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Enhanced geothermal systems (EGSs) are expected to be one of the most
promising methods of supplying energy to meet the world’s increasing energy
demand. However, little attention has been paid to the influence of the number of
production wells on the heat extraction performance of an EGS. A series of
numerical simulations is organized in this work with three cases: Case 1 (one
production well), Case 2 (two production wells), and Case 3 (three production
wells). The results indicate that a slight temperature difference exists among the
three simulation cases at the planes X-Y (Z = 0) and Y-Z (X = 0), while Case
1 ensures a greater cooling area, and the more production wells, the smaller the
cooling area during the heat extraction in plane X-Z (Y = 0). In addition, the
continuous injection of cooling water from the injection well and its arrival at
different reference points enable the temperature at each point to declining with a
variable amplitude of variation. This work also sets an efficiency (ef) to investigate
the temperature variation in the EGS, where Case 1 exhibits a similar variation as
Case 2, which is also similar to Case 3. It is hoped that this work will play a guiding
role in EGS-related exploration and exploitation.
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1 Introduction

Global energy consumption has experienced a sharp increase under the rapid
development of the global economy, accompanied by the desire for green and low-
carbon processes (Olasolo et al., 2016; Zheng et al., 2018; Zheng et al., 2019; Cheng
et al., 2021; Zhao et al., 2022). In this context, unconventional oil/gas resources, such as
shale oil/gas and tight sandstone gas, and clean energy, such as solar energy, wind energy,
and enhanced geothermal systems (EGS), have emerged (Liu et al., 2017; Kumari and
Ranjith, 2019; Hao et al., 2021; Lin et al., 2021; Steffen et al., 2021). Among them, the EGS is
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assumed to have the potential to meet the increasing global energy
demand as it is theoretically considered to be an infinite resource
that is cheaper than conventional fuels and globally available (Lu,
2018; Zhao et al., 2023). This renewable energy resource needs to be
supported by highly effective development. As an emerging
technique, EGS has the advantage of promoting clean and low-
carbon energy; therefore, much attention has been given to this
technique, including attempts to guide EGS toward a commercially
viable platform, including technology validation, cost reduction, and
improved performance (Lu, 2018). Accordingly, many studies have
revealed some sound and recognized achievements (Fairley et al.,
2010; Olasolo et al., 2016).

EGS is no longer a new concept. It is also known as an
engineered geothermal system. The terms hot dry rock (HDR)
and hot sedimentary aquifers have been applied in previous
research (Kuriyagawa and Tenma, 1999; Christ et al., 2017;
Lu, 2018). Regarding the EGS-related work, preliminary
investigations on the construction of an artificial geothermal
reservoir and heat exchange and transport have been
organized (Zhu et al., 2010; Feng et al., 2012). The heat
extraction process in an EGS in the Songliao Basin of
northeast China over 30 years was addressed, and the main
influencing parameters were discussed (Huang et al., 2014;
Huang et al., 2015). The variable EGS outcomes in long-term
operation processes under different geological conditions were
predicted (Chen et al., 2013a; Chen et al., 2013b). In addition,
Gan et al. (2021) and Spycher and Pruess (2010)studied the EGS
using CO2 instead of water as a working fluid. The fracture
network simulation methodologies were used to analyze the
hydraulic fracturing process for an EGS reservoir (Wang and
Zhang, 2011). Although these studies focused on different points,
they have one thing in common: they all used numerical
modeling. Having reviewed previous achievements in EGSs, it
is noted that little attention has been paid to the influence of the
number of production wells on the heat extraction performance,
which may limit the deployment of the relative locations of
injection wells for working fluid and production wells for heat
extraction.

In recent years, numerical approaches have been widely adopted
in geological resources research, especially for those working on an
engineering scale, which is rarely conducted in an ordinary
experimental setup (Fairley et al., 2010; Cheng et al., 2021; Liu
et al., 2021; Zhao et al., 2021). In this work, numerical modeling is
introduced to simulate the heat extraction process from an EGS
system in which the number of production wells is set as a variable to
evaluate their influence on the heat extraction performance. Here,
the efficiency of heat extraction is also compared under different
operating conditions for a quantitative investigation into how the
number of production wells affects the heat extraction from an EGS.
This numerical investigation is conducted on an engineering scale,
offers a fresh perspective, and will provide guidance to a certain
degree to the field of EGS-related exploration and exploitation.

