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Landslide detection is crucial for disaster management and prevention. With the
advent of multi-channel optical remote sensing technology, detecting landslides
have become more accessible and more accurate. Although the use of the
convolutional neural network (CNN) has significantly increased the accuracy
of landslide detection on multi-channel optical remote sensing images, most
previousmethods using CNN lack the ability to obtain global context information
due to the structural limitations of the convolution operation. Motivated by the
powerful global modeling capability of the Swin transformer, we propose a new
Conv-Trans Dual Network (CTDNet) based on Swin-Unet. First, we propose a
dual-stream module (CTDBlock) that combines the advantages of ConvNeXt
and Swin transformer, which can establish pixel-level connections and global
dependencies from the CNN hierarchy to enhance the ability of the model to
extract spatial information. Second, we apply an additional gating module (AGM)
to effectively fuse the low-level information extracted by the shallow network
and the high-level information extracted by the deep network and minimize
the loss of detailed information when propagating. In addition, We conducted
extensive subjective and objective comparison and ablation experiments on the
Landslide4Sense dataset. Experimental results demonstrate that our proposed
CTDNet outperforms other models currently applied in our experiments.

KEYWORDS

landslide detection, swin transformer, convolutional neural network (CNN), remote
sensing (RS), landslide

1 Introduction

As environmental problems become increasingly severe, the frequency of various natural
disasters is increasing. As one of the natural disasters, landslides have a substantial negative
impact on people’s lives and economic development. So, researchers have spent enormous
energy studying the process of landslides, including type, location, stability, and triggering
factors Zhao and Lu (2018). Landslides are caused by the specific composition of slope
movement and have great destructive power, which usually occurs due to the movement
of gradual occurrence of rocks, sediments, and soils under the action of gravity Zhang et al.
(2021). In the past, landslides were usually discovered by manual exploration. Now, with
the emergence of geospatial technologies, such as aerial photogrammetry, satellite remote
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sensing images, etc., the methods of finding landslide areas
have gradually diversified Mohan et al. (2021). However, with the
advancement of technology, there are also many challenges. For
example, people with a strong geographical knowledge background
need to spend a lot of time and energy to find the landslide area in
remote sensing images, which usually has low-efficiency Chae et al.
(2017). However, the rapid development of Machine Learning (ML)
has created a good condition for efficient landslide detection.

ML is widely used in landslide identification, such as Support
Vector Machine (SVM) CHEN and ZHOU (2020); Aslam et al.
(2022); Tien Bui et al. (2018), Random Forest (RF) Tehrani et al.
(2021); Liu Y. et al. (2021); Yu et al. (2018) and k-Nearest Neighbor
(KNN) Mezaal et al. (2018); Ramos-Bernal et al. (2021). Huang
et al. CHEN and ZHOU (2020) proposed a remote sensing image
landslide detection method based on color feature model and SVM
to solve the problem that the target color characterization model
is not accurate and poor recognition rate of landslide surface
in remote sensing image. Aslam et al. Aslam et al. (2022) used
Logistic Regression (LGR), Linear Regression (LR), and Support
Vector Machine (SVM) to produce Landslide Susceptibility Maps
(LSMs) with weighted overlay techniques using different weights
of landslide-related factors and SVM get the highest accuracy.
Since AIRSAR data and GIS-based susceptibility mapping are
rarely used in landslide detection in tropical environments, Bui
et al. Tien Bui et al. (2018) used Support Vector Machine (SVM)
and Index of Entropy (IOE) methods for landslide susceptibility
assessment in the Cameron Highlands area, Malaysia. Aiming at
the problem that many landslide detection works are limited by
geographical scope, Tehrani et al. Tehrani et al. (2021) proposed
a method based on Random Forest (RF), which achieved good
results on Sentinel-2 multi-spectral satellite imagery and ALOS
Digital Elevation Model. Liu et al. Liu Y. et al. (2021) used the
Geo-detector-RF-integrated model Luo and Liu (2018) to obtain
the highest accuracy on thirteen feature datasets, which implied
that optimized conditioning factors can effectively improve the
prediction accuracy of landslide susceptibility mapping. Yu et al.
Yu et al. (2018) calculated six indexes and texture information as
features, including water, snow, and vegetation enhancements, and
proposed a pixel-level landslide detection model based on change
detection using the random forest method in Nepal. Although
traditional machine learning methods have made breakthroughs to
a certain extent in many fields, there are still many limitations in the
field of landslide identification.

