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Gully erosion has been identified in recent decades as a global threat to people and
property. This problem also affects the socioeconomic stability of societies and
therefore limits their sustainable development, as it impacts a nonrenewable
resource on a human scale, namely, soil. The focus of this study is to evaluate the
prediction performance of four machine learning (ML) models: Logistic Regression
(LR), classification and regression tree (CART), Linear Discriminate Analysis (LDA), and
the k-NearestNeighbors (kNN),which are novel approaches in gully erosionmodeling
research, particularly in semi-arid regionswith amountainous character. 204 samples
of erosion areas and 204 samples of non-erosion areas were collected through field
surveys and high-resolution satellite images, and 17 significant factors were
considered. The dataset cells of samples (70% for training and 30% for testing)
were randomly prepared to assess the robustness of the different models. The
functional relevance between soil erosion and effective factors was computed
using the ML models. The ML models were evaluated using different metrics,
including accuracy, the kappa coefficient. kNN is the ideal model for this study.
The value of the AUC from ROC considering the testing datasets of KNN is 0.93; the
remaining models are associated to ideal AUC and are similar to kNN in terms of
values. The AUC values from ROC of GLM, LDA, and CART for testing datasets are
0.90, 0.91, and 0.84, respectively. The value of accuracy considering the validation
datasets of LDA, CART, KNN, and GLM are 0.85, 0.82, 0.89, 0.84 respectively. The
values of Kappa of LDA, CART, and GLM for testing datasets are 0.70, 0.65, and 0.68,
respectively. MLmodels, in particular KNN, GLM, and LDA, have achieved outstanding
results in terms of creating soil erosion susceptibilitymaps. Themaps createdwith the
most reliable models could be a useful tool for sustainable management, watershed
conservation and prevention of soil and water losses.
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1 Introduction

Soil represents among the most important natural resources that
need to be carefully preserved to ensure the sustainability of
ecosystems and human civilization (Daba, 2003; Saha et al.,
2020b; Pal et al., 2022) Un-fortunately, one of the important
issues in current societies over the last 10 years has been natural
resource degradation particularly Water and soil (Magliulo, 2012).
Gully erosion is the most common form of water-induced soil
erosion, among the greatest widespread processes on the Earth’s
surface (Daba, 2003). The effects of gully erosion significantly
contribute to the onset of soil degradation issues, reduce
agricultural production capacity and cause pollution from soil
loss (Wade and Heady, 1978). This has significant implications
because the soil is a non-renewable natural resource over the human
timescale, and it is estimated that approximately six million fertile
hectares of agricultural land worldwide are continuing to lose
production capacity due to land deterioration induced by soil
erosion (Lal et al., 1989; Daba, 2003).

Morocco is one of the nations in the Mediterranean most prone
to climate change impacts and land degradation. In some parts of
Morocco, 70% of the land is reportedly utilized. Collaboratively by
local populations and communities, as well as land disputes over
access to plants and water, are common contributing systems
significantly to continuing degradation and frequent land use
(Jazouli et al., 2019; Lamane et al., 2022). In addition, the extent
and severity of this phenomenon are rising because of the climate
changes that this country and the Mediterranean region, in general,
are experiencing, coupled with the human pressures exerted on this
resource (e.g., drought, deforestation, intensive agriculture, and
overgrazing). Due to these factors, it has become crucial to
monitor and assess water erosion, particularly in regions where
the quantitative estimation of losses remains laborious and
expensive due to the terrain’s vastness and roughness. However,
despite the fact that soil degradation mechanisms are dynamic, it is
challenging to comprehend their ongoing expansion (Fitzjohn et al.,
2002; Daba, 2003; Magliulo, 2012; Pourghasemi et al., 2017).

A gully’s susceptibility for erosion (GES) assessment is the initial
step in identifying the hazard and risk for carrying out soil
sustainability initiatives (Rahmati et al., 2017; Saha et al., 2020b).
The relation be-tween geo-environmental gully conditioning
elements and gully occurrence is used to create a gully erosion
susceptibility map (GESM) (Hosseinalizadeh et al., 2019). In
addition, soil erosion quantification models are useful for
measuring runoff rates and soil loss from agricultural land,
planning land use regulations, and developing indicators of
relative soil loss. In addition to guiding government policy and
strategy on soil and water conservation (Smith, 1999; Lamane et al.,
2022). To determine the susceptibility of gully erosion, several
models have been utilized (GES), such as the European Soil
Erosion Model (EUROSEM) (Morgan et al., 1998), the Universal
Soil Loss Equation (USLE) (Daba, 2003; Phama et al., 2018), the
Potential Erosion Process (PEP), the Modified Southwest
Interagency Committee Model (MPSIAC), and the Water
Erosion Project (WEEP) (Althuwaynee et al., 2013). Furthermore,
the use of remote sensing data, GIS, and statistical models to predict
gully susceptibility has increased greatly over the last decades
(Rahman et al., 2018; Nhu et al., 2020a). Among these

techniques are the Analytical Hierarchy Processes (AHP) (Roy
and Saha, 2018), Weights-of-Evidence (WoE) (Ding et al., 2017;
Gayen and Saha, 2017; Rahmati et al., 2017), Logistic Regression
(LR) (Conoscenti et al., 2014; Saha et al., 2020b), Frequency Ratio
(FR) (Conoscenti et al., 2014; Gayen et al., 2020; Rahmati et al.,
2016b), Information Value (IV) (Khouz et al., 2022), bi-variate
statistical models (Conforti et al., 2011; Rahmati et al., 2016a),
and Maximum Entropy (ME) (Pourghasemi et al., 2017).
Moreover, Deep Learning (DL) and Machine Learning (ML)
techniques have been demonstrated to be useful tool for
evaluating and mapping gully erosion (Ali et al., 2015;
Pourghasemi et al., 2017; Gayen and Saha, 2017; Saha et al.,
2020b). These algorithms are a special case of the artificial
intelligence discipline based on the idea that systems can learn
from inventory and model input data without operator interaction
(Anaya-Romero et al., 2005; Ali et al., 2015; Rahmati et al., 2017;
Saha et al., 2020b; Chowdhuri et al., 2021). Nowadays, the huge
application of ML and DL is becoming increasingly popular,
particularly in the mapping and monitoring natural hazards
because they produce high-accuracy results in data processing,
classification, and prediction (Saha et al., 2020b). The utilization
of these techniques enables the creation of predictive maps for soil
erosion by analyzing the spatial distribution of existing gully erosion
forms alongside various conditioning factors such as geological and
environmental factors. The selection of an appropriate spatial
resolution of DEM data is a vital step in creating effective
conditioning factor maps, as highlighted by Chowdhuri et al. (2021).

