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Exact land cover (LC) map is essential information for understanding the
development of human societies and studying the impacts of climate and
environmental change. To fulfill this requirement, an optimal parameter of
Random Forest (RF) for LC classification with suitable data type and dataset on
Google Earth Engine (GEE) was investigated. The research objectives were 1) to
examine optimum parameters of RF for LC classification at local scale 2) to classify
LC data and assess accuracy inmodel area (Hefei City), 3) to identify a suitable data
type and dataset for LC classification and 4) to validate optimum parameters of RF
for LC classification with a suitable data type and dataset in test area (Nanjing City).
This study suggests that the suitable data types for LC classification were Sentinel-
2 data with auxiliary data. Meanwhile, the suitable dataset for LC classification was
monthly and seasonal medians of Sentinel-2, elevation, and nighttime light data.
The appropriate values of the number of trees, the variable per split, and the bag
fraction for RF were 800, 22, and 0.9, respectively. The overall accuracy (OA) and
Kappa index of LC in model area (Hefei City) with suitable dataset was 93.17% and
0.9102. In the meantime, the OA and Kappa index of LC in test area (Nanjing City)
was 92.38% and 0.8914. Thus, the developed research methodology can be
applied to update LC map where LC changes quickly occur.
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1 Introduction

Detailed, timely and accurate land cover (LC) can help people understand the
relationship between the development of human societies and climate and
environmental change (Turner et al., 2007; Song et al., 2018; Liu et al., 2020b). LC
classification and mapping are considered to be the key technologies to obtain surface
information at various scales (Feddema et al., 2005), which is critical for understanding the
impact of LC changes on agricultural production, ecotourism, carbon sequestration, water
quality, runoff, and species conservation. In recent years, more and more fields require LC
maps with higher temporal and spatial resolution, and more and more government
departments and institutions need LC maps as the basis for decision-making, planning,
and budgeting. However, due to surface heterogeneity and spectral confusion, accurate LC
classification and mapping still face many challenges, especially in utilizing time-series
satellite data.
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The Landsat images have been shared data source for LC
mapping and monitoring in the past 50 years (Hansen and
Loveland, 2012; Gómez et al., 2016). The Sentinel-2 (S2) satellite
provides higher spatial and spectral resolution data than Landsat
and opens up new opportunities for LC classification (Pirotti et al.,
2016; Forkuor et al., 2018). Recent studies have demonstrated that
S2 data can classify LC from a single date image (Clark, 2017;
Mongus and Žalik, 2018). However, a single scene of such data
cannot effectively monitor dynamic changes to distinguish spectrally
similar LC classes. Time-series images often yield better
performance than single-temporal images do (Sothe et al., 2017).
S2 is superior to Landsat in terms of spatial resolution, time
resolution and spectral bands, and it can provide rich
phenological information, spatial information and spectral
information, making it an increasingly important data source for
LC classification.

Nevertheless, the availability of optical data becomes limited and
difficult with the occurrence of frequent cloud cover when more
than one cloud-free observation per month in time-series images is
required for LC classification (Ju and Roy, 2008). The synthetic
aperture radar (SAR) data have been increasingly utilized recently as
they do not rely on sunlight and are not influenced by cloud and fog
(DeFries, 2008; Freitas et al., 2008; Zeng et al., 2020). By exploiting
different physical principles, the optical and radar data deliver
complementary information, providing higher accuracy for LC
classification than a single data source do (Erasmi and Twele,
2009; Stefanski et al., 2014; Joshi et al., 2016). With the free
open-access policy of the ESA Sentinel satellite constellation,
both multi-sensor and multi-temporal LC mapping have become
even more attractive (Drusch et al., 2012; Torres et al., 2012). Some
studies have used the multi-sensor method of Sentinel-1 (S1) and
S2 data for LC classification and mapping (Pesaresi et al., 2016; Ban
et al., 2017; Chatziantoniou et al., 2017; Clerici et al., 2017).