The development of Deep Learning (DL) has also greatly
promoted the accuracy of landslide detection Yao et al. (2021);
Ghorbanzadeh et al. (2019); Nava et al. (2021). DL methods applied
to landslides are mainly based on Convolutional Neural Networks
(CNN) and Transformer. Comparedwith the traditional DLmethod
of landslide detection, although CNN has been around for a
long time, it did not become mainstream until the advent of
AlexNet [30]. Then a large number of CNN variants appear, e.g.,
VGG Simonyan and Zisserman (2014), ResNet He et al. (2016),
GoogleNet Szegedy et al. (2015) and Efficient-Net Tan and Le
(2019). CNN has proved that it has excellent feature extraction
capabilities and can effectively reduce time consumption. Ullo
et al. Ullo et al. (2021) used Mask R-CNN He et al. (2017) for
landslide detection, which is a pixel-level segmentation method
based on Faster CNN Ren et al. (2015). In their paper, the highest

landslide detection accuracy can be obtained by adopting ResNet-
50 and ResNet-101 as backbone models. Ji et al. Ji et al. (2020)
proposed an attention mechanism for boosting the CNN to extract
more distinctive feature representations of landslides from back-
grounds and got the best landslide detection F1-Score of 0.9662
in a landslide dataset which is located in Bijie city, China. Nava
et al. Nava et al. (2022) is one of the first attempts in which the
combination of SAR data and DL algorithms are employed for
landslide mapping purposes, using Attention U-Net to SAR data
and obtaining competitive results in the experiment. Since the
influence of network architecture design and data fusion is still
not fully explored in landslide detection, Sameen et al. Sameen and
Pradhan (2019) compared a one-layer CNN with two of its deeper
counterparts and residual networks with two fusion strategies (layer
stacking and feature-level fusion) to detect landslides in Cameron
Highlands, Malaysia. Finally, their results show that when using
feature-level fusion, the experimental effect could be enhanced with
the same network designs.

Besides, Transformer-based DL methods also provide a feasible
method for landslide detection. Transformer Vaswani et al. (2017) is
an encoder-decoder structure based on a multi-head self-attention
mechanism, which solves the problem of parallel computing in
natural language and, to some extent, alleviates the long-distance
dependence of structures such as LSTM Graves and Graves (2012).
Due to the Transformer’s ability to make full use of global
information, some researchers try to apply the Transformer to the
field of computer vision.ViTDosovitskiy et al. (2020) is the first pure
transformer-based image classification architecture and achieves
comparable performance to state-of-the-art CNN architectures by
directly applying sequences of image patches to classification.
After that, a large number of models based on Transformer
for the computer vision field appeared. There are models for
classification, such as MAE He et al. (2022), MViT Fan et al. (2021),
for detection, such as DETR Carion et al. (2020), DINO Caron et al.
(2021), for segmentation, such as Seg-Former Xie et al. (2021),
SETR Zheng et al. (2021). Tang et al. Tang et al. (2022) used the
Transformer-based model to compare with the CNN-based model
on the landslide dataset, and their findings that the Transformer-
based model had better detection performance. There is still little
research on landslide detection based on Transformer models, so it
is also a challenging direction to introduce Transformer models into
landslide detection.

In this article, we explore the application potential of Swin-
Unet Cao et al. (2023) for semantic segmentation in the field of
landslide and introduce three improvements that enable the network
to achieve better performance on publicly available landslide
image datasets. Interestingly, few studies have applied Transformer-
based models to landslide detection. Although Swin-Unet achieves
outstanding results on Medical Image Segmentation, we find that
it does not achieve satisfactory results on the landslide dataset.
We believe that the reasons are as follows. First, we found that
Transformer-basedmodels such as Swin-Unet usually downsamples
by 4x in the first stage, resulting in a large loss of image
structure information, which makes detailed information cannot be
recovered effectively in the subsequent upsampling process. Second,
Transformer-based models usually have better global information
but may be worse than convolution-based networks in terms of
detailed texture information. Finally, we believe that it is too simple
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for Swin-Unet to use skip links to directly concatenate feature maps,
so shallow texture information and deep semantic information
cannot be effectively fused, resulting in poor detection results.

To solve the above problem,we improved Swin-Unet and applied
it to Landslide4Sense Ghorbanzadeh et al. (2022), which is a public
dataset for landslide detection from remote sensing. Swin-Unet
is a model based on Swin Transformer Liu Z. et al. (2021), which
uses the shifted window and hierarchy, indicating that it enables
the attention mechanism to do hierarchical feature extraction like
CNN. Due to the good performance of the Swin Transformer
on various computer vision tasks, Liu et al. Liu et al. (2022)
achieved comparable accuracy with the Swin Trans-former using a
pure convolution-based structure ConvNeXt on the ImageNet-1K
dataset, thus proving that the pure convolution structure competes
favorably with Transformers in terms of accuracy and scalability.
Based on Swin Transformer and ConvNeXt, we propose CTDNet.
In order for the model to have better feature extraction ability,
we try to improve the attention gate [26] into Swin-Unet. Our
main contributions are as follows. 1) We improved Swin-Unet for
landslide detection.2)We proposed a dual block based onConvNeXt
and Swin Transformer (CTDBlock), which can establish pixel-
level connections and establish global dependencies from the CNN
hierarchy to enhance the ability of the model to extract features. 3)
We applied an additional gating module (AGM) to effectively fuse
the low-level information extracted by the shallow network and the
high-level information extracted by the deep network.

