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Methods for extracting mineralized alteration information using remote sensing
images have recently become both efficient and cost-effective. Technology
involving the extraction of alteration information based on multi-spectral data has
beenwidely practiced and effectively verified. In recent years, researchon finemineral
extraction methods based on hyperspectral data has also been rapidly developing.
The Yulong copper belt is a porphyry copper belt located inChinawith high prospects
for mineralization. However, most previous studies focused on the northern section
of the Yulong copper belt, with limited exploration of the southern section. In this
study, alteration information of the southern section of the Yulong copper belt was
extracted from remote sensing data from Landsat-8 OLI, ASTER, and ZY1-02D, and
theprospecting potential of this areawas evaluated. Principal component analysiswas
used to extract iron oxide and hydroxyl alteration from Landsat-8 data, in addition to
Al hydroxyl and propylitic alterations from ASTER data. Considering the challenge of
the extraction of toomany pseudo-anomalies using traditionalmethods, themixture-
tuned matched filtering (MTMF) method was used to more accurately extract iron
oxide alterations. Regarding hyperspectral data, theminimumnoise fraction and pure
pixel index algorithmswere used to extract whitemica and carbonatite endmembers.
The MTMF method was also used for alteration mapping, which took advantage of
sub-pixel abundance mapping to finely divide the white mica and carbonatite
alterations into five classes. The extraction results of multi-source remote sensing
data were then compared and analyzed to avoid occasional single-image extraction
results, which confirmed the superiority of the hyperspectral remote sensing and
MTMF methods. Combined with field verification, the mineralization alteration
information coincided with the spatial location of the Secuo, Mamupu, and Jicuo
deposits, which confirmed the accuracy of alteration information extraction. The
results of this study confirmed the application potential of remote sensing alteration
information extraction in the field of mineral resource exploration. The results have
important reference significance for further geological prospecting and exploration in
the southern section of the Yulong copper belt.
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1 Introduction

Remote sensing technology has recently been widely used for
identification and prospecting in lithology given its advantages in
efficiency and cost-effectiveness (Liu et al., 2013; Cardoso-
Fernandes et al., 2019; Dai et al., 2019; Dai et al., 2020).
Multispectral remote sensing can objectively reflect geological
elements such as geological bodies, tectonics, and mineralization
alterations according to the responses of different spectral
characteristics to ground objects, while also playing an important
role in geological prospecting (Zhang et al., 2017; Aali et al., 2022).
Landsat-8 provides some of the most widely used multispectral
remote sensing data worldwide and has previously been used to
extract alteration information and track favorable mineralization
targets (Pour and Hashim, 2015; Bolouki et al., 2019). Additionally,
ASTER data have a relatively high spectral resolution in the visible-
near infrared (VNIR), short-wave infrared (SWIR), and thermal
infrared (TIR) bands, which can more accurately distinguish
spectral differences between rocks and minerals. ASTER data are
more widely used and effective than other types of deposits in
searching for porphyry copper–gold–molybdenum deposits
(Tommaso and Rubinstein, 2006; Alimohammadi et al., 2015; Liu
et al., 2018; Atif et al., 2022; Shirazi et al., 2022). In recent years, there
have been rapid developments in hyperspectral remote sensing
technology. Dozens of minerals can now be identified in the
VNIR and SWIR bands with their nanoscale spectral resolutions
(Clark et al., 2007). Therefore, hyperspectral data are also widely
used in the study of mineralization and alteration information
extraction, with significant progress and strong results when used
in combination with traditional geological prospecting (Gersman
et al., 2008; Jain and Sharma, 2019; Huang et al., 2020; Hajaj et al.,
2023). Although much theoretical research and prospecting
practices have been carried out in the extraction of alteration
information from remote sensing images, most research has
focused on the extraction of alteration information using single-
image data or a single method (Du et al., 2022). Considering the
different types of remote sensing satellite sensors, the types of image
data in the same research area may also vary. The results of different
extraction methods for varying images are also superior and inferior.
However, the accurate extraction of alteration information is
necessary to ensure the smooth implementation of subsequent
survey work. How to select remote sensing data and
corresponding methods for alteration mapping in different
regions remains unanswered. This study applied multi-source
remote sensing data to perform alteration mapping in the same
area and compared different mapping results obtained by different
methods to provide a reference for the future application of remote
sensing alteration mapping.