Recent years have seen a significant increase in the use of ML
algorithms for the spatial prediction of a variety of natural hazards,
including flooding, landslides (Moradi et al., 2019), wildfires
(Watson et al., 2019), etc. GES mapping has been done by
several studies throughout the world utilizing ML and statistical
methods. Frequency ratio (Arabameri et al., 2018b), logistic
regression (Dube et al., 2014; Tien Bui et al., 2019), weight of
evidence (WoE) (Zabihi et al., 2019), index of entropy (IoE) (Roy
et al., 2020), and others are some of the statistical techniques that are
frequently used to predict GES. Various machine learning (ML)
algorithms, such as artificial neural networks (ANN), support vector
machines (SVM) (Dube et al., 2014; Gayen and Saha, 2017; Gayen et
al., 2019; Roy et al., 2022), random forests (RF), multi-layer
perception (MLPC) approaches (Yunkai et al., 2010; Ruidas et al.,
2022a; Ruidas et al., 2022b), classification and regression trees
(CART) (Yunkai et al., 2010), boosted regression tree (BRT)
(Tairi et al., 2021) particle swarm optimization (PSO)
(Pourghasemi et al., 2017), multi-variate adaptive regression
spline (MARS) (Wade and Heady, 1978; Saha et al., 2020a), and
maximum entropy (Pourghasemi et al., 2017) have also been widely
used to predict GES mapping. Due to its reliability and
performances, ensemble models have also been employed
extensively in the thorough examination of GES mapping
(Simonneaux et al., 2015; Avand et al., 2019). The RF model
provided the best prediction performance among the investigated
models, according to the literature. The revised universal soil loss
equation (RUSLE) was used by Tairi et al. (2021) to calculate soil
erosion in the Moroccan watershed of Tifnout Askaoun. These
efforts produced a crucial tool for the long-term land management
of the surrounding area. It is crucial to do soil erosion research in
this setting to add to the body of knowledge and help local
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governments create appropriate strategies for managing soil and
land, watersheds, and infrastructure.

However, there is not much information in the literature about
gully erosion in Morocco (Arabameri et al., 2020b; Arabameri et al.,
2019a). Azedou et al. (2021) projected the spatial distribution of
gully erosion in the Souss-Massa watershed, Morocco, using
frequency ratio (FR), logistic regression (LR), and random
forest (RF).

This study makes a significant contribution by utilizing a range
of machine learning (ML) models, such as LR, CART, LDA, and
kNN, as well as experimenting with high-resolution scale effects of
digital elevation model, to predict the location of soil erosion in the
complex topographical, geological, and anthropogenic
characteristics of the Chichaoua watershed. The application of
these models in predicting soil erosion is not commonly found in
the current literature and their effectiveness has not been sufficiently
tested. In contrast, many previous studies in the field of GES have
employed simple approaches. The unique aspect of this study is the
integration of different ML models, high-resolution datasets, and
extensive field surveys to produce an accurate gully susceptibility
map. The resulting map will provide decision-makers and managers
with a useful and effective tool for implementing sustainable
management practices in soil conservation.

The main objective of this study is to develop and compare 4 ML
algorithms for predicting gully erosion susceptibility in the
Chichaoua region, Morocco. The algorithms that will be utilized
include Linear Discriminate Analysis (LDA), classification and
regression tree (CART), Logistic Regression (LR), and K-Nearest
Neighbors (KNN). In order to achieve this objective, the study will
follow a series of steps. First, the study will define the areas of erosion
and non-erosion through field surveys and high-resolution satellite
images. Second, the study will identify 17 geo-environmental factors
that could potentially contribute to gully development in the study
area. Third, the study will assess the linearity of these factors using
Multi-collinearity analysis within given VIF and TOL limits. Fourth,
the four ML approaches will be applied to create spatial
susceptibility maps, which will be classified into five classes
ranging from very low to very high. Finally, the study will
validate the gully erosion susceptibility maps using kappa index,
Receiver Operating Characteristic ROC, Area Under the Curve
(AUC), and cross-validation methods with the testing dataset.

2 Materials and methods

2.1 Study area

TheChichaoua watershed is situated southwest ofMarrakech city,
between 8°40′0″ and 9°0′0″ and 31°00′00″ and 31°40′00″ north
latitude, and has a 2,600 km2 area, see Figure 1. The watershed is
drained by Oued de Chichaoua. From a climate viewpoint, the
research area is classified as a semi-arid continental zone, with a
yearly average precipitation of approximately 181 mm, a maximum of
395 mm, and aminimum of 110 mm.Geomorphologically, the region
consists of three geomorphological units: the high highlands, the
piedmont, and El Haouz plain, with heights ranging from 218 to
3,387 m. What concerns lithology, the area of study includes a
variety of lithologies, with quaternary recent alluvium dominating

downstream and paleozoic schists (Combro-Ordovicien) dominating
upstream. Due to these characteristics, the Chichaoua watershed can
operate as a pilot unit for erosive process investigation.

In this region, gullies are located essentially in the South-East
and South-West parts of the catchment area and most are active.
The reasons for the study of erosion problems in the Chichaoua
catchment area are multiple and aim to identify the areas that
provide the most sediment to plug the Boualouane dam and prevent
its silting up. Thus, watershed management is based on the logic that
it is not only a question of preserving the water resource for the
population downstream of this dam, but also of fighting against the
degradation of the land upstream. This degradation generally has an
impact on soil fertility, which has repercussions on productivity and
therefore on the living standards of farmers. Management must
therefore take care to combat this soil degradation through various
actions, both mechanical and biological, accompanied by social
actions aimed at improving the standard of living of the
population. These actions are often costly and it is not possible
to generalise them throughout the basin. It is therefore essential to
determine priority intervention areas in order to rationalise actions
and expenditure.

2.2 Methodology

The flowchart contains specifics about this study’s approach
(Figure 2). The following are the primary steps.

(i) Preparation of gully inventory and conditioning factors
datasets.

(ii) Multicollinearity analysis among the gully erosion factors using
the Variance Inflation Factor (VIF) and Tolerance (TOL).

(iii) A frequency ratio (FR) technique determined the geographic
relationship between gully frequency and conditioning factors.

(iv) LDA, CART, GLM, and KNN models were applied for
mapping gully erosion. Then, several statistical parameters
were applied to verify the efficiency of the model’s
application result.

This study employed a GIS environment, statistics tools, and R
packages to apply various ML algorithms and database management.