The rest of this article is organized as follows. Section 2
introduces the model we use and some related model structures,
and the three improvements we propose will be described in
detail. The datasets used in the paper, the training method, and
the experimental parameters are described in Section 3. Section 4
presents complete ablation studies and results analysis. The final
section presents conclusions.

2 Methods

Wepropose threemain improvements tomake Swin-Unet better
for landslide remote sensing image detection. First, we changed
the downsampling of the Swin-Unet model from 4x to 2x for a
more minor loss of detail information. Second, We combine Swin
Transformer and ConvNeXt to effectively obtain global semantic
context information and spatial context information in remote
sensing landslide images. Third, we improve the attention gate in
Attention-Unet and apply it to Swin-Unet for a better fusion effect.
We will present the ensemble of our CTDNet model in Section 2.1.
Then, the details of our improvements are introduced in Section 2.2,
Section 3, Section 4.

2.1 Model architecture

The architecture of our proposed CTDNet is based on three
main modules: 1) Swin Transformer Block. 2) ConvNeXt-Swin
Transformer Dual Block. 3) Additional Gate Module. As shown in
Figure 1, the image x ∈ ℝH×W×C is first input into CTDNet. Where
H, W, and C represent the height, width, and number of channels in
the image, respectively. The channels of the initial image are 14.

As shown in Figure 1, the model has a total of eight stages,
four down-sampling stages, and four up-sampling stages. There are
four stages in the down-sampling process to get xd,1, xd,1, xd,1, xd,1
feature maps, respectively.Then, xu,0, xu,1, xu,2, xm,3 feature maps are
obtained in four up-sampling stages. Features are extracted by Swin-
Transformer block in the first three stages, and features are extracted
by our proposed CTDBlock in the fourth stage. In the first three
stages, each stage consists of a patch merging and two Swin Trans-
former blocks. Patch merging splits the image into nonoverlapping
patches and stacks them together for linear embedding, and then
these patches are applied to Swin-Transformer block. The final
feature map resolutions are H

2
× W

2
, H
4
× W

4
, H

8
× W

8
, respectively.

Next, we use CTDBlock to extract features in bottleneck, and the
output feature map resolution is H

16
× W

16
. There are four stages

in the upsampling process. The first three stages contain a patch
expanding layer, two consecutive Swin Transformer blocks and an
AGM module, and the last stage only has a patch expanding layer
and a linear project layer. In the first three stages of upsampling,
we aim to better fuse shallow texture features and deep semantic
features. The feature maps of the patch expanding layer and the
corresponding feature maps in the downsampling process are fused
by AGM and then input into two consecutive Transformer blocks.
In the last stage, the feature maps are restored to masks through the
patch expanding layer and the linear project layer. The feature map
resolutions of the four upsampling stages are H

2
× W

2
, H
4
× W

4
, H
8
× W

8
and H

16
× W

16
, respectively.

2.2 Swin transformer block

The main difference between Swin Transformer and the origin
Transformer is that Swin Transformer uses a module based on
shifted window (SW-MSA) instead of the standard multi-head
self-attention module (MSA). As illustrated in Figure 2, the main
innovation of SW-MSA is to rotate the image up and left by
half the window size. For model validity, the Swin Transformer
performs self-attention operations on a local window. The images
are divided into non-overlapping parts. Each individual image patch
is equivalent to a token in the Transformer, and the self-attention
module in the Transformer calculates the correlation of each token
with all other tokens, which enables the model to obtain good
global context information. Suppose the window size is M×M, and
the computational complexity of MSA and W-MSA are shown as
follows, respectively.

ΩMSA = 4hwC2 + 2(hw)2C (1)

ΩW−MSA = 4hwC2 + 2M2hwC (2)

Where C represents the dimension of the feature map, and h and
w denote the height and width of the feature map, respectively.
Since M is a fixed size, the computational complexity of W-SMA
is linearly related to h and w, while the computational complexity
of MSA is quadratic with h and w. As illustrated in Figure 2, the
Swin Transformer uses a SW-MSA module instead of the W-MSA
module in the Transformer, and the feature map crosses through
the traditional Transformer module and the Swin Transformer
module to obtain new feature maps. Since the picture is divided
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FIGURE 1
The overall structure of CTDNet.