The Yulong copper belt in Tibet is located on the southeast edge
of the Tibetan Plateau and is a porphyry copper belt that presents
some of the most significant prospects for mineralization in China
(Rui et al., 1984). The Yulong copper belt is approximately 300 km
long and 15–30 km wide, with one super-large porphyry copper
deposit (Yulong), two large porphyry copper deposits
(Duoxiasongduo and Malasongduo), two medium-sized porphyry
copper deposits (Manzong and Zalagao), and more than
20 mineralization points (Zhang et al., 2022). Following the
discovery of the Yulong copper belt, many domestic scholars

have studied its ore-forming age, tectonics, and geological
characteristics (Chen et al., 2009; Wu et al., 2013; Lin et al.,
2018; Zhang et al., 2022). However, this research has primarily
been concentrated on the northern section of the Yulong copper
belt. Only Mamupu, Secuo, and Jicuo deposits, along with some
small mineralization points, have so far been described in the
southern section of the Yulong copper belt. Considering the
small scale of mineralization here, this area has not yet been
studied in detail. The southern section represents an important
part of the Yulong copper belt and is a prospective area with good
metallogenic potential. At present, the low degree of exploration is
restricting our understanding of the metallogenic potential of this
belt. Therefore, it is of great significance to apply economical and
efficient remote sensing technology to the preliminary prospecting
and exploration analysis of the southern section of the Yulong
copper belt.

In this study, data on the mineralization and alteration of the
southern section of the Yulong copper belt were extracted by
combining Landsat-8 OLI, ASTER multispectral, and ZY1-02D
hyperspectral data. The traditional PCA method and the more
advanced MTMF method were also used to obtain accurate
results on the alteration distribution in this region. The alteration
results obtained using different data andmethods were subsequently
compared and discussed. Finally, the most favorable areas for
mineralization in the southern section of the Yulong copper belt
were analyzed in combination with field verification.

2 Geological setting

The Yulong copper belt in Tibet is located in the center of the
Sanjiang tectonics in the Qiangtang body, within the northern
extension of the Honghe-Ailao Mountain fault system.
Additionally, it is controlled by a series of NNW fractures and
strike-slip pull-out basins. It is bordered on the west by Tuoba-
Mangkang Fault, and on the east by the Gongjue Basin and Ziga
Fault. The porphyry copper belt was formed by the shallow intrusion
of several moderately acidic magmas in the Eocene and Oligocene
(Chen et al., 2016). The study area was located in the southern
section of the Yulong copper belt (Figure 1).

The exposed strata in this area ranged from the Carboniferous to
the Cenozoic Quaternary, among which Permian, Triassic, Upper
Triassic, and Jurassic strata were the most widely distributed (Chen
et al., 2009; Lin et al., 2018; Zhang et al., 2022), (Figure 2). The
Quaternary (Qh) was mainly composed of various loose sediments
consisting primarily of gravel, sand, peat, and ice water deposits,
which were only exposed in a small area in the north of the study area.
The lower part of the Neogene Lawula Formation (Nl) was composed
of andesitic agglomerate, andesite, and coarse facies. Meanwhile, the
upper part was purple–red and gray–yellow tuffaceous sandstone,
with siltstone and feldspathic quartz sandstone, which was mainly
distributed throughout the southwest of the study area, alongside the
Cretaceous (K2n, K1j) sandstone, conglomerate-bearing sandstone,
and coarse sandstone. The Upper, Middle, and Lower Jurassic
formations were all developed in this area. The Upper Jurassic was
dominated by brownish-red mudstone with sand salts, alongside
mudstone gray–black–green mud shale near the bottom. The
Middle Jurassic Dongdaqiao Formation (J2d) was dominated by
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dark purple thick-layered sandstones interbedded with mudstones.
Meanwhile, the Lower Jurassic Wangbu Formation (J1w) was
dominated by gray–green and purple–brown mudstones and
siltstones, which were interbedded with sandstones, thin
conglomerates, and dolomitic mud crystal tuffs. The Upper
Triassic was primarily distributed throughout the central part of
the study area, among which the Adula Formation (T3a), Duogaila
Formation (T3d), and Jiapila Formation (T3j) were mainly quartz
sandstone and fine sandstone with shale interbeds. Furthermore, the
Upper Triassic Bolila Formation (T3b) was mainly gray–white
dolomite and tuffs, and the Xiaodingxi Formation (T3x) consisted
of amygdaloidal basalt, andesitic basalt, and crystalline tuff. The
gray–black sandstone and shale of the Permian Tuoba Formation
(P3t) and the gray–green andesite of the Xiayacun Formation (P3x),
as well as andesitic tuffs and shales, were mainly exposed in the south

of the study area. Additionally, the lower section of the Lower
Carboniferous Machala Formation (C1m) was a coal-bearing
clastic section, the upper area of which was a tuff section, with the
gray medium-thick laminated crystalline tuff of the Upper
Carboniferous Aoqu Formation (C2a) exposed to a small extent in
the southern part of the study area.