2 Numerical model descriptions

On an engineering scale, this numerical work uses an HDR
model with a size of X: 400 m × Y: 400 m × Z: 400 m, and the EGS

is placed in the center of it with a size of X: 250 m × Y: 250 m × Z:
150 m (Figure 1). The roof and bottom of this simulated reservoir
have a buried depth of 300 m and 600 m, respectively. To discuss
how the number of production wells influences the heat
extraction performance, an injection well and a production
well are deployed in the EGS. Three cases are organized here,
in which each model has one injection well with a 50 m length,
and the coordinate of its midpoint is X: −100 × Y: 0 × Z: 0
(Figure 2). The origin point is located at the center of this EGS, as
shown in Figure 1. Case 1 has one production well, and the
coordinate of its midpoint is X: 100 × Y: 0 × Z: 0; Case 2 has two
production wells, and the coordinates of its midpoints are X:
100 × Y: 50 × Z: 0 and X: 100 × Y: −50 × Z: 0, respectively
(Figure 2). For Case 3, three production wells are set, and the
coordinates of the midpoints are X: 100 × Y: 50 × Z: 0, X: 100 × Y:
0 × Z: 0, and X: 100 × Y: −50 × Z: 0, respectively (Figure 2).

3 Governing equations for model
development

3.1 Model assumptions

To simulate the process of heat extraction from HDR, a 3D
thermo-hydro-mechanical (THM) coupling model is developed in
this study using several assumptions regarding fluid flow and heat
transfer (Aliyu and Chen, 2017; Ye et al., 2021; Zhou et al., 2022;
Huang et al., 2023).

(1) In the heat extraction process, water is utilized as the working
fluid and exists in liquid form in the pores.

(2) The original EGS is treated as saturated with water. Fluid flow in
the matrix is laminar flow and yields Darcy’s law.

(3) Fourier’s law describes the heat transfer process in the matrix.
Local thermal equilibrium is assumed between the working fluid
and rock mass.

These assumptions are widely set forth in the numerical studies
of EGSs (Lu, 2018; Zhao et al., 2023) and are treated as reasonable
conditions.

FIGURE 1
Numerical model used in this work.
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3.2 Governing equations

The primary governing equations of this model for the
simulated process of heat extraction are as follows (Sun et al.,
2019; Han et al., 2020; Aliyu and Archer, 2021; Tan et al., 2021;
Yu et al., 2021; Zinsalo et al., 2021; Zhou et al., 2022; Zhao et al.,
2023):

In the seepage field, the working fluid flow in the porous
medium is described by the mass conservation law. In Eq. 1.,

S
zp

zt
+ ∇ · q � −Qf, (1)

where S is the storage coefficient of the rock matrix, Pa−1; p is the
pore pressure, Pa; t is the time, s; q is the Darcy velocity, m/s; qf is the
Darcy velocity in the fracture, m/s; and Qf is the source, 1/s.

In addition, the expressions of q are determined by Darcy’s law.

q � − k

μf
∇ · p + ρwgz( ), (2)

where k is the permeability of the rock matrix, m2; μf is the dynamic
fluid viscosity, Pa·s; ρw is the fluid density, kg/m3; g is the
gravitational acceleration, m/s2; and z is the unit vector in the
vertical direction.

In the temperature field, the heat exchange between the rock
surface and the cryogenic fluid is described by the local thermal
equilibrium. The temperatures of the solid and the liquid are the
same at each position. Then, based on the energy conservation law,
the governing equations of the temperature field are written as [27]:

ρcp( )
m

zT

zt
+ ∇ · ρwcp,wqT( ) − ∇ · λm∇T( ) � −Qf,E, (3)

where T is the temperature, K; cp,w is the heat capacity of the fluid, J/
(kg·K); Qf,E is the heat source, W/m3; (ρcp)m is the effective
volumetric heat capacity of the matrix, J/(m3·K); and λm is the
effective thermal conductivity of the matrix, W/(m·K).

ρcp( )
m
� 1 − φ( )ρscp,s + φρwcp,w, (4)

λm � 1 − φ( )λs + φλw, (5)
where φ is the porosity of the matrix; ρs is the solid density, (kg/m3);
cp,s is the solid heat capacity, J/(kg·K); and λs and λw are the thermal
conductivities of the solid and the fluid, respectively, W/(m·K).