FIGURE 2
Two successive swin transformer blocks.

into non-overlapping windows, which leads to the lack of effective
information interaction between different windows, the existence
of SW-MSA is necessary for the network to obtain better features.
The process of calculating the feature map in consecutive Swin
Transformer blocks are computed as follows:

x̂l =W−MSA(LN(xl−1)) + xl−1 (3)

xl =W−MSA(LN(xl−1)) + xl−1 (4)

x̂l+1 = SW−MSA(LN(xl)) + xl (5)

xl+1 =MLP(LN(x̂l+1)) + x̂l+1 (6)

Where x̂l represents the output characteristics of the W-MSA
module for block l, and xl denotes the output characteristics of the
MLP module after block l. x̂l+1 represents the output characteristics
of the SW-MSA module for block l+1, and xl+1 denotes the output
characteristics of the MLP module after block l+1. LN denotes layer
normalization, and W-MSA and SW-MSA denote the multi-head
self-attention using the origin window andmulti-head self-attention
using shifted window.
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FIGURE 3
(A) The structure of ConvNeXt-Swin Transformer Dual Block (CTDBlock). (B) The structure of ConvNeXt Block.

2.3 ConvNeXt-Swin transformer dual Block
(CTDBlock)

In order to extract features using CNN and Transformer
effectively, we propose a ConvNeXt-Swin Transformer Dual Block.
ConvNeXt-Swin Transformer Dual Block is mainly composed of
a parallel connection of ConvNeXt block and Swin Transformer
block. Although Swin Transformer establishes the relationship
between tokens in a small window, it effectively reduces the
number of parameters. However, this method weakens the original
positional relationship and global modeling ability between the
pixels of the image. Besides, remote sensing landslide images usually
have a blurred boundary, which leads to the fact that texture
information is extremely important in landslide identification.
CNN has good spatial information extraction ability. Therefore,
we propose CTDBlock to better combine the global relationship
between patches extracted by Swin Transformer and the spatial
texture information extracted by CNN, which makes the model
more effective in image segmentation tasks. The components of
CTDBlock are shown in Figure 3.

In the bottleneck stage, we first reshape the output feature
Xl−1 ∈ ℝ(h×w)×c of the last stage to Zl−1 ∈ ℝh×w×c. Where, h =H/16,
w =W/16 and c = 8C. Feature maps Xl−1, Zl−1 are fed into Swin
Transformer block and ConvNeXt block, respectively.Therefore, the
process in Swin Transformer block can be represented as follows:

xlki =
hw−1

∑
m=0

fi (x
l−1
km) (7)

where i represents the index of the flattened window in the Swin
Transformer, and k represents the current channel. fi (⋅) represents
the mapping relationship between xl−1km and xlki. Therefore,Therefore,
Xl is obtained after each element on the feature map is calculated by
(Eq. 7).

Then, the process in ConvNeXt block can be represented as
follows:

zlkij =
min(i+p,h−1)

∑
m=max(0,i−p)

min(j+p,w−1)

∑
n=max(0,j−p)

φk (z
l−1
mn) (8)

where i, j, and k represent the indexes of width direction, height
direction, and channel. φk (⋅) represents the mapping relationship
between zl−1mn and zlkij, and p is half of the window size. Furthermore,
Zl is obtained after each element on the feature map is calculated by
(8). Finally, the feature map S can be expressed as follows:

S = ψ(Concat(Zl,Xl)) (9)

where ψ(⋅) means a layer normalization, GELU and a linear
projection layer. Concat (⋅) represents concatenating two tensors
together.

2.4 Additional gate module (AGM)

In the past, most jobs used the jump link to directly combine the
shallow space texture information and deep semantic information
when using the U -shaped network. However, we think that
this combination method has caused many details and structural
information to be lost, especially dense and small-scale targets.
Therefore, we proposed an additional gate module (AGM) to try to
fuse the features effectively, thereby improving the result of landslide
detection.

As shown in Figure 4, we obtain the gate signal by concatenating
shallow texture information and deep semantic information. Then
we apply the gating signal to the deep semantic information to select
spatial regions and apply the selected information to the shallow
texture information to get a better fuse feature map. Let a = xd,4−i,
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FIGURE 4
The structure of AGM.

g = xm,i, AGM is formulated as follows:

xo = Concat(
C

∑
k=1

ak*W
a
k + b1,

C

∑
k=1

gk*W
g
k + b2) (10)

xt = σ(max(xo,0)) (11)

At this point, xt ∈ ℝ
h×w, and then, we expand xt to x̂t ∈ ℝ

h×w×c along
the channel direction.

x f ,i = a⊕ (x̂t ⊙ g) (12)

Where b1, b2 represent bias. xd,i denotes the feature map of the
output of the ith stage of the down-sampling process, xm,i denotes
the feature map of the ith stage of the decoder after patch expanding
operation, xf,i denotes the feature map of the output of AGM and
σ(⋅)means 1× 1 convolution layer with batch normalization.Wa

k and
Wg

k are the weights of the convolution kernel on different feature
maps in channel k, respectively. Here, ⊙ stands for element-level
multiplication and ⊕ represents element-level addition.