The magmatic activity within the study area was also relatively
strong between the Haixi and Xishan periods. The intrusive activity
lasted from the Indosinian until the Xishan period and could be
characterized by medium-acidic small porphyritic intrusions (Chen
et al., 2016). Granite porphyry, syenite porphyry, and diorite
intrusions were exposed in this area. These were primarily
located within the central and western parts of the study area.
The outcrops were distributed in a north-south direction, with a
scale of several to dozens of square kilometers.

FIGURE 1
(A) Geographical location of the study area in China. (B) Tectonic framework of northeastern Tibet. (C) Brief geological map of the Yulong copper
belt (modified from Zhang et al., 2022).
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The study area was located in the Sanjiang Fold System, which is
part of the massive Tethys-Himalayan tectonic domain (Wu et al.,
2013). This fold system is sandwiched between the Yarlung Zangbo
and Jinshajiang deep major fault zones, with the Yangtse landmass
in the east and the Indian landmass in the west (Lin et al., 2018).
Furthermore, the main body consisted of the southeastern part of
two micro-landmasses, Qiangtang-Changdu and Gangdis-Nyingchi
Tanggula. The study area was also separated by the Nujiang Deep
Fault Zone, and the main fault structures were distributed in a NW-
SE direction, located in the north, east, and center of the study area.

3 Data and methods

3.1 Data sources

On 11 February 2013, Landsat-8 was launched fromVandenberg Air
Force Base, California, carrying two sensors: the OLI and the TIRS
(Thermal Infrared Sensor). Landsat-8 has a total of 11 bands: bands
1–7 and 9–11 with a spatial resolution of 30m, and band 8 with a
panchromatic resolution of 15m (Roy et al., 2014). This satellite can
achieve global coverage every 16 days. Two additional bands that
represent the difference between Landsat-7 ETM+ and Landsat 8 are
the short-wave infrared cirrus band and the deep blue coastal/aerosol band
(Howari et al., 2020). The Landsat-8 data used in this study were imaged
on 15 December 2020, with data identifier LC81330392020350LGN00.
Furthermore, the image quality for the study areawas excellent and largely
free of clouds and snow.

ASTER was launched in 1999; however, it is still extensively used in
geological studies due to its reasonable coverage of VNIR (15 m pixel
size), SWIR (30 m), and TIR (90 m) regions (El-Desoky et al., 2022)
(Table 1). Level 1 ASTER L1T (V003) precision terrane and crosstalk-
corrected granules were downloaded in 2022 from the NASA Earth
Explorer platform. The two images were taken on 19 December
2001 and 12 November 2005 and achieved basic coverage of the
study area while containing a small amount of cloudy snow.

The ZY1-02D satellite was launched in China in 2019 and was the
first civil hyperspectral operational satellite built and successfully
operated by China. The AHSI sensor of the ZY1-02D contains a
total of 166 hyperspectral data bands, including VNIR bands with a
spectral resolution better than 10 nm and SWIR bands with a spectral
resolution better than 20 nm (Table 1). A total of two scenes of ZY1-
02D images were used in this study, with imaging taking place on
9 January 2021, and 8 March 2021, both at product level L1A with
generally good image quality.

3.2 Data preprocessing

The remote sensing data were first preprocessed; next, the
corresponding method was selected for alteration mapping
(Figure 3). The preprocessing of multispectral images (Landsat-
8 and ASTER) focused on radiometric calibration and atmospheric
correction. The ground radiation information obtained by the sensor is
subject to a series of systematic errors, such as recording noise and
detector errors, in addition to the interference of atmospheric radiation.

FIGURE 2
Geological map of the study area. 1–19: strata of different ages; 20: granite porphyry; 21: orthoclase; 22: amphibolite; 23: faults.
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All these can combine to distort the spectral brightness. Therefore, to
obtain accurate radiation information, a quantitative conversion
relationship must be established between the sensor output and
incident radiation brightness values through radiation calibration.
Additionally, radiometric calibration is also a preparatory process for
atmospheric correction, which is the process of eliminating these
radiometric errors caused by atmospheric influences and inverting
the true surface reflectance of the feature (Rumora et al., 2021).
ASTER data, for example, must first be packaged in the VNIR and
SWIR bands before being resampled for spatial resolution.

