level III [0.82, 0.96], and level IV [0.96, 1.00].

4 Model testing

In order to verify the accuracy of the model, the actual rockblast
data on the Baihetan Hydropower Station from the literature (Dong

et al., 2018) were brought into the model for verification, and the
results are shown in Table 10. It can be seen that the actual rockblast
level compared with the sample is consistent.

TABLE 8 Second-level catastrophe-level values and first-level catastrophe-level values of each project.

Second-level catastrophe-level values and first-level catastrophe-level values of each project

Project name U V N A

Diversion tunnel of the Tianshengqiao II Hydropower Station 0.967869 0.584804 0.956194 0.936306

Yuzi River Hydropower Station diversion tunnel 0.990052 0.865383 0.999742 0.982633

Jinping II Hydropower Station diversion tunnel 0.777419 0.883594 0.964878 0.944134

Ertan Hydropower Station 2# branch hole 0.478448 0 0.689041 0.534263

Taipingyi Hydropower Station diversion tunnel 0.981287 0.702312 0.965402 0.956905

Pubugou Hydropower Station underground refuge 0.645299 0.405461 0.675591 0.816687

Underground plant of the Laxiwa Hydropower Station 0.598417 0 0.567146 0.547127

TABLE 9 Sample rockburst actual grade.

Project name Rockburst actual grade

Diversion tunnel of the Tianshengqiao II Hydropower Station III

Yuzi River Hydropower Station diversion tunnel III~IV

Jinping II Hydropower Station diversion tunnel II~III

Ertan Hydropower Station 2# branch hole II

Taipingyi Hydropower Station diversion tunnel III

Pubugou Hydropower Station underground refuge II

Underground plant of the Laxiwa Hydropower Station II

FIGURE 3
Mutation value and rockburst level relationship.
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5 Comparison and discussion

1 According to the literature (LI et al., 2022), compared to the
matter–element extension model rockburst prediction method,
although the results of the actual rockburst level of the Baihetan
Hydropower Station were validated to be consistent, the method
proposed in this paper based on principal component analysis
does not use subjective assignment to give the appropriate weight
to the influencing factors, but rather a number of variables to
reduce the dimensionality of the variables in line with the basic
model of the catastrophe progression method. It overcomes
subjective thinking and is more convincing.
2 To a certain extent, the method proposed in this paper requires
more accurate engineering practice data and data on various
factors affecting rock bursts in actual engineering. If the data are
incomplete, variations in results arise, so this method has some
limitations. In addition to relying on accurate data, it is also
necessary to process a large number of data, which will also affect
the accuracy of the results in engineering practice.

6 Conclusion

1 In this paper, considering various factors affecting rockbursts,
the variable dimension reduction based on the principal
component analysis method meets the basic model
requirements of the catastrophe progression method, and
through the combination of the two methods, the defects of
general fuzzy algorithm are reduced, the accuracy of calculation
results is satisfied objectively, and the subjectivity in data
processing is overcome.
2 The seven typical rockburst engineering examples based on
this analysis and a comprehensive dataset of rockburst
engineering examples to test the feasibility of the improved
sudden change level method model for rockburst predictions
show that it can be used for rockburst ratings. Finally, the

accuracy of the model can be illustrated by establishing four
rockburst grade intervals (level I [0, 0.5], level II [0.5, 0.82],
level III [0.82, 0.96], and level IV [0.96, 1.00]) based on total
mutation grade A.
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TABLE 10 Rockburst level prediction.

Project name Baihetan Hydropower Station

Third-level catastrophe-level values UF1 0.655874

VF2 0.626008

VF3 0.860233

NF4 0.680269

Second-level catastrophe-level values and first-level catastrophe-level values U 0.809861

V 0.791207

N 0.824784

A 0.925937

Rockburst actual grade II~III

Prediction level III
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