3 Dataset and design of experiments

The multi-source landslide benchmark data (Landslide4Sense)
Ghorbanzadeh et al. (2022) was utilized to test the effectiveness of
themodel we used in the experiments. In this section, we first briefly
introduce the dataset used in our experiment and then introduce the
evaluation index and training configuration.

3.1 Dataset

There are 3,799 image patches fusing optical layers from
Sentinel-2 sensors with the digital elevation model and slope layer

derived from ALOS PALSAR in the Landslide4Sense dataset. In
short, 3799 annotated images are provided without any overlap.
Each image is made up of 14 bands and has a resolution of 128×
128 pixels. Bands 1-12 are the multi-spectral data from Sentinel-
2 and bands 13-14 belong to slope and digital elevation model
(DEM) data from ALOS PALSAR. Bands 1-12 are Coastal aerosol,
Blue, Green, Red, Red Edge (short), Red Edge (medium), Red
Edge (long), near-infrared (NIR), Water vapor, short-wave infrared
(short), short-wave infrared (medium) and short-wave infrared
(long), respectively. We used 3040 patches to train all models, while
the remaining 759 images are used for evaluation in the experiments.
Random horizontal and vertical flips and operations are adopted in
the data augment strategy. At the same time, in order to have a better
generalization ability of the model, we also add Gaussian random
noise to the image.

3.2 Evaluation indices

We used the data publisher’s evaluation method, including
Recall, Precision, and F1-Score. To introduce these evaluation
indices, we will first introduce the confusion matrix. As is shown
in Table 1, TP (True Positive) indicates that the sample is predicted
positive and actually true, FP(False Positive) indicates that the
sample is predicted negative and actually true, TN (True Negative)
indicates that the sample is predicted positive and actually false,
FN(False Negative) indicates that the sample is predicted negative
and actually false.

Therefore, precision and recall are calculated as follows:

Precision = TP
TP+ FP

(13)
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TABLE 1 Confusionmatrix.

Predicted positive Predicted negative

Actual Positive TP FN

Actual Negative FP TN

Recall = TP
TP+ FN

(14)

As in (Eq. 15), F1 is the harmonic mean of Precision and Recall:

F1 = 2× Precision×Recall
Precision+Recall

(15)

The definition of IoU is shown in the following formula:

IoU = TP
FN+ FP+TP

(16)

3.3 Visualization method

To further illustrate the model’s ability to capture features
efficiently, we visualized the last convolutional layer of the model
using Gradient-weighted Class Activation Mapping (Grad-CAM)
Selvaraju et al. (2017). The overall structure of Grad-CAM is shown
in the Figure 5. The formula is expressed as follows:

LcGrad−CAM = ReLU(∑k
ackA

k) (17)

ack =
1
Z
∑

i
∑

j

∂yc

∂Ak
ij

(18)

Where A represents the feature map, k is the kth channel in feature
map A. Z represents the product of the width and height of the
feature map, and the class is denoted by c. Ak

ij, y
c represent the

gradient value of backpropagation and the predicted score of class
c, respectively.

3.4 Train configuration

The experimental environment is PyTorch 1.11.0, Python3.9
and CUDA 11.3. Our optimization algorithm is AdamW, and
the weight decay is 0.0005. The number of epochs is 100. The
learning rate is initialized as 0.0001. The loss function is the cross-
entropy loss. A batch size of 32 is used. The models are used for
comparison in our experiment, including DeepLabv3 Chen et al.
(2017), FCN Long et al. (2015), PSPNet Zhao et al. (2017), SegNet
Badrinarayanan et al. (2017), U-Net Ronneberger et al. (2015), U2-
Net Chen et al. (2017), ResU-Net Zhang et al. (2018) and Swin-Unet
Cao et al. (2023). We train all models on 3 T P100 GPUs with 16 GB
memory. To sum up, the training and test process of our model is
represented in Algorithm 1.

4 Results and discussion

We conduct experiments on Landslide4Sense. In the following,
we ablate our important improvements based on Swin-Unet. Then,
we compare the improved Swin-Unet with other CNN-based and
Transformer-based state-of-the-art segmentation models on the
Landslide4Sense dataset.

FIGURE 5
The structure of Grad-CAM.

Input: (1)Training images and corresponding

labels 2) Test images

Output: Predict masks for test images

1. Initialize model weights

2. Data augmentation on training data

3. #Training process

4. For epoch in range (100):

5. Select a batch of data

6. The data passes through the model’s encoder

and decoder to get the output

7. Calculate cross-entropy loss with output and

corresponding label

8. Loss backpropagation

9. Update model parameters

10. #Test process

11. There is no back-propagation process and

parameter update process in the testing

process, and the others are the same as the

training process.