3.3 Effect of temperature on the properties
of water

Some physical properties of water are determined by the
temperature, such as the dynamic fluid viscosity (μf), the heat
capacity (cp,w), the thermal conductivities (λw), and the density
(ρw). The relationships between the temperature and the physical
properties are expressed as follows (Sun et al., 2019; Han et al., 2020;
Aliyu and Archer, 2021; Yu et al., 2021; Zinsalo et al., 2021; Zhou
et al., 2022; Zhao et al., 2023):

μf �
1.3799 − 0.0212T + 1.3604 × 10−4T2 − 4.6454 × 10−7T3 + 8.9043 × 10−10T4

−9.0791 × 10−13T5 + 3.8457 × 10−16T6 273.15K≤T≤ 413.15K
0.004 − 2.1075 × 10−5T + 3.8577 × 10−8T2 − 2.3973 × 10−11T3 413.15K≤T≤ 573.15K,

⎧⎪⎨
⎪⎩

(6)
cp,w � 12010 − 80.4T + 0.3T2 − 5.4 × 10−4T3 + 3.6 × 10−7T4

273.15K≤T≤ 573.15K,
(7)

λw � 7.9754 × 10−9T3 − 1.5837 × 10−5T2 + 0.0089T − 0.8691

273.15K≤T≤ 573.15K,
(8)

ρw � 838.4661 + 1.4005T − 3 × 10−3T2 − 3.7182 × 10−7T3

273.15K≤T≤ 573.15K.
(9)

The initial and boundary conditions of the numerical model
mentioned in this work are listed in Table 1, and all modeling cases
were run for 30 years during this simulated process. The primary
reservoir physical parameters are exhibited in Table 2. Here, the
initial/boundary conditions and properties are referred to from
previous achievements (Sun et al., 2019; Han et al., 2020; Aliyu
and Archer, 2021; Yu et al., 2021; Zinsalo et al., 2021; Zhou et al.,
2022; Zhao et al., 2023).

4 Mathematical results and discussion

The temperature is an important parameter to evaluate the heat
extraction performance of an EGS (Majorowicz and Grasby, 2010;
Rodriguez et al., 2013; Fallah et al., 2016; Guo et al., 2018; Yang et al.,
2021). Therefore, in this work, the temperature of the EGS system is
introduced to compare the heat extraction performance during the
EGS utilization, where water is adopted as the working fluid. Here,
the overall situation of the temperature in the whole EGS is
investigated, and then three reference points in the EGS are set

FIGURE 2
Description of the modeling cases for the EGS injection well platform.
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to determine the detailed variation for specific operation cases.
Then, the temperature changes in the whole system for three
simulated cases are compared.

4.1 Overall temperature variation tendency
in an EGS for variable simulated cases

In this 3D numerical model, three planes were selected to
demonstrate the variation tendency of temperature in the EGS:
plane X-Y (Z = 0), plane Y-Z (X = 0), and plane X-Z (Y = 0); the
coordinate system is shown in Figure 1. Here, these three planes are
selected to show the temperature variation tendency in different
directions for different simulated cases in this work.

1) X-Y plane

The X-Y plane is a slide that is perpendicular to the wellbore of
the injection/production well. This work is set to investigate the
temperature variation in the horizontal direction of the EGS. For
all operation cases, the cooling area increases with time after water
is injected into the injection well, and there is a tendency for the
area to be extended from the injection well to the production well
(Figure 3). However, by comparison, no matter the number of
production wells (1, 2, or 3), the temperature variation in the X-Y
plane seems to have a similar extension tendency, in which the
difference is not obvious among all simulated cases. This could be

due to two reasons: 1) for each case, the amount of injected water is
the same in this numerical process, where the injection rate
stabilizes at 10 kg/s, and 2) the low permeability of the EGS
means that the injected, relatively low-temperature water does
not travel far to hardly transport large-scale and makes the water
seepage affected by the water extracted from the production well.
From an intuitive perspective, the number of production wells
barely affects the horizontal temperature variation for an EGS that
is not fractured.