For hyperspectral images, in addition to radiometric calibration and
atmospheric correction, band screening, strip removal, and smoothing
filtering are also required. Band screening is used to eliminate the
uncalibrated bands with zero value and the bands that are greatly
affected by water vapor and rarely contain ground information in the
image pixel while retaining the valid bands. The specific elimination of
bands is dependent on different data sources. This ZY1-02D image
processing eliminated the coincidence bands VN: 72–76, water vapor
influence bands SW: 22–27, 48–59, 82–83, and low signal-to-noise ratio

bands: 88–90. Hyperspectral data are affected by the sensor because not
only will several bad lines be present but also some bands will have a
number of striping effects that seriously affect the quality of the data and
its subsequent applications. No bad lines were found in the ZY1-02Ddata
used in this study, although the striping effect was observed after the
minimumnoise fraction (MNF) rotation. Therefore, a combination of the
principal component analysis method and filtering process was used to
filter the striping noise. Sometimes, because the instrument signal-to-
noise ratio does not work optimally or because of the combined effect of
dark current and other interference factors, a certain amount of noise is
present in the spectral reflectance of different bands, resulting in the
sawtooth characteristics of the reflectance of adjacent bands. Therefore,
after completing the radiometric calibration and atmospheric correction,
Savitzky–Golay (SG) filtering was used for spectral smoothing. SG
filtering is a method based on a local polynomial least-squares fit in
the time domain that filters out noise while ensuring that the shape and
width of the signal remain unchanged (Savitzky and Golay, 2002). Five
left- and right-side points were selected in the filter kernel, and two
smoothing polynomials were chosen.

TABLE 1 Technical characteristics of the Landsat-8 OLI, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and ZY1-02D AHSI.

Sensor Subsystem Band Spectral range/μm Spatial resolution/m Swath width/km

Landsat-8 OLI

VNIR

1 0.433–0.453

30

185

2 0.450–0.515

3 0.525–0.600

4 0.630–0.680

5 0.845–0.885

SWIR

6 1.560–1.660

7 2.100–2.300

Pan 0.500–0.680 15

9 1.360–1.390 30

ASTER

VNIR

1 0.520–0.600

15

60

2 0.630–0.690

3 0.780–0.860

SWIR

4 1.600–1.700

30

5 2.145–2.185

6 2.185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

TIR

10 8.125–8.475

90

11 8.475–8.825

12 8.925–9.275

13 10.25–10.95

14 10.95–11.65

ZY1-02D AHSI VNIR 1–76 0.396–1.040
30 60

SWIR 77–166 1.006–2.501
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3.3 Principal component analysis

Principal component analysis (PCA) is a dimensionality reduction
technique used to simplify data sets (Howari et al., 2020; Sekandari et al.,
2020; Sekandari et al., 2022). This technique involves a mathematical
transformation of the original data, which are rearranged according to
the axes of greatest variability, creating new non-correlated components
(Pazand and Pazand, 2022). The lengths of the principal axes are
defined by a set of quantities called eigenvalues, which measure the
variability of the data along orthogonal directions. The direction of each
axis is defined by another set of data called eigenvectors, which define
the correlation between the principal components (PCs) and the
original bands. Principal component analysis is the most common
and stable method used to extract mineralized alteration information.
PCA is applied to highlight specific geological content through certain
mathematical reorganizations to form principal components that are
more reasonable or clearer in their intrinsic connections in multi-
spectral data (Guha et al., 2018).

3.4 Mixture-tuned matched filtering

The mixture-tunedmatched filtering (MTMF)method (Boardman
et al., 1995) was applied for the sub-pixel mapping of target minerals
(Modabberi et al., 2017). The MTMF method consists of two parts: the
mixed tuning (MT) and matched filtering (MF) phases. The former
estimates the subpixel end abundance, while the latter identifies and

suppresses pseudo-anomalies (Pour et al., 2018; Noori et al., 2019). This
method uses a combination of linear spectral unmixing and matched
filtering models that map the target abundances in the presence of
unknown spectra of mixed background (Wang et al., 2007). It can
maximize the response of known endpoint members and suppress the
response of compound unknown backgrounds. The linear spectrum
mixing theory is used to constrain the feasiblemixing results and reduce
the probability of false signals by assuming that the content of each end
element in the pixel is positive and the sum is 1. The MF provides a
rapid means of detecting specific materials based on matches to library
or image endmember spectra and does not require a knowledge of all
endmembers within an image scene (Schott, 2007). Furthermore, the
MTMF model reduces the detection limit of minerals, thus identifying
trace mineral components that are difficult to detect through other
methods, and is well suited for the extraction of the abundance of
alteration information at the sub-pixel scale (Zhang et al., 2015).

4 Results

4.1 Results of the extraction of alteration
information from Landsat-8 data

Landsat-8 image information extraction technology based on
principal component analysis (PCA) has been widely used, with its
reliability having been verified (Zalaky et al., 2018; Fotze et al., 2019;
Sulemana et al., 2020; Ishagh et al., 2021; Jiang et al., 2021). In this study,

FIGURE 3
Overview of the methodological flowchart used in this study.
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the traditional empirical method was used based on the Landsat-8
spectral curve corresponding to the different characteristics of iron
oxide and hydroxyl-altered minerals. Bands 2, 4, 5, and 6 of Landsat-8
were selected for PCA, and the principal components of bands 2, 5, and
4 with the inverse sign of eigenvector were used to extract iron oxide

anomalies (Table 2A). Bands 2, 5, 6, and 7 were selected for PCA, with
principal components of bands 5, 6, and 7 being used to extract
hydroxyl anomalies (Table 2B).