Algorithm 1. CTDNet.

4.1 Ablation studies

We pool a variety of ideas from past work with our novel
method to improve Swin-Unet’s performance. A summary of the
ablation experiments can be found in Table 2. We chose the
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TABLE 2 Ablation results with different alterations.

Method Patch size=4× 4 Patch size=2× 2 STCBlock AGM F1-socre

Swin-Unet √ 72.44

Swin-Ps √ 73.64

Swin-Db √ √ 74.27

CTDNet √ √ √ 74.71

TABLE 3 Swin-Unet and CTDNet performance.

Method Para(M) Train-t (min) Test (FPS)

Swin-Unet 27.18 174 33.7

CTDNet 50.36 362 29.9

original Swin-Unet as the baseline model and performed ablation
experiments.

4.1.1 Modify patch size
Ablations of the modified patch-size approach on

Landslide4Sense dataset are reported in Table 2. By modifying the
patch-size, we make the downsampling multiple of the first stage
from four times to two times, which effectively obtains the texture
information of the original image without too many additional
parameters. The increase of the F1-Score from 72.44% to 73.64%
also demonstrates the effectiveness of our method in extracting
features.

4.1.2 Introduce STCBlock
Table 2 compares the improvement inmodel performancewhen

using STCBlock. When we used our proposed STCBlock at the
bottleneck, our model performance improved by 0.63% F1-Score.
The experimental results prove the effectiveness of our method
combining Convnext block and Swin block, which gives the model
have stronger ability to extract texture information and semantic
information.

4.1.3 Introduce addition gate module
Finally, we show how our addition gate module improves the

capabilities of the model. When we use AGM, the F1-score of the
model increases by 0.44%. Due to the selection of the solution space
by AGM, the shallow texture information and the deep semantic
information are fully integrated, which further improves themodule
effect.

4.1.4 Model performance comparison
To more comprehensively compare the performance difference

of our CTDNet model with the original Swin-Unet, we compare
their parameter amounts, training time and test FPS under the same
conditions. As shown inTable 3, our CTDNet has more overhead in
model parameters, training time, and inference time, but our model
achieves an improvement of more than 2% with a small increase
in cost. Although our Swin-Unet model has more parameters and
training time than the original Swin-Unet model, the final test
speed is comparable to the original Swin-Unet model. We guess the
main reason is that the ConvNeXt and AGM we added are mainly

convolution operations, which save time compared to Transformer’s
matrix multiplication, so the final Test speed is comparable to the
original Swin-Unet.

4.1.5 Ablation study visualization
To demonstrate the better segmentation performance of our and

inference time, but our model achieves an improvement of more
than 2% with a small increase in cost. Compared to Swin-Unet,
we visualize the experimental results. As shown in Figure 6, when
using the original Swin-Unet, the model does not maintain a high
resolution, resulting in a lot of discrete classification results on the
boundary, which seriously affects the performance of the model. It
is demonstrated that combining the feature maps of CNN and Swin
Transformer is more effective than utilizing feature maps of Swin
Transformer when comparing Swin-Ps and Swin-Db. Comparing
column Swin_Db with column CTDNet, we can find that using
the AGM can get better feature maps for landslides. To better
interpret the models, we use Grad-CAM [28] to visualize their last
convolutional layer. As shown in Figure 7, we compare the regions
of interest of the original Swin-Unet and our CTDNet model in
landslide detection by using Grad-CAM. By simple upsampling, we
keep the size of the feature map consistent with the input image after
Grad-CAM.The first row is generated by Swin-Unet and the second
row is from the visualization results of CTDNet. In the landslide
column, our CTDNet model has a more accurate segmentation of
landslides. Since our method utilizes the feature extraction ability of
CNN, the model has a better ability to extract texture information,
and then it can acquire long-range semantic correlation due to
the use of the self-attention mechanism. Therefore, our model can
better recognize semantic features and get better results. At the
same time, we can see the difference between Swin-Unet and our
model in small object recognition. Our model is usually more
precise in the recognition of boundaries and small objects, which
is due to the better feature extraction and feature fusion used by
our model. Compared to Swin-Unet, CTDNet model has a more
accurate segmentation result for objects with different sizes and
classes.

4.2 Evaluation and comparisons on the
landslide4Sense dataset

In this section, we compare the effect of CTDNet
with other state-of-the-art models (Unet, U2net, ResU_net,
etc.) on the Landslide4Sense Dataset. Furthermore, we
compare the performance of state-of-the-art model in
Ghorbanzadeh et al. (2022) and our CTDNet using the same
dataset as ours. We let these models all use the same
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FIGURE 6
The result figure of ablation studies visualized in different images.

experimental settings and do not use other kinds of fine-tuning
methods.