2.2.1 Gully inventory
The GEM must be created using the gully erosion inventory

(GEI) map. The geographic location of gullies is represented on the
GEI map. The probability of gully erosion in the future can be
anticipated based on the distribution of gullies in the past and
present (Tairi et al., 2021). During a field survey, a map of gully
erosion was created (i.e., GPS points), and high-resolution google
Earth images analysis, wherein 408 gully erosion and no-erosion
sites were observed. The non-erosion points were generated
randomly, as suggested by most researchers in the literature. Two
training and validation datasets were randomly selected from the
gully erosion inventory map. Several of the mapped gully hotspots in
the study area are shown in Figure 3. The 286 point locations (70% of
the total) were used to train the previously mentioned models. The
remaining 122 gully locations (about 30% of the total) were used to
test the models. An equal number of locations were chosen and
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FIGURE 1
Geographical location of the study area at the Moroccan scale (A), the Tensift basin scale (B) and the watershed DEM (C); 406 of soil erosion
observations; 202 of NoErosion and 204 Erosion.

FIGURE 2
A comprehensive illustration chart provides a clear roadmap of research methodology.
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evaluated because the models chosen for this study belong to a
family that predicts whether a phenomenon would occur or not
(122 no gully locations for validation and 286 no gully locations for
calibration data) (Pourghasemi et al., 2017). It should be noted that
the geomorphological features continue to disagree over whether
balanced or unbalanced datasets should be established prior to a
susceptibility study, which results in the creation of a balanced
dataset for the future analyses.

2.2.2 Conditioning factors analysis
Various geo-environmental elements, including climatic,

hydrological, topographic, geological, and environmental, are
crucial criteria for GESM. Seventeen useful factors were chosen

based on a prior literature analysis (Zabihi et al., 2018; Arabameri et
al., 2019a, Arabameri et al., 2019b). The following factors were
noted: elevation, slope, aspect, curvature, convergence, LS factor,
distance to rivers, distance to roads, distance to fault, drainage
density, normalized difference vegetation index (NDVI),
topographic wetness index (TWI), topographic position index
(TPI), topographic rugged-ness index (TRI), rainfall, land use/
land cover (LULC), and lithology. To drive topography-related
attributes we used the USGS Earth Explorer wich has a spatial
resolution of 12.5 m (Table 1). The average annual rainfall of the
study area was calculated from 3 rainfall stations from 1989 to 2020.
Finally lithology was from the geological survey of Marrakech
Tensift watershed Basin Agency. The scale was 1: 50,000.

2.2.2.1 Topographic factors
Hydrological conditions are greatly influenced by topographic

factors (Namous et al., 2021). Eight topographic parameters were
considered in this study: slope length, aspect, curvature,
convergence, topographic wetness index (TWI), and terrain
roughness index (TRI) (LS). These topographical factors are
displayed in (Figure 4).

The elevation is a principal source for extracting topographic
factors. As a result of its impact on climatic and vegetation
variability, it is regarded by many researchers as one of the most
significant reasons for gully erosion vulnerability (Conoscenti et al.,
2013). The surface of runoff infiltration, water flow speed, and soil
particle detachment are all significantly influenced by slope (Lei et al.,
2020). The slope aspect represents the slope’s surface’s direction,
indirectly affecting erosion by changing vegetation cover, the
incidence of sunlight, and wetness. Ten classes were used to
categorize the aspect map. The slope perpendicular to the slope
angle, which determines the curvature, influences the convergence
and divergence of water flow across the surface. The convergence
index (CI) represents the morphology of the terrain and the impacts
that this may have on flows (Arabameri et al., 2019a). The topographic
wetness index (TWI) illustrates how soil moisture, erosion, and wetness
conditions are distributed spatially. TWI is described by Eq. 1:

TWI � ln As/ tan θ( )( ) (1)
Where As represents the cumulative catchment area of a point

and θ is the slope angle (in degrees) at the point.
LS is a parameter used in the USLE and RUSLE to quantify soil

erosion rates (Gayen et al., 2019). Moore and Burch (1986) provided
a formula for calculating the LS factor as follows:

LS � flow accumulation ×
Cell size

22.13
( )0.4

× Slope/0.0896( )^1.3
(2)

TRI, determines the convexity and concavity of a slope. In the
digital elevation model, TRI represents the magnitude of elevation
difference between adjacent cells (DEM). The following equation
was used to determine the TRI: (3) (Moreno-Ibarra et al., 2011):

TRI Cx( ) �
���������������∑

kϵN8
Ck − Cx( )2

√
(3)

Where Cx is the cell under analysis and N8 is the set of 8-
neighbors of the cell.

FIGURE 3
Photos of gully erosion in the Chichaoua watershed. According
to the photos taken in the field, the Chichaoua catchment area shows
two types of erosion. A strong erosion which characterizes the zones
with friable materials stripped of vegetation with a very strong
slope, they are located essentially in the South-East and South-West
parts of the catchment area. Gully erosion is a widespread
phenomenon in this part of the catchment area, the gullies are mainly
located on friable Neogene phosphate marl, clays, and tertiary
deposits. Low erosion in the rest of the study area These are largely
areas of rocky outcrops which are highly resistant to erosion, and
include flat land with a very gentle slope and land protected by a fairly
high degree of vegetation cover. These areas, which are an integral
part of the Hercynian basement, are essentially made up of rocks
formed by schists, graywackes, limestone bars and volcanic matrix of
primary age (Cambro-Ordovician) and detrital rocks of Quaternary
age. Sheet erosion and debris flows are common in this part of the
Chichaoua watershed.
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2.2.2.2 Climatic factors
The climate is a significant factor directly affecting gully erosion.

Soil erosion occurs when rainfall water penetrates into the fractures
in the ground and causes the gully to grow (Azareh et al., 2019; Lei
et al., 2020). In the study area, annual rainfall data were obtained
from four climatic stations (Chichaoua, Imintanout, Sidi
Bouathman, and Iloudjane). The rainfall map shows that the
annual average range is between 352.1 and 167.2 mm/year. The
highest average of precipitation values is located in the Sidi
Bouathman station (Figure 4I).

2.2.2.3 Hydrological factors
The selected hydrological factors are drainage density and

distance to rivers. The drainage density has a major influence on
erosion occurrence; in the region with lower infiltration and greater
runoff, higher drainage densities are associated and vice versa
(Arabameri et al., 2020a). The drainage density maps illustrate
the stream distribution in the research area. (Figure 4J). The
distance from river maps was calculated by the Euclidean
distance method in GIS software in order to determine the
distance of the gully from the drainage system (Figure 4K).

2.2.2.4 Geological factors
The selected geological factors in this study are lithology and

distance to fault. Lithology is another important factor in gulling
(Nhu et al., 2020a). For the current study, nine types of lithology
units were found using 1/500,000 geological map of Morocco. The
distance to fault represents a weak, extremely permeable zone with
lower resistance. Also, faults influence slope stability and promote

soil degradation (Gayen et al., 2019). The distance to faults is shown
in Figure 4M.