The Quick Stats function in ENVI5.3 was used to check the
maximum, minimum, and variance of the corresponding principal
components of iron oxide and hydroxyl alteration. The alteration
classification was then carried out. Generally, the method of “mean +
N × standard variance σ)” was adopted to segment the threshold of
the principal component anomaly level. For iron oxide anomaly
alteration, the N values were 2, 2.5, and 3. For the hydroxyl anomaly
information, the N values were 2.5, 3, and 3.5, with iron oxide and
hydroxyl anomalies divided into three grades. Finally, the abnormal
noise points were removed by median filtering with a threshold of 5,
and the alteration information of Landsat-8 was subsequently
extracted (Figure 4).

4.2 Results of the extraction of alteration
information from ASTER data

ASTER data have more short-wave infrared (SWIR) bands
than Landsat-8, and most hydroxyl alterations have diagnostic
absorption characteristics between 2.2 and 2.5 μm of SWIR. A
larger number of bands means a higher spectral resolution and a
finer distinction can be made for different altered minerals.
Figure 5A shows the spectral curves of common altered

TABLE 2 The eigenvector loadingmatrix of Landsat-8 bands calculatedbyprincipal
component analysis to extract iron oxide (A) and hydroxyl (B) anomalies.

(A) Iron oxide anomalies

Eigenvector Band 2 Band 4 Band 5 Band 6

PCA 1 0.137,611 0.324,263 0.502,253 0.789,721

PCA 2 0.555,527 0.617,484 0.239,564 −0.502,704

PCA 3 0.384,231 0.254,322 −0.816,489 0.347,898

PCA 4 0.724,444 −0.669,990 0.153,939 0.050961

(B) Hydroxyl anomalies

Eigenvector Band 2 Band 5 Band 6 Band 7

PCA 1 −0.117,309 −0.444,429 −0.719,306 −0.520,885

PCA 2 −0.691,818 −0.558,783 0.457,327 0.001033

PCA 3 0.471,194 −0.657,231 −0.091551 0.581,070

PCA 4 0.534,417 −0.241,437 0.514,850 −0.625,329

FIGURE 4
Results of the extraction of alteration information from Landsat-8 data.
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minerals in the USGS Library, which were resampled to nine
bands of ASTER. The Mg hydroxyl minerals, such as chlorite and
epidote, along with carbonate minerals such as calcite, have
notable absorption characteristics in the eighth band of
ASTER. However, Al hydroxyl minerals such as muscovite,
illite, and kaolinite have notable absorption characteristics in
the sixth band of ASTER. Therefore, in this study, ASTER bands
3, 4, 6, and 7 were selected for PCA, and the principal
components of bands 4, 6, and 7 with the inverse sign of
eigenvector were used to extract Al hydroxyl anomalies
(Table 3A). Previous studies used ASTER bands 7, 8, and 9 to
extract carbonate alteration, and bands 1, 3, 4, and 8 or 1, 3, 5, and
8 to extract the Mg hydroxyl alteration. This study considered
that the absorption characteristics of chlorite, epidote, and calcite
minerals in bands 7, 8, and 9 of ASTER were too similar;
therefore, they were not further subdivided. Bands 7, 8, and
9 were selected for PCA, and the principal component of the
eigenvector bands 7, 8, and 9 with the inverse sign was used to
extract the propylitic alteration (Table 3B).

Figure 5B shows the nine bands of the ASTER resampling of
the standard spectral curve of iron oxide alteration in the USGS
Library. For iron stain alteration, PCA extraction is typically
performed using ASTER bands 1, 2, 3, and 4. However, the
characteristics of the first four bands of iron oxide minerals
are not easy to distinguish from other minerals by observing
the resampled curve. The actual results also contain many
pseudo-anomalies, and the extraction effect is also severe.
Therefore, this study did not use the traditional PCA method;
rather, the MTMF method was instead adopted to extract iron
oxide alteration information from ASTER data. The most
advantageous aspect of MTMF over the MF method is the MT
stage. The results of MF answer the question of the proportion of
existing matter in this pixel; however, MT uses the spectral
mixing of a high-dimensional convex geometry model to
effectively suppress the appearance of pseudo-anomalies. The

results of MT also provide a good answer to the question of how
likely it is that the pixel is a mixture of the target substance and
the background (Abubakar et al., 2019).