4.2.1 Comparison of experimental results on the
landslide4Sense dataset

Table 4 shows the results of all the semantic segmentation
models in the comparative experiments. From the table, we can
see that CTDNet has the highest mF1-Score. In the landslide
images, the number of landslides and the background are severely
unbalanced, so we can see that the background usually has a higher
F1-Score. First, we look at the landslide class. ResU-net was used
by Ghorbanzadeh et al. (2022) with the best results obtained on this
dataset. In our experiments, ResU-Net also achieves a competitive
result, only lower than our proposed CTDNet method, which also
demonstrates the effectiveness of ourmethod.OurCTDNet achieves
the highest Recall, F1-Score and mF1-Score. Compared with the
original Swin-Unet, we have made great improvements. Although
the precision of our method is a little lower than the original Swin-
Unet, there is a huge increase in Recall, so the F1-score of the

model finally has an increase of about 2%. Our proposed CTDNet
achieves a good balance between Precision and Recall in landslide
detection.

In summary, CDTNet achieves state-of-the-art segmentation
accuracy on the Landslide4Sense Dataset. We try to analyze the
experimental results. First, we can see that the better-performing
networks (U-Net, U2-Net, ResU-Net, etc.) all have skip connections,
which shows the effectiveness of skip connections in landslide
detection. Then, we compare these models with Swin-Unet, and
we can find that these models maintain a feature map of the
original resolution using a skip connection while Swin-Unet uses
a skip connection to maintain a feature map after downsampling
four times, which leads to the poor performance of Swin-Unet
in landslide detection. Therefore, it is crucial to maintain a high-
resolution feature map for the model to achieve a good performance
in landslide detection from remote sensing imagery. It is no doubt
that Transformer can usually learn better long-term dependencies
Vaswani et al. (2017), and CNN can usually learn better local
features Geirhos et al. (2018). So, our proposed CTDNet model
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FIGURE 7
The Grad-CAM figure of different classes with different landslide
images.

can achieve the best performance by combining the advantages
of Transformer and CNN to extract feature maps with long-term
dependencies and local information.

4.2.2 Comparison of experimental results on the
HR-GLDD dataset

To further verify the effectiveness of our model, we also
conducted experiments on the HR-GLDD dataset Meena et al.
(2022). All our parameter settings are kept consistent with those
on the Landslide4Sense dataset. Table 5 shows the semantic
segmentationmodels’ results in the comparative experiments on the
HR-GLDDdataset. Although both Swin-Unet andU-Net performed
well, our model still achieves the highest mF1-Score of 83.79%,
which fully demonstrates the effectiveness of the architecture
proposed by our model.

4.2.3 Model performance analysis
In order to better show the advantages and disadvantages of the

model, we summarize the model parameters, training time and test
time used in the experiment inTable 6. As shown in the table, ResU-
Net has the smallest number ofmodel parameters, andU-Net has the
least training time and inference time. Our model combines CNN
and Transformer, resulting in a larger number of parameters than
CNN-based models. Transformer-based models have self-attention
modules and MLP modules, so Transformer-based models usually
have larger time and space costs. CNN-based models usually use
a local 3× 3 convolution kernel, while Transformer’s self-attention

TABLE 4 Experimental results of different models on the Landslide4Sense dataset.

Method Class IoU Precision Recall F1-score mF1-score

DeepLabv3 Chen et al. (2017) background 98.64 99.19 99.44 99.32 82.12

landslide 48.06 69.51 60.90 64.92

FCN Long et al. (2015) background 98.60 99.17 99.42 99.29 81.56

landslide 46.86 68.34 59.85 63.82

PSPNet Zhao et al. (2017) background 98.80 99.33 99.46 99.39 84.70

  landslide 53.86 72.32 67.85 70.01

SegNet Badrinarayanan et al. (2017) background 98.65 99.07 99.57 99.32 81.02

landslide 45.67 72.85 55.04 62.71

U-Net Ronneberger et al. (2015) background 98.96 99.37 99.58 99.48 86.55

landslide 58.23 77.80 69.84 73.61

U2-Net Qin et al. (2020) background 98.96 99.40 99.55 99.47 86.59

landslide 58.36 76.68 70.95 73.70

ResU-Net Zhang et al. (2018) background 98.97 99.40 99.56 99.48 86.76

landslide 58.79 77.23 71.11 74.04

Swin-Unet Cao et al. (2023) background 98.91 99.37 99.53 99.45 85.95

landslide 56.79 75.39 69.71 72.44

CTDNet background 98.97 99.45 99.51 99.48 87.10

landslide 59.63 75.85 73.61 74.71

Bold values represent the best results among all models.
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TABLE 5 Experimental results of different models on the HR-GLDD dataset.