2.2.2.5 Environmental factors
Three environmental factors have been prepared: LULC, NDVI,

and distance to roads. The Landsat Operational Land Imager (OLI)
satellite image is obtained from the USGS Earth Explorer website
(accessed on 6 July 2020), with a pixel size of 12.512.5 m. This area’s
LULCmap is created using supervised classification and amaximum
likelihood method in a GIS environment. There were five classes on
the LULCmap; water, sparse vegetation, bare soil, agricultural areas,
and dense vegetation (Figure 4N). Distance to roads can also affect
gully erosion, as they concentrate and intercept runoff water (Frankl
et al., 2012; Nhu et al., 2020b). The distance to roadmaps is shown in
Figure 4O.

Determine the biomass of the vegetation using the NDVI. Eq. 4
was used in conjunction with Landsat 8 OLI/TIRS images in a GIS
context to produce the NDVI map:

NDVI � NIR − Red

NIR + Red
(4)

where the value of the near-infrared band’s spectral reflectance is
indicated by NIR and Red denotes the value of the red spectral
reflectance. NDVI ranges from −0.12 to 0.58 in this study.

2.2.3 Collinearity test
In statistics, multicollinearity analysis was used to identify

information redundancy between the parameter that could affect
the model’s performance and the linearity between the

TABLE 1 The predictive factors used in the modeling of soil erosion pin of the study area.

Type Factor/Attribute Source of data Scale or resolution

CGS DEM Elevation ASF Data Serch Vertex and USGS Earth Explore 12.5m×12.5m

Aspect

Convergence

Curvature

Slope

LS

TPI

TRI

TWI

Distance to river

Drainage density

Distance to faults

Distance to roads

Land use

NDVI

Geological map Lithologie Marrakech Tensift water Basin Agency 1:50,000

Precipitation Average annual rainfall Marrakech Tensift watershed Basin Agency 12.5m×12.5m
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conditioning variables of a certain phenomenon (Namous et al., 2021)
When there is a significant degree of correlation between multiple
variables and the result’s accuracy is reduced, this is known as
multicollinearity. High multicollinearity factors must be eliminated

from the analysis to get better results. Numerous researchers have
used various techniques to detect multicollinearity in ML models
(i.e., in gully erosion susceptibility mapping, landslides, and flood
susceptibility mapping. Etc. Eqs 5 and 6 showed that multicollinearity

FIGURE 4
Gully erosion conditioning factors (A) elevation(m), (B) aspect, (C) convergence, (D) curvature, (E) slope (%), (F) LS(m), (G) TPI, (H) TRI, (I) TWI, (J) distance to
river(m), (K) drainage density, (L) distance to faults (m/year), (M) distance to roads(m), (N) land use, (O) NDVI, (P) rainfall (mm/year) and (Q) lithology.
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for the gully erosion influencing factors was found utilizing the
confusion matrix, VIF, and TOL:

Tolerance � 1 − Rj2 (5)
VIF � 1

Tolerance
[ ] (6)

Were Rj2 is the coefficient of determination.
When VIF≥10 there are linear relationships between

conditioning factors.

2.2.4 Spatial correlation
To provide each class of factor before the modeling phase,

several studies advise adopting the frequency ratio (FR) method
(Namous et al., 2021). The dependent variable gullies and the
independent variables’ conditioning factors were mapped out
spatially using frequency ratio approaches. Each factor is divided
into multiple classes, and the frequency ratio is determined for each
class using the following Eq. 7:

FR � PSi

PDi
�

NDi
NSt( )*100
NAi
NAt( )*100 (7)

where:
PSi denotes the percentage of gully pixels for each class i of

influencing factors, relative to the total number of gully pixels in the
study area; PDi is the percentage of each class i of influencing
factors, relative to the total area;NDi is the number of gully erosion
pixels in a thematic class i; NSt is the number of pixels of all gully;
NAi is the total number of pixels in a thematic class i; NAt is the
total number of all pixels.

The study found that each type of contributing factor and the
areas of gully erosion are related. The FR has been converted into
normalized values (FRN) from 0.01 to 0.99 to give various factors
the same weight and facilitate the final analysis. The FRN values
were then utilized to categorize all conditioning factors for gully
erosion susceptibility mapping. The FRN for each class is
determined using the following Eq. 8:

FRN � FR −min FR( )
max FR( ) −min FR( ) * 0.99 − 0.01( ) + 0.01 (8)

FRN is the normalized FR matrix; FR is the original data matrix.

2.2.5 Modelling of gully erosion susceptibility
2.2.5.1 Linear Discriminate Analysis (LDA)

LDA is a widely used ML technique for high-accuracy task
classification (Wang et al., 2020). This model is reliable, simple to
apply, and highly predictive, and the factor predictors remain stable
when the classes can be clearly distinguished (Youssef and
Pourghasemi, 2021).

LDA identifies the linear combination of many groups of causal
factors, such as K = V + m. (m is constant). The estimated (k) values
with appropriate coefficients can identify a case set the best when
determined by a linear combination (Wang et al., 2020). The
discriminant coefficients are numbers that lengthen the
separation between each cluster’s vector of mean values (Youssef
and Pourghasemi, 2021), to reduce dimensionality in machine-
learning models, this step is necessary for data pre-processing
(Wang et al., 2020).

2.2.5.2 Classification and regression tree (CART)
One of the most used methods for data classification is the

CART method. It does not require a normal variable
distribution and is robust to missing data. This method of
binary recursive partitioning was created by Stone (1974),
Friedman et al. (1975), Breiman (1984) and Elmahdy et al.
(2020). The technique has been successfully applied in
several fields. Regression trees are used to predict the value
of an independent variable when it is continuous, as opposed to
classification trees, which are used to categorize independent
variables (Elmahdy et al., 2020).

The CART is built by repeatedly dividing subgroups of the dataset
by creating two child nodes utilizing all predictor variables. The ultimate
goal is to produce a subset of the dataset that is as similar as possible
concerning the objective variable (Chen et al., 2017).

2.2.5.3 Logistic regression (via generalized linear model
or GLM)

Nelder and Wedderburn initially introduced the GLM, 1972
(Avand et al., 2022). Based on the logistic connection function
(logistic regression) that has been widely used for modeling binary
data sets utilizing a logistic model to determine based on presence/
absence data (Avand et al., 2022).

The best regression model for predicting many events is created
by the GLM, which is built from multiple linear models (Yousefi et
al., 2020). Generally, this technique employs multiple regression to
improve the precision and quality of the results because the
relationship between the dependent and independent variables is
so clearly defined (Yousefi et al., 2020).

2.2.5.4 k-Nearest Neighbors (kNN)
The K-Nearest Neighbor (KNN) classification method is widely

employed in data mining applications (Shahabi et al., 2020). It is a
slow, nonparametric learning approach that is independent of prior
knowledge about the main dataset (Shahabi et al., 2020). In the
classification mode, the algorithm calculates the distance between
the target point and the closest points based on the value provided
for k and the highest number of votes received for these nearby
points compared to all of the points (Avand et al., 2019) according to
an empirical rule of thumb proposed by Dude, K is equal to the
square root of the number of samples; this makes parameter
adjustment challenging for a variety of applications (Shahabi et
al., 2020). The KNN algorithm assumes that pixels next to one
another in the trait space should belong to the same class by going
directly to the decision rule and skipping the density subordinate
(Avand et al., 2019).