2) X-Z plane

The X-Z plane is a slide that penetrates the injection well and the
EGS center, where Y = 0 in Figure 2. Here, this perspective is
introduced to investigate the temperature variation along the
direction from the injection well to the production well as shown
in Figure 4. Generally, the cooling area increases after the injection,
and this area tends to spread in the direction of the production well.
Similar to the situation in the X-Y plane (Figure 3), the difference
between the three simulations is not obvious in the X-Z plane. The
reason for this phenomenon is similar to the analysis for the X-Y
plane investigation.

3) Y-Z plane

The Y-Z plane is a slide with the X value set to 0 in the
coordinate system in Figure 1, which is across the center of the
EGS. From the exhibit in Figure 5, the continuous injection of
water from the injection well enables the cooling area to increase
with time. In addition, the area involved among the three cases
differs under the condition of injecting the same amount of water
from the injection well but with different production well settings.
Compared with the aforementioned X-Y plane and the X-Z plane,
there is a clear difference in temperature variation among the three
cases, where one production well ensures a larger cooling area, and
the more production wells, the smaller the cooling area during the
heat extraction. Furthermore, because the difference between the
X-Y plane and the X-Z plane is not obvious, it could be speculated
that the temperature variation difference induced by the
production well mainly occurs in the Y-Z plane, and this
variation could cause the volume difference in the cooled rock
during the heat extraction.

TABLE 1 Initial and boundary conditions employed for the simulations.

Physical field Boundary Initial and boundary conditions

Seepage field Initial pressure 30 MPa

Injection rate 10 kg/s

Production pressure 20 MPa

Upper and lower boundaries Impermeable

Temperature field Initial temperature 473.15 K

Injection temperature 303.15 K

Upper and lower boundaries Thermal insulation

TABLE 2 Physical properties of the reservoir.

Parameter Value Unit

Matrix density 2,700 kg/m3

Matrix porosity 0.2 -

Matrix permeability 5e−15 m2

Matrix heat capacity 950 J/(kg·K)

Matrix thermal conductivity 2.8 W/(m·K)

Fluid compressibility 1e-8 1/Pa

Biot coefficient 1 -
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4.2 Variation of temperature at reference
points in an EGS for variable simulated cases

To further exhibit the temperature variation in different simulation
cases, three reference points are chosen to quantitatively investigate the

dynamic change in temperature during heat extraction. Here, the
reference points are (X = 100: Y = 50: Z = 25), (X = 100: Y = 0:
Z = 25), and (X = 100: Y = −50: Z = 25), using the coordinate system
shown in Figure 1. The temperature variations at three representative
points are shown in Figures 6–8, respectively.

FIGURE 3
Temperature variation in the X-Y plane (Z = 0) during the heat extraction (coordinate system is shown in Figure 1).

FIGURE 4
Temperature variation in the X-Z plane (Y = 0) during the heat extraction (coordinate system is shown in Figure 1).
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The temperature varies sparingly in the first ~3 years at each
reference point for every simulation case (Figures 6–8) because the
injected cooling water has not yet arrived at that point and the hot
water extracted from the production well slightly affects the EGS
temperature. Afterward, with the continuous injection of cooling
water and its arrival at the reference points, the temperature there
begins to decline with a variable amplitude of variation. At the
point where (X = 100: Y = 50: Z = 25), for Case 1, the temperature
experiences a small variation during the total heat extraction
period because the water pressure difference between the
injection well and the production well drives the cooling water

to flow toward the production well. Therefore, in Case 1, point (X =
100: Y = 50: Z = 25) receives little of the injected cooling water, and
the temperature there remains almost constant (Figure 6).
However, for Case 2 and Case 3, the injected cooling water
arrives at point (X = 100: Y = 50: Z = 25) because the hot
water extracted from the production well induces the cooling
water seepage toward this point. In Case 2, more cooling water
flows to the point (X = 100: Y = 50: Z = 25) than in Case 3. This
phenomenon occurs because the injected cooling water tends to
flow toward the production well due to the fluid pressure
difference, and more cooling water flows toward the point (X =

FIGURE 5
Temperature variation in the Y-Z plane (X = 0) during the heat extraction (coordinate system is shown in Figure 1).

FIGURE 6
Variation of reference point temperature at (X = 100: Y = 50: Z =
25) (coordinate system is shown in Figure 1).