The resampled standard spectral curves of hematite,
limonite, and goethite were mapped by MTMF. The MTMF
results consisted of matched filtering (MF) scores and
infeasibility images for the three endmembers representing
alteration regions of hematite, limonite, and goethite. The
MF score indicates the sub-pixel abundance of each
endmember; however, MT (mixture tuned) must also be used
to eliminate pseudo-anomalies (errors) to obtain the exact
abundance of iron oxides. This is generally achieved by
plotting the MF fraction and infeasibility of the endmember
in a 2-D scatter plot. The vertical coordinate represents the MF

FIGURE 5
Spectral curves of alteredminerals in the USGS Library, which are resampled to nine ASTER bands. (A) Spectral curves of common hydroxyl minerals.
(B) Spectral curves of iron oxide minerals.

TABLE 3 The eigenvector loading matrix of ASTER bands calculated by
principal component analysis to extract Al hydroxyl anomalies (A) and
propylitic alterations (B).

(A) Al hydroxyl anomalies

Eigenvector Band 3 Band 4 Band 6 Band 7

PCA 1 −0.486,284 −0.607,250 −0.449,661 −0.438,840

PCA 2 −0.852,966 0.416,609 0.310,347 0.050696

PCA 3 −0.189,653 −0.325,294 −0.231,120 0.897,106

PCA 4 0.002757 −0.593,185 0.805,030 −0.007110

(B) Propylitic alteration

Eigenvector Band 7 Band 8 Band 9 -

PCA 1 −0.619,550 −0.555,025 −0.555,073 -

PCA 2 −0.697,775 0.065519 0.713,314 -

PCA 3 0.359,539 −0.829,250 0.427,874 -
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fraction of the endmember, which ranges from 0 to 1, and
represents the proportion of the endmember within a pixel
ranging from 0% to 100%. The horizontal coordinate represents
its unfeasibility, which should be as low as possible. All pixels
with a high MF score value and low infeasibility are circled and
areas of interest are generated as the mapping result of this
mineral. An MF of the circled area of interest above 0.6 means
that each pixel will have more than 60% of this mineral. The
results of alteration extraction based on MTMF could more
accurately reflect the abnormal data for iron oxide in this
region. Figure 6 shows the final results of the alteration
mapping from ASTER data.

4.3 Results of the extraction of alteration
mineral information from ZY1-02D data

Owing to the low spatial resolution of ZY1-02D remote
sensing images, the images generally contain many mixed
pixels. The spectral curve of pure pixels is more accurate
than the matching standard of the corresponding mineral.
Therefore, the first step of the alteration information
extraction from the hyperspectral image is the endmember
extraction. The minimum noise fraction (MNF) rotation was
performed on the pre-processed hyperspectral images.
Hyperspectral data have many dimensions and require a

huge amount of computation. The MNF rotation tool is used
to determine the intrinsic dimensions of image data (i.e., the
number of bands), separate the noise in the data, and reduce the
computational requirements in subsequent processing (Lorenz
et al., 2021). Next, the endmember is extracted based on the
pure pixel index (PPI), which is calculated from the results of
the MNF transformation. Subsequently, the threshold range is
selected to obtain the region of interest from the PPI image. The
pixels contained in the region of interest are relatively pure.
Finally, the spectral curve of the extracted pure pixel is
compared with the standard spectral curve of minerals in the
USGS spectrum library, and the mineral type represented by the
extracted endmember is finally determined. Two kinds of
alteration minerals, white mica and carbonatite, were
extracted from the study area. White mica is an umbrella
term that usually refers to muscovite, paragonite, illite, illite-
montmorillonite, or any coexisting occurrence of these
minerals (Dalm et al., 2017). These different white mica
species can be distinguished from each other using SWIR in
2.0–2.5 μm, although this is difficult. They all have diagnostic
absorption characteristics at approximately 2.2 μm.
Furthermore, carbonatite contains calcite and dolomite,
which have diagnostic absorption characteristics at
approximately 2.35 μm. Figure 7 shows the comparison
between the extracted endmember spectra and the standard
mineral spectra in the USGS Library.

FIGURE 6
Results of the extraction of alteration information from ASTER data.
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After extracting the endmember spectra, the next step was
alteration mapping. The MTMF method was also used for
alteration mapping, although it differed from the previous
ASTER mapping. For higher-resolution hyperspectral images,
the spectral features can reflect a particular mineral or class of
minerals specifically. Therefore, only the MF score band to be
considered can be mapped accurately when using MTMF.
Meanwhile, the abundance was classified into five levels of
0.1–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0 using the
characteristics of MTMF based on sub-pixel abundance
mapping. The fine classification mapping results of
alteration based on hyperspectral data are shown in
Figures 8, 9.