2.2.6 Validation of results
An important phase in evaluating the susceptibility of gully erosion

is the validation of gully erosion susceptibility maps. The accuracy
methodology, kappa index, Receiver Operating Characteristic ROC,
AreaUnder the Curve (AUC), and cross-validationmethod are utilized
in the current research to assess the effectiveness of the LDA, CART,
GLM, and KNN ML models with the testing dataset.

2.2.6.1 ROC-AUC
ROC curve is a frequently employed approach for quantitatively

assessing the diagnostic ability of a test (Gayen and Pourghasemi,
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2019). This technique has been widely used to assess how accurate
various natural hazard susceptibility maps are (Arabameri et al.,
2020a). An X-axis for sensitivity based on false positive rates and a
Y-axis for 1-specificity based on true positive rates are both present on
the two-dimensional ROC curve (Arabameri et al., 2020a). Using the
following equations:

Sensitivity � TP

TP + FN
(9)

Specificity � TN/ FP + TN( ) (10)
The area under the curve (AUC) indicates the capability and

uncertainty of the models under study (Amiri et al., 2019).

AUC � ΣTP + ΣTN( )( )/ P +N( )( ) (11)
Where: P is the total number of gullies and N is the total number

of non-gullies.
The values of AUC range from 0.5 to 1 (Park et al., 2011). The best

model has the highest value. Generally, AUC values of 0.9–1, 0.8–0.9,
0.7–0.8, 0.6–0.7, and 0.5–0.6 suggest excellent, good, moderate, and low
classes, respectively (Amiri et al., 2019; Ismaili et al., 2023).

2.2.6.2 Accuracy
The accuracy is the proportion of precisely calculated or defined units

that is as high as possible (Saha et al., 2020b), it is calculated as follows:

Accuracy � TN + TP( )/ TP + FP + TN + FN( ) (12)
Where: TP (true positive) and TN (true negative) are the number

of pixels that are correctly classified, whereas FN (false negative) and
FP (false positive) are the numbers of pixels erroneously classified.

2.2.6.3 Kappa
The Kappa coefficient (K) reveals how effectively the used

models distinguish gully pixels (Rahmati et al., 2017), and is
determined as the percentage of the observed agreement that
exceeds what would be predicted by chance (Rahmati et al.,
2017). The metric is computed as follows:

Kappa � Accuracy − B( )/ 1 − B( ) (13)
Where:

B � TP + FN( ) TP + FP( ) + FP + TN( ) FN + TN( )( )/
× √TP + TN + FN + FP( ) (14)

The Kappa coefficient can be used to categorize the model
performance as follows: 0 (poor), 0–0.2 (slight), 0.2–0.4 (fair),
0.4–0.6 (moderate), 0.6–0.8 (considerable), and 0.8–1 (almost
excellent) (Rahmati et al., 2017).

Positive Predictive Value (PPV) is a statistical measure of the
accuracy of a binary classification test. It is defined as the proportion
of positive test results that are true positives. PPV is calculated as the
number of true positive results divided by the number of all positive
results (i.e., true positives + false positives) (Ait Naceur et al., 2022;
Ismaili et al., 2023), given:

PPV � True Positives / True Positives + False Positives( ) (15)
While the negative Predictive Value (NPV) is a statistical

measure of the accuracy of a binary classification test. It is

defined as the proportion of negative test results that are actually
true negatives. NPV is calculated as the number of true negative
results divided by the number of all negative results (i.e., true
negatives + false negatives) (Ait Naceur et al., 2022; Ismaili et al.,
2023), given:

NPV � TrueNegatives / TrueNegatives + FalseNegatives( ). (16)

3 Results

The obtained results of this study included the development and
comparison of four ML algorithms LDA, CART, LR, and KNN - for
predicting gully erosion susceptibility in the Chichaoua region of
Morocco. To achieve this, the study followed several steps: i) the
areas of erosion and non-erosion were defined through field surveys
and high-resolution satellite images; ii) 17 geo-environmental factors
that could contribute to gully development in the study area were
identified; iii) the linearity of these factors was assessed using Multi-
collinearity analysis; iv) the four ML approaches were applied to create
spatial susceptibility maps, which were classified into five classes
ranging from very low to very high; and v) the gully erosion
susceptibility maps were validated using kappa index, Receiver
Operating Characteristic ROC, Area Under the Curve (AUC), and
cross-validation methods with the testing dataset.

3.1 Preparing the Gully Inventory Map (GIM)

The locations and dimensions of the gullies were first determined
using the remotely sensed data obtained through Google Earth to create
the Gully Inventory Map (GIM). The data was then updated and
verified in the research region by conducting a field investigation. Using
a mobile GPS, gully locations were geolocated. In the study region,
204 gullies in total were found. The remaining 30 gullies were employed
for model testing, and 70% of the 204 gullies were randomly chosen for
model training (Figure 1) based on prior research. Typical gully pictures
are displayed in (Figure 3).

3.2 Factors analysis

Within the given VIF and TOL limits, a significant variety of
factors, including elevation, aspect, convergence, curvature, slope,
LS, TPI, TRI, TWI, distance to a river, drainage density, lithology,
distance to faults, distance to roads, land use, NDVI and rainfall
(Figure 4), were used to predict gully erosion. In this study, elevation,
aspect, convergence, curvature, slope, LS, TPI, TRI, TWI, distance to
a river, drainage density, distance to faults, distance to roads, and
rainfall were categorized into five subcategories using the Network-
Based Method (NBM) in GIS, where they were employed as
numerical variables. The aspect, lithology, land use and NDVI
were used as categorical variables. The target variables were the
presence and absence of gullies.

VIF and TOL evaluations were utilized to eliminate elements
strongly correlated with others, as shown in Figure 5. Highly
associated variables will have comparable effects on soil erosion;
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hence, removing them can increase the accuracy of predictive
models. The minimum VIF value required for removal is 10
(Ismaili et al., 2023). Analysis showed that all variables other
than slope (VIF=9.83, TOL=6.47) had VIF values below 10. As a
result, the slope factor in this study was removed from the modelling
process, see Table 2.

Based on the RF model, the significance of variables for gully
erosion mapping was carried out. As demonstrated in (Figure 6),
elevation, lithology, distance to river, LS, distance to roads, distance
to faults, NDVI, TRI, and TWI were the factors that were most
important for gully erosion susceptibility mapping, with relative
significance of 30.92, 30.08, 29.41, 26.08, 24.28, 20.36, 20.29, 15.11,
15.05 whereas TPI (5.96), convergence (3.96), curvature (2.22), had
minimal significance.