Method Class IoU Precision Recall F1-score mF1-score

DeepLabv3 Chen et al. (2017) background 93.50 96.05 97.24 96.64 83.08

landslide 53.28 73.63 65.84 69.51

FCN Long et al. (2015) background 93.07 95.01 97.85 96.41 80.34

landslide 47.35 75.30 56.05 64.26

PSPNet Zhao et al. (2017) background 93.48 95.97 97.30 96.63 82.90

landslide 52.86 73.83 65.05 69.16

SegNet Badrinarayanan et al. (2017) background 92.54 94.28 98.04 96.12 77.85

  landslide 42.42 74.84 49.47 59.57

U-Net Ronneberger et al. (2015) background 93.99 95.83 98.00 96.90 83.65

landslide 54.31 78.86 63.56 70.39

U2-Net Qin et al. (2020) background 93.97 95.88 97.92 96.89 83.58

landslide 54.17 78.14 63.84 70.27

ResU-Net Zhang et al. (2018) background 93.88 95.93 97.77 96.84 83.54

landslide 54.13 77.11 64.49 70.24

Swin-Unet Cao et al. (2023) background 93.74 96.26 97.28 96.77 83.73

landslide 54.66 74.26 67.44 70.68

CTDNet background 93.65 96.39 97.05 96.72 83.79

landslide 54.85 73.05 68.77 70.85

Bold values represent the best results among all models.

TABLE 6 Performance of different models.

Method Para(M) Train-t (min) Test (FPS)

DeepLabv3 Chen et al. (2017) 39.67 291 34.14

FCN Long et al. (2015) 32.98 217 34.44

PSPNet Zhao et al. (2017) 65.61 1177 19.00

SegNet Badrinarayanan et al. (2017) 53.55 621 27.97

U-Net Ronneberger et al. (2015) 32.98 126 45.70

U2-Net Qin et al. (2020) 44.03 301 23.40

ResU-Net Zhang et al. (2018) 13.06 325 39.72

CTDNet 50.36 362 29.90

Bold values represent the best results among all models.

mechanism is global, which is why the Transformer needs more
parameters. Convolution has good translation invariance and scale
invariance, but it is not so good at learning the relationship between
large objects. So we think it has the potential to combine CNN
and Transformer for landslide detection, and the final experimental
results also confirm our idea.

4.2.4 Visualization results
The comparative visualization results of CTDNet model and

other model are displayed in Figure 8. The first two rows in
the first column of Figure 8 are the original remote sensing

image, and the right and bottom is the visualization result of
each model on the Landslide4Sense Dataset. Although most of
the models can correctly identify the landslide location, and the
prediction results can match the landslide label, the recognition
results in some boundaries and small landslide areas are still not
effective. From the experimental results, we can find that the
model based on the use of skip connections usually has a better
landslide detection effect, and has a clearer outline in the division
of the boundary, too. We further found that DeeplabV3, FCN
and PSPNet models did not maintain a high-resolution feature
map, resulting in the final landslide identification effect on the
boundary being usually poor. Unet, U2Net and ResU-Net maintain
a high-resolution feature map because of skip connections so that
these models usually have a better recognition result in boundary
regions. Our CTDNet combines the Transformer’s better ability to
extract contextual information while maintaining a high-resolution
feature map and skip connections, which improves the model’s
ability to detect small objects. Finally, the experimental visualization
results prove the effectiveness of our method, which still has
good recognition ability in the complex and variational landslide
environment. Our improved Swin-Unet achieves state-of-the-art
results on the Landslide4Sense Dataset, and the landslide category
F1-Score is 74.71%,which is 2%higher than the original Swin-Unet’s
72.44%.

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2023.1182145
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2023.1182145

FIGURE 8
Visualization of experimental results for different models.

5 Conclusion

In this article, we propose a model of fusing ConvNeXt and
Swin Transformer, CTDNet.We changed the patch size of themodel
to maintain a high resolution feature map which is better for the
model to recognize small landslides and boundaries. We propose
the ConvNeXt-Swin Transformer Dual Block, which combines
the different advantages of Swin-Transformer and ConvNeXt to
extract features so that the global semantic information extracted
by Swin Transformer and the spatial texture information extracted
by ConvNeXt can be fused to obtain stronger feature information.
Besides, we also propose an additional gating module, which fully
integrates the features of the skip connections and the features of
the model upsampling process. Through the above improvements,
the ability of the model to obtain rich semantic and spatial
texture features is further enhanced. CTDNet achieves state-of-
the-art performance compared to other advanced models on the
Landslide4Sense Dataset. The combination of Transformer and
CNN still has excellent potential to be applied in the field of
computer vision, and we will continue to learn how to better apply
Transformer and CNN to landslide detection in the future.
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