5 Discussion

5.1 Analysis of the results of multi-source
remote sensing data

In this study, the iron oxide and hydroxyl anomalies in the southern
section of the Yulong copper belt were extracted using the traditional
PCA method with Landsat-8 multispectral data. They were primarily
found in the northeastern, eastern, and center western parts of the study
area.Many iron oxide anomalies appeared as small clusters of spots, and
the primary strong anomalies and secondary weak anomalies were in
concentric rings. The hydroxyl anomalies were smaller in area than the
iron oxide anomalies and mostly appeared in conjunction with the iron
oxide anomalies, or both overlapped in output.

The ASTER data used in this study were missing for the northern
part of the study area. The Al hydroxyl group and the propylitic
alteration anomaly were both extracted using the traditional PCA
method, while the iron oxide anomaly was extracted using the
MTMF method. The selection of areas with a high MF score and
low infeasibility values successfully avoided the excessive pseudo-
anomalies that would be extracted by PCA. Most of the extracted

anomalies appeared as small clusters, with the three anomalies
appearing more frequently together in the northeastern part of the
study area. ASTER data use more bands than Landsat-8, and the SWIR
band can reflect the diagnostic absorption characteristics of many
common alteration minerals; therefore, it can better distinguish the
Al hydroxyl group and further classify the hydroxyl alteration. In
addition, owing to the diagnostic absorption characteristics of Mg
hydroxyl and carbonate minerals at band 8 of ASTER, it is possible
to extract the propylitic alteration that cannot be identified by Landsat-8.

In this study, a total of two pure endmembers were extracted using
ZY1-02D hyperspectral data, which were white mica and carbonate
alteration minerals. Jain and Sharma (2019) previously verified that the
mapping accuracy of the MTMF algorithm was higher than that of the
spectral angle mapping (SAM) algorithm. Therefore, the traditional
SAMmethodwas not used in this study; rather, theMTMFmethodwas
instead adopted to map altered minerals. MTMF is also a mapping
method that is based on a subpixel scale. In this study, the abundance of
sub-pixel white mica and carbonatite alterations was categorized into
five classes. The classification results were then verified at the pixel scale
using the ENVI5.3 Z-profile function. A higher classification
represented a higher abundance of alteration mineral sub-pixels
contained in one of its pixels. A higher abundance was expressed as
a deeper depth of characteristic absorption in the spectral curve of the
overall blend of that pixel. Figures 8, 9 show a good correspondence
between the different classifications and the corresponding spectral
curves. Additionally, the MTMFmethod can allow the fine mapping of
alteration minerals based on the abundance of sub-pixel wells. The
results showed that the white mica alteration was mainly distributed in
the northern and center-western parts of the study area, while
carbonatite was more frequently distributed in the northeastern and
eastern parts, with a low output in the middle western part.
Hyperspectral data have more bands and a higher spectral
resolution to finely delineate the absorption characteristics of each
mineral class. Al hydroxyl alterations can be further identified as white
mica minerals through hyperspectral analysis. For Mg hydroxyl and
carbonate alterations that ASTER cannot accurately distinguish,

FIGURE 7
Endmember spectra. (A) Spectra of white mica endmember and correspondingminerals in the USGS Library. (B) Spectra of carbonatite endmember
and corresponding minerals in the USGS Library.
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hyperspectral identification can instead be used to accurately identify
carbonate minerals in the area.

Owing to the different types of remote sensing satellite sensors, the
data obtained from various types of images within the same study area
will differ. In addition, the results of alteration information obtained
through different extraction methods will also differ. Therefore, the study

of single images or single extraction methods in the same region is often
inadequate (Du et al., 2022). Hyperspectral data provide greater
advantages for the fine identification of alteration minerals, and the
superiority of theMTMFmethodwas verified in this study. Furthermore,
multispectral and hyperspectral data were combined with the traditional
PCA method and the advanced MTMF method to extract alteration

FIGURE 8
(A) Results of mapping of white mica alteration. (B) Partially enlarged details. (C) Typical spectral curves corresponding to different classes.

FIGURE 9
(A) Results of carbonatite alteration mapping. (B) Partially enlarged details. (C) Typical spectral curves corresponding to different classes.
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information of the study area to obtain more accurate results. In general,
the anomalies extracted by the three data sources were primarily
distributed throughout the northeastern, eastern, and middle western
parts of the study area. The same types of alteration anomalies extracted
from different data corresponded well with the spatial locations
(Figure 10).