FIGURE 7
Variation of reference point temperature at (X = 100: Y = 0: Z =
25) (coordinate system is shown in Figure 1).

Frontiers in Earth Science frontiersin.org06

Wang et al. 10.3389/feart.2023.1185936

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1185936


100: Y = 50: Z = 25) in Case 2 because the middle production well
in Case 3 has a tendency to shunt the injected cooling water
(Figure 6).

As for the point where (X = 100: Y = 0: Z = 25) in the three cases,
the temperature variation follows a similar rule and undergoes a
similar tendency (Figure 7). This is because, at the point where (X =
100: Y = 0: Z = 25), the cooling water has a similar seepage space and
flow condition to reach this point, indicating that the fluid pressure
difference between the injection well and the point (X = 100: Y = 0:
Z = 25) is similar in both simulation cases in this work. Moreover,
for point (X = 100: Y = −50: Z = 25), the temperature variation there
(Figure 8) is similar to the phenomenon at the point where (X = 100:
Y = 50: Z = 25) (Figure 6), and the mechanism is also similar to the
previous one.

4.3 Attenuation process of temperature in
the whole EGS

In this work, following the previous work (Zhao et al., 2023), a
heat extraction efficiency (denoted as ef) is introduced to investigate
the attenuation process during the temperature variation in the EGS,
which represents the heat recovery divided by the total heat stored in
the EGS and yields:

ef �
∫∫∫
Vs

ρscp,s T0 − T( )dV

∫∫∫
Vs

ρscp,s T0 − Tinj( )dV (10)

where VS means the heat extraction zone in the EGS, T0 is the initial
temperature, and Tinj is the injection temperature of the fluid
(namely, the cooling water).

According to Eq. 10, the ef performance for each numerical case
is exhibited in Figure 9. Per the calculation results (Figure 9), little
difference is demonstrated among the variable simulations. For all

cases, the ef tends to increase faster during the first 15 years and
experiences a relatively slower increase during the last 15 years.
During the heat extraction process, Case 1 and Case 2 show a similar
variation regarding the ef, while Case 3 has a slightly lower ef than
Case 1 and Case 2. This phenomenon is unexpected because the
temperature difference in representative slides or points exhibited a
difference among the three cases (Figures 5–8). Therefore, this work
speculates that there is a complicated coupling process in the EGS
regarding the temperature variation during the heat extraction
process that will require more attention.

5 Conclusion

This work reports on three cases to investigate the influence
of the number of production wells on the heat extraction
performance of an EGS system. The temperature variation
with respect to the representative slides and reference points is
systematically investigated for Case 1, Case 2, and Case 3.
Furthermore, the ef is introduced and defined to represent the
temperature variation of the EGS. Accordingly, the following
points are made:

For the plane X-Y (Z = 0), plane Y-Z (X = 0), and plane X-Z (Y =
0), the temperature variation during the heat extraction process
from the EGS is hardly different among the three simulation cases at
the plane X-Y (Z = 0) and plane Y-Z (X = 0). Moreover, the results
show that one production well (Case 1) ensures a larger cooling area,
and the more production wells in a field (Case 2 and Case 3), the
smaller the cooling area during the heat extraction in the X-Z
plane (Y = 0).

Based on the investigation of the points of (X = 100: Y = 50: Z =
25), (X = 100: Y = 0: Z = 25), and (X = 100: Y = −50: Z = 25), the
continuous injection of cooling water and its arrival at the reference
points allow the temperature at each point to begin to decrease with
a variable amplitude of variation. Relatively, the difference of

FIGURE 8
Variation of reference point temperature at (X = 100: Y = −50: Z =
25) (coordinate system is shown in Figure 1).

FIGURE 9
Heat extraction efficiency (ef) over 30 years of numerical
simulations for each case.
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temperature variation at points (X = 100: Y = 50: Z = 25) and (X =
100: Y = −50: Z = 25) is greater among three numerical cases, while
that at point (X = 100: Y = 0: Z = 25) is smaller.

Regarding the ef, Case 1 exhibits the same variation as Case 2,
which is also similar to that of Case 3. This indicates that the number
of production wells during the heat extraction has little influence on
the ef for an EGS, even though temperature differences exist on the
representative slides or reference points. This issue may be due to a
complicated coupling process, and this possibility requires
additional investigation.
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