3.3 Soil erosion susceptibility prediction

The models’ classes were used to visualize better and prioritize
locations of erosion predictions, were identified on a map, and
categorized as very low, low, moderate, high, and very high. As
shown in Table 3; Figure 7. These were segmented via the GIS

natural break algorithm environment (Talukdar et al., 2020; Yousefi
et al., 2020). The percentages of the watershed divided into the five
classes of soil-erosion susceptibility were determined for each of the
four methods (Figure 7). The GLM model results show that the
regional coverage of gully erosion susceptibility for very low, low,
moderate, high, and very high areas are 1678.47, 196.72, 140.53,
110.55, and 405.60 km2, respectively. Based on the GES map of the
GLMmodel, the majority of the area comprises very low (66.29%) to
very high (16.02%) susceptibility classes. In comparison, low
(7.77%), moderate (5.55%), and high (4.37%) Classes on
susceptibility include the remainder of the area under study
(Figure 7B). In this model, the southern and southeastern regions
are primarily concentrated with the very high, high, and moderate
susceptibility areas portions of the watershed. This watershed is
divided into zones with extremely low to low GES.

The areal coverage for very low, low, moderate, high, and very high
gully erosion susceptibility zones for KNN results are 1521.65 (60.10%),
315.24 (12.45%), 10.59 (0.42%), 153.26 (6.05%), and 531.13 km2

(20.98%), respectively. The KNN model’s GES map shows that the
majority of the land is covered by very low (60.10.10%) to very high
(20.98%) susceptibility classes, while low (12.45%), high (6.05%), and
moderate (0.42%) Classes on susceptibility cover the remainder of the

FIGURE 5
Multi-collinearity analysis to assess the independent variables’ linearity.
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study area. This model’s very high, high, and moderate susceptibility
areas are primarily found in the watershed’s southern and south-eastern
regions (Figure 7A). This watershed is divided into zones with
extremely low to low GES.

In the instance of the LDAR model, the areal coverage for very
low, low, moderate, high, and very high gully erosion susceptibility
zones are 1643.13 (64.90%), 199.57 (7.88%), 134.67 (5.32%), 99.50
(3.93%), and 455 km2 (17.97%), respectively. According to the GES
map, most of the area comprises very low (64.90%) to very high
(17.97%) susceptibility classes. In comparison, in low (7.88%),
moderate (5.32%), and high (3.93%) susceptibility classes, the
remainder of the study area is occupied. The very high to
moderate susceptibility zones in this model is primarily centered
in the southern and southeastern parts of the watershed. In contrast,
the remaining portions are linked to very low to low susceptibility
zones (Figure 7C).

The CART model’s area coverage for the very low, low,
moderate, high, and very high gully erosion susceptibility zones
are 12227.27 (48.47%), 0.00 (0.00%), 328.84 (12.99%),
398.55(15.74%), and 577.21 (22.80%) km2, respectively. The
CART model’s GES map shows that the majority of the land is
covered by very low (48.47%) to very high (22.80%) susceptibility
classes, while high (15.74%), moderate (12.99%), and low (0.00%)
The remaining portion of the study area is covered by the
respective susceptibility classes. The southern, south-eastern,
and eastern portions of the watershed are mostly associated to
very high, high, and moderate gully erosion susceptibility zones,
while the remaining portions are associated to very low to low
susceptibility zones (Figure 7D).

3.4 Validation of the models

KNN is the ideal model for this study. The value of the AUC from
ROC considering the testing datasets of KNN is 0.93; the remaining
models are associated to ideal AUC and are similar to KNN in terms
of values. Model; the AUC values from ROC of GLM, LDA, and
CART for testing datasets are 0.90, 0.91, and 0.84, respectively
(Figure 8). Similar values are observed for the training datasets in
KNN, GLM, LDA, and CART with 0.98, 0.96, 0.96, and 0.89,
respectively. The value of accuracy considering the validation
datasets of LDA, CART, KNN and GLM are 0.85,0.82,0.89,0.84;
the same values in LDA, CART, KNN and GLM training datasets
are 0.89,0.81,0.91,0.91. The values of Kappa of LDA, CART, and GLM
for testing datasets are 0.70, 0.65, and 0.68, respectively (Figure 9). The
values of Kappa in LDA, CART, KNN, and GLM for training datasets
are 0.78, 0.62, 0.82, and 0.82, respectively. Nearly the same values were
found in the validation datasets in LDA, CART, KNN, and GLM 0.70,
0.65, 0.78, and 0.68, respectively.

ML models of lDA (accuracy = 0.86, Kappa = 0.73) KNN
(accuracy = 0.86, Kappa = 0.72) and GLM (accuracy = 0.85,
Kappa = 0.70) displayed better performances than the CART
(accuracy = 0.79, Kappa= 0.59) model that has previously been
used in this field (Figure 10).

As illustrated by Figure 11, According to the examination of
the model’s performance, there is a good correlation of

TABLE 2 Multi-collinearity analysis to assess the independent variables’
linearity.

Factors Collinearity statistics

VIF TOL

Elevation 3.85 0.26

Aspect 1.17 0.85

Slope 9.83 0.10

Curvature 1.63 0.61

TRI 3.77 0.27

TWI 3.77 0.27

NDVI 1.23 0.82

Distance To Rivers 1.29 0.77

Lithology 1.45 0.69

Rainfall 1.82 0.55

TPI 1.40 0.72

Drainage Density 2.98 0.34

Convergence 1.28 0.78

LS 7.12 0.14

Distance To Faults 1.65 0.61

Land use 1.32 0.76

Distance to Roads 1.25 0.80

FIGURE 6
Conditioning factors’ importance using RF model. The most
influential factors on gully development in the study area are elevation,
lithology, distance to rivers and LS, based on the mean decrease in
accuracy. However, using themean decrease of GINI, the factors
are altitude, lithology, elevation and distance to rivers respectively.
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accuracy between the two models GLM, and LDA, also a medium
correlation between GLM and LDA with KNN; nevertheless, on the
other hand, we see that there is the low correlation of accuracy
between the tree models KNN, GLM and LDA with CART.

In addition, many statistical indicators were considered for
determining the best capacity of all the models for GES
modeling. The sensitivity values in LDA, CART, KNN, and GLM
for training datasets are 0.87, 0.83, 0.88, and 0.89, respectively.

Similar values for the validation datasets in LDA, CART, KNN, and
GLM are 0.83, 0.85, 0.90, and 0.85, respectively. The training
datasets’ specificity values in LDA, CART, KNN, and GLM are
0.91, 0.78, 0.94, and 0.92, respectively. Regarding validation datasets,
the specificity values in LDA, CART, KNN, and GLM are 0.86, 0.80,
0.87, and 0.83, respectively. The values of PPV for training datasets
in LDA, CART, KNN, and GLM are 0.91, 0.80, 0.94, and 0.93,
respectively. When considering the validation datasets, the PPV

TABLE 3 The prediction of gully erosion Susceptible areas in square kilometres.