5.2 Prospect analysis and field verification

The Yulong copper belt is one of the most important metallogenic
belts in the Sanjiang area. Porphyry Cu (Mo) and Au (Ag) deposits are
common in this area. Porphyry deposits represent the world’s largest
repositories of copper and molybdenum and are alsomajor sources of
gold and silver. Typically, a central domain of potassic alteration
develops in and around the mineralizing stock. This domain is
generally the host to high-grade mineralization and is the principal
target in porphyry exploration (Cooke et al., 2020). This may be
overprinted by sericitic alteration, which tends to bemore abundant in
porphyry Cu–Mo deposits, whereas chlorite–sericite alterations
develop preferentially in porphyry Cu–Au deposits (Sillitoe, 2010).
Porphyritic hydrothermal systems may form large lithocaps, which
generally have argillic alterations dominated by kaolinite, illite, and
montmorillonite and advanced argillic alteration dominated by

alunite and dickite (Faesal et al., 2022). In addition, skarn forms in
the contact zone between the porphyry intrusion and the regional
carbonate rocks due to the contact metamorphism of high-
temperature hydrothermal fluids. This may result in the formation
of skarn-type deposits in the periphery of the porphyry system.
Therefore, the carbonate alteration extracted in this study indicated
the possibility of skarn deposits in the porphyry system in the
southern section of the Yulong copper belt. The white mica and
hydroxyl alterations have certain spatial indication significance for the
exploration of porphyry deposits. Iron oxide is closely related tometal
mineralization and is an important sign in the search for sulfide
deposits (Wei et al., 2010). The comprehensive results indicated that
the overlapping alteration areas in the east, north, and southwest of
the study area are optimal prospecting areas.

The field verification showed that the alteration characteristics
in the north, west, and southwest regions of the study area
corresponded with the Secuo, Jicuo, and Mamupu mining areas
in the Yulong copper belt, respectively. The Secuo mining area also
had skarn, which is a porphyry-skarn-type deposit. Furthermore, the
ASD spectrometer was used to measure the samples collected in the
field, and the measured spectrum was compared with the USGS
standard spectrum (Figure 11). The carbonate and white mica
minerals identified by the hyperspectral satellite were verified in
the field. Iron oxides also have obvious absorption characteristics in

FIGURE 10
Results of the extraction of multi-source remote sensing alteration information in the southern section of the Yulong copper belt.
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the near-infrared band. The accuracy of remote sensing extraction of
alteration information was verified through field observations. In
addition, the large amounts of alteration in the western region of the
Secuo mining area and in the eastern part of the study area could be
the subjects of further studies.

5.3 Limitations and prospects

Based on multi-source remote sensing data, this study carried out
alteration mapping of the southern section of the Yulong metallogenic
belt. These research results have significance as a reference for the
selection of remote sensing data sources and image processing methods

in other regions. However, the data used in this study were space remote
sensing data, which are characterized by low resolution and are easily
affected by the atmosphere. For example, the spatial resolution of
Landsat-8 and ZY1-02D is only 30 m. This is unfavorable for the
fine mapping of alteration minerals. Owing to the limitation of remote
sensing data sources, this study could only map the southern section of
the Yulong mineralized belt on a large regional scale. In the future, high
spatial resolution and high spectral resolution airborne remote sensing
can be further used for the fine mapping of key areas of potential
mineralization, which may lead to more meaningful discoveries. In
addition, the field validation performed only field spectra
measurements and related petrographic analyses. XRD experiments
that can accurately analyze themineral composition are yet to be tested.

FIGURE 11
Field-measured spectrum and field verification photos. (A) Comparison of the spectra of muscovite and carbonate minerals measured in the field
with USGS standard spectra. (B) Comparison between the field-measured iron oxide mixture spectrum and USGS standard spectra. (C) Iron oxide
anomaly in the Secuo mining area. (D) Skarn in the Secuo mining area. (E) Au orebody in southern Jicuo. (F) Galena vein in southern Jicuo.
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6 Conclusion

1. As an important part of the Yulong copper belt, the southern section of
the Yulong copper belt is a prospective area with good mineralization
potential; however, its current exploration is low. In addition, selecting
appropriate remote sensing data and the bestmappingmethod are also
challenges. Therefore, it is important to use multi-source remote
sensing data to analyze the mineralization-favorable areas in the
southern section of the Yulong copper belt and compare the
advantages and disadvantages of different data and methods.

2. The results of this study confirmed that hyperspectral remote sensing
more accurately identified mineral species compared to multispectral
remote sensing by comparing the extraction methods and extraction
results of different data sources. Compared with the traditional
methods, the MTMF method showed greater superiority in
alteration mapping. Meanwhile, the extraction results of the multi-
source remote sensing data were superimposed to analyze the mineral
search potential of the southern section of the Yulong copper belt. The
field validation results also proved the accuracy of the extraction results
of alteration information based on multi-source remote sensing data.

3. Owing to the limitation of the resolution of remote sensing data
sources, only the preliminary alteration zoning mapping can be
carried out in a large area. In the future, it is necessary and more
meaningful to use remote sensing data with higher spatial and
spectral resolution to carry out detailed mineral subclass
identification and mapping research.
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