Very low Low Moderate High Very high

GLM 1678.47 (66.29%) 196.72 (7.77%) 140.53 (5.55%) 110.55 (4.37%) 405.60 (16.02%)

KNN 1521.65 (60.10%) 315.24 (12.45%) 10.59 (0.42%) 153.26 (6.05%) 531.13 (20.98%)

LDAR 1643.13 (64.90%) 199.57 (7.88%) 134.67 (5.32%) 99.50 (3.93%) 455.00 (17.97%)

CART 1227.27 (48.47%) 0.00 (0.00%) 328.84 (12.99%) 398.55 (15.74%) 577.21 (22.80%)

FIGURE 7
The four models are used to create a head-cut gully erosion map. (A) GLM; (B) KNN; (C) LDR; (D) CART.
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values in LDA, CART, KNN, and GLM are 0.83, 0.78, 0.86, and 0.81
(Table 4). In LDA, CART, KNN, and he NPV values for the training
datasets for GLM models are 0.86, 0.81, 0.88, and 0.89, respectively.
The NPV values in LDA, CART, KNN, and GLM for validation
datasets are 0.86, 0.86, 0.92, and 0.87, respectively.

In this study, KNN is the best model because it provides the
highest accuracy correlated with high Kappa values. The values
of the remaining models are almost identical to those of the
KNN model and are also associated with optimal accuracy.
The evaluation of the machine learning (ML) models used

in this study generally showed that all the ML models
performed well. However, the models’ performances were
evaluated as follows in terms of accuracy and kappa values:
IDA > GLM > KNN >CART.

4 Discussion

Land degradation is a phenomenon caused mainly by soil
erosion, the combined effects of climate, topography, vegetation

FIGURE 8
Receiver operating characteristic (ROC/AUC) analysis for four head-cut gully erosion models using the training (A) and testing (B) dataset.

FIGURE 9
Areas and percentage of gully erosion susceptibility classes.
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covers, and anthropogenic actions, leading to serious problems, such
as reduction of arable land, a decrease in agricultural production,
pollution of rivers, siltation of dams, drought, poverty etc.

Research on water erosion has been known for several centuries
in the Mediterranean basin, whereas in Africa, research has only
developed in recent decades. The problems of erosion in this old
continent were noted by Harroy as early as 1944. Still, the research
did not begin until 1950, when several studies were carried out on

erosive phenomena as a function of the diversity of ecosystems,
climates, relief, crops and population density. Roose (1977) suggests
that erosion can be defined as a set of variable processes in time and
space, depending on ecological conditions and poor land
management by human influence. In 1977, and according to an
FAO study, 12.6 million hectares of cropland and rangeland in
Morocco were threatened by water erosion and two-thirds of the
cropland required extensive conservation measures.

Erosion, in general, results from the interaction of various
factors, the most important of which are climatic aggressiveness,
The combined effects of the degree of erodibility, land usage, and
slope length. Determining these parameters allows for knowing the
soil losses on the slopes and their spatial distribution.

Machine learning algorithms are reliable methods for reducing
and regulating the impact of gully erosion in many parts of the
world. Nine publications from around the world that were published
between 2019 and 2021 were chosen based on the Web of Science
(WoS) database and using the common keywords “gully erosion
susceptibility” and “machine learning techniques”. The results are
shown in Table 5. RF can handle large datasets and enable rapid
classifications based on various features, which allows it to produce
models with higher accuracy than other methods. Additionally, RF
is frequently used to evaluate each variable’s significance in
calculating a multi-classifier, as well as its correctness and
applicability for various applications. (Garosi et al., 2019).

Regarding the relationship between the causes of gully erosion
and its occurrence, the patterns highlighted by the four models
(KNN, GBM, LDA and CART) appeared geomorphologically sound
and realistic. The initial contributors to the gully corresponded to
morphological parameters such as elevation, slope length and the
lithology parameter. The elevation varies between 151 m at the level
of the Tensift River to 3,329 m at the High Atlas summits. In this
Chichaoua catchment, outcrops of Cretaceous formations and
Tertiary formations dominate. It is a succession of synclines, of

FIGURE 10
Accuracy and Kappa analysis of KNN, IDA GLM, and CART models.

FIGURE 11
The comparison and correlation between KNN, GLM, CART, and
IDA models.
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TABLE 4 The performances of the models using the training/validation.

Models Parameters

Sensitivity Specificity PPV NPV Kappa Accuracy

LDA 0.87/0.83 0.91/0.86 0.91/0.83 0.86/0.86 0.78/0.70 0.89/0.85

CART 0.83/0.85 0.78/0.80 0.80/0.78 0.81/0.86 0.62/0.65 0.81/0.82

KNN 0.88/0.90 0.94/0.87 0.94/0.86 0.88/0.92 0.82/0.78 0.91/0.89

GLM 0.89/0.85 0.92/0.83 0.93/0.81 0.89/0.87 0.82/0.68 0.91/0.84

TABLE 5 Based on accuracy/AUC, the ML model’s performance on the GE mapping. Abbreviations include random forest (RF), logistic regression (LR), naive Bayes
(NB), artificial neural network (ANN), best-first decision tree (BFTree), boosted regression tree (BRT), multivariate discriminant analysis (MDA), classification and
regression tree (CART), gradient boosted decision trees (GBDT), extreme gradient boosting (XGBoost), multivariate additive regression splines (MARS), and
flexible discriminant analysis (LMT).

Region ML model Performances based on Accuracy/AUC Paper reference

Brazil (Rio Das Vilhas watershed) RF 0.996 Lana et al. (2022)

LR 0.935

NB 0.947

ANN 0.987

Iran (Robat Turk Watershed) RF 0.893 Lei et al. (2020)

CDTree 0.808

KLR 0.825

BFTree 0.789

India RF 0.90 Hembram et al. (2021)

BRT 0.88

Naïve bayes 0.86

Brazil (South Mato Grosso) MDA 0.78 Bouramtane et al. (2022)

LR 0.77

CART 0.82

SVM 0.86

India MARS 0.91 Gayen et al. (2019)

FDA 0.84

RF 0.96

SVM 0.88

China RF 0.944 Yang et al. (2021)

GBDT 0.938

XGBoost 0.947

India (Hinglo River basin) RF 0.87 Saha et al. (2020a)

GBRT 0.80

NBT 0.81

TE 0.82

Iran (Bastam watershed) ADTree 0.922 Arabameri et al. (2020b)

NBTree 0.939

(Continued on following page)

Frontiers in Earth Science frontiersin.org15

Baiddah et al. 10.3389/feart.2023.1184038

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1184038


which the one called Boabout Synclinal ends with a Cretaceous and
Eocene anticline ridge (phosphate marl and limestone marl).
Combined impact of the erosive power of flowing water (power
index of the current) and the ability to conduct and keep this water
in the designated location. Topographic humidity index determines
the gullying circumstances under climate-stress conditions (rain).
Knowing how to create such detailed conceptual diagrams is central
to any research investigating causal relations between variables and
gullies. Susceptibility maps can indicate areas where action should be
taken to stop or minimize gully erosion. However, determining
which system attributes should be addressed requires knowing
which ones are important. Given these subsets of pertinent
parameters, the prior interpretive system can be expanded to
account for specific morphometric exposure under low
precipitation regimes. Additionally, there is some, but sparse,
vegetation. A complete lack of vegetation typically accompanies
rocky outcrops with extremely low erosion rates because of the
rock’s unique material characteristics. On the other hand, places
with little to moderate vegetation are frequently associated with soil
that is not covered by leaves or supported by roots. Our findings
demonstrated that the performance of the models could provide
useful data for regional planners. It is extra important to have
accurate and reliable models to support decision-making because
the arid to semi-arid environment in Morocco can change quite
rapidly from one catchment to another, whether it be in terms of
temperatures or precipitation re-gimes, or simply in the land scape
arrangement. Therefore, greater model flexibility can support
choosing one method over another. We added measures
(Cohen’s Kappa and True Skill Statistics) that better describe the
classification of positives and negatives to the standard performance
assessment (area under the ROC curve). But all three measurements
came to the same result. Because of this, even if we cannot generalize,
the AUC alone would have been sufficient in the current situation,
supporting its adoption over any other metrics in the literature
(Arabameri et al., 2020a; Arabameri et al., 2020b).

An examination of the literature suggests that conditioning
factors for gully erosion are area-specific and cannot be reliably
extrapolated to other regions. For example, (Rahmati et al., 2016a),
identified land-use as the most important factor in their study areas,
wherias, (Avand et al., 2019) reported that distance from rivers is the
most important factor in their studies. Furthermore, the slope factor,
which we and ranked as a relatively unimportant factor, was among
the most effective factors identified by Zabihi et al. (2018). These
differences call for further research on controls of gully erosion in
different landscapes.

There have been several studies done to estimate soil loss. In
various subbasins in the Tensift basin. At the level of various sub-
basins in the Tensift basin. The Chichaoua sub-basin was not among
the sub-basins studied. Average annual soil losses in the Tensift
watershed are 25.93, 31.09, and 44.03 t/ha/year in 1984, 2000, and
2014, respectively. In the Haouz plain and the High Atlas region of
the watershed, the average annual soil losses in 2014 were 10.52 t/ha
and 132.25 t/ha.

This indicates that, in contrast to the High Atlas, which is
extremely fragile, the Haouz plain is only modestly exposed to
soil erosion (Meliho et al., 2016; Meliho et al., 2020).
Additionally, and in accordance with a thorough field survey, the
regions with a lot of in situ soil loss correlate to the areas in our
predicted maps with a high sensitivity to erosion.

This demonstrates the models’ great effectiveness in identifying
vulnerable locations on SESmaps. Identify locations in danger of soil
erosion by water by creating soil erosion susceptibility (SES) maps,
even if models find it difficult to discern between map errors and
sensitive locations where erosion has not yet occurred. The errors,
however, do not necessarily indicate that the actually eroded regions
are highly or generally susceptible. They have demonstrated that
these regions have the right conditions for the emergence and
development of soil erosion but that this has not yet happened,
suggesting that these regions may be at risk of soil erosion (Gutiérrez
et al., 2009; Garosi et al., 2019).

Finally, the methodology employed in this study showed that a
proper evaluation of erosion impacts could be achieved by carefully
choosing efficient water-based erosion factors and employing data-
based techniques. Its key flaw was that sampling and data collecting
on input factors were not done simultaneously. Not all samples were
taken at the same scale. Despite these limitations, the approach taken
in this study, which is based on ML algorithms, may be a useful tool
for predicting and mapping soil erosion in other situations.
Additionally, it is crucial for decision-makers to propose
appropriate strategies to prevent soil loss in the Chichaoua basin
based on the results of this study.

5 Conclusion

With the development of the Internet of Things (IoT), several
studies are beginning to focus on the application of ML algorithms
for environmental hazard modeling. For the study area, the
association between gully erosion occurrence and various
environmental factors was examined. Four ML models—LDA,

TABLE 5 (Continued) Based on accuracy/AUC, the ML model’s performance on the GE mapping. Abbreviations include random forest (RF), logistic regression (LR),
naive Bayes (NB), artificial neural network (ANN), best-first decision tree (BFTree), boosted regression tree (BRT), multivariate discriminant analysis (MDA),
classification and regression tree (CART), gradient boosted decision trees (GBDT), extreme gradient boosting (XGBoost), multivariate additive regression splines
(MARS), and flexible discriminant analysis (LMT).

Region ML model Performances based on Accuracy/AUC Paper reference

LMT 0.944

Iran (Fars province) RF 0.958 Amiri et al. (2019)

BRT 0.991

SVM 0.914
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CART, KNN, and GLM—have been developed for mapping the
vulnerability of gullies to erosion as part of this work.

This study focuses on developing a simple and cost-effective
method based on the combination of data collected, remotely
sensed data, and machine learning (ML) algorithms to identify
areas susceptible to gully erosion in a semiarid region. To this
purpose, 17 geo-environmental factors were mapped and
identified as potential drivers to gully development in the
study area. Four ML approaches were utilized to assess spatial
susceptibility during the modeling phase. The findings reveal
that all the models performed well and robustly in determining
prone areas for gullies. However, although the methods have
shown excellent success in this context, it is important to note
that limitations may impact their performance in other contexts.
Firstly, the database collected from the field must represent
quality and quantity. Secondly, the causative factors may vary
from one area to another, so the method must be adapted to the
geo-environmental conditions of each case. Thirdly, the chosen
algorithms have been optimized according to the available data,
and in the case of applications in other locations, they require
further optimization according to the available data. In
summary The method for mapping gully erosion suggested in
this work can be used in locations affected by similar
environmental and human activity, such as, for example,
variable rainfall, steep slopes, and weak geology units.
Researchers are urged to use the four models mentioned
above to address new problems and research objectives while
developing new studies. Deep learning techniques may be used
in gully erosion mapping from local to regional scale locations in
future studies.

Finally, this study can serve as a guide for all stakeholders
involved in the management and preservation of natural
resources in general and soil, especially in regions where climate
and human activity are exerting an increasing amount of pressure on
these resources and where field data are scarce and difficult to
obtain.
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