LC is usually affected by natural conditions and human
activities. Elevation data can intuitively reflect the natural
conditions of a region, while nighttime light images provide
unique footprints of human activities and settlements. More and
more scholars have begun to add night light data and elevation data
to the classification of LC, and discuss their importance in the
classification of LC. For example, Tang et al. (2020) use JL1-3B high-
resolution nighttime light imagery and Sentinel-2 time series
imagery fusion for impervious surface area mapping. Goldblatt
et al. (2018) classify the urban LC with fusion approach utilizing
nighttime light data and Landsat imagery. Liu et al. (2020a) classified
the Landsat data for the Gannan Prefecture and the results showed
that the topographic features contributed the most, followed by the
spectral indices and bands. Phan et al. (2020) used Landsat 8 data to
classify the LC in Mongolia, and the results showed that elevation
was the most important feature.

In recent years, deep learning (DL) and machine learning (ML)
have gained increasing attention, and their uses are constantly
increasing in LC classification. DL is often confusing with ML,
but it should be noted that DL is a subset of ML, and both belong to
the category of artificial intelligence (AI) (Chen et al., 2019; Klaiber,
2021). The commonly usedML algorithms include linear regression,
logistic regression, naïve bayes (NB), support vector machines
(SVM), decision tree, Bayesian learning, K nearest neighbor
(KNN), neural networks (NN) and random forest (RF) (Ray,

2019). DL algorithms are the upgraded version of artificial neural
networks, and commonly used DL algorithms include deep
Boltzmann machine (DBM), deep belief network (DBN),
convolutional neural network (CNN), graph convolutional
network (GCN), recurrent neural networks (RNN), and recursive
neural networks (RvNN) (Shrestha and Mahmood, 2019; Hong
et al., 2021a; Hong et al., 2021b; Wu et al., 2022). In the field of
LC classification, these state-of-the-art (SOTA) classification
methods mentioned above and their improved algorithms have
been widely adopted in various research topics. Lin et al. (2018)
extract the LC types of Weihai from 1985–2015 using SVM
classification method with Landsat MSS/TM/OLI images. Thanh
Noi and Kappas (2018) compare RF, KNN, and SVM for LC
classification using Sentinel-2 in Red River Delta. Sun et al.
(2019) build a long short-term memory (LSTM) RNN model for
LC classification in North Dakota with time series Landsat. Hong
et al. (2021a) develop a newminibatch GCN for hyperspectral image
classification, which allows to train large-scale GCNs in a minibatch
fashion.

The RF (Breiman, 2001), which is one of ML classifiers and
developed based on decision tree, became one of the favorite and
most promising LC classifiers due to its relatively stable and
robust classification accuracy and effectiveness in handling large
and high-dimensional datasets, and it has been widely used in
multi-temporal and multi-sensor images classification (Gislason
et al., 2006; Rodriguez-Galiano et al., 2012; Pelletier et al., 2016;
Ghorbanian et al., 2020; Phan et al., 2020; Ghorbanian et al.,
2021). Bourgoin et al. (Bourgoin et al., 2020) used the RF
algorithm for LC classification based on Landsat and S2 data
and reported overall accuracy (OA) and Kappa index of 0.81 and
0.87, respectively.

Recently, the explosive growth in data volume, including multi-
temporal and multi-sensor datasets that are effective in LC
information extraction, has led to problems of time consumption
with low efficient processing using personal or workstation
computers. The Google Earth Engine (GEE) can easily get access
to multi-sensor and multi-temporal images and it provides high-
performance operation without downloading these data to a local
machine (Gorelick et al., 2017; Kumar and Mutanga, 2018; Mutanga
and Kumar, 2019; Amani et al., 2020; Tamiminia et al., 2020).
Furthermore, the temporal aggregation method, such as the median,
in the GEE significantly reduces cloud interference, resolves the
problems of unavailable satellite data for specific periods. In
addition, the availability of powerful classification models, such
as RF (Shelestov et al., 2017), makes the GEE a widely used
remote-sensing tool for LC research. Some studies have used the
RF algorithm to classify LC on the GEE platform (Azzari and Lobell,
2017; Ghorbanian et al., 2020; Phan et al., 2020; Zhang et al., 2020;
Yang et al., 2021).

Meanwhile, LC datasets at regional and global scales, including
FROM-GLC30 (Gong et al., 2013), FROM-GLC10 (Gong et al.,
2019), GlobeLand30 (Chen et al., 2015), GLC_FCS30 (Zhang et al.,
2021), ESAWorldCover (Zanaga et al., 2021), and ESRI Land Cover
(Krishna et al., 2021) are available for public uses. In this study, the
LC dataset in 2020 was used as reference data to extract training and
validating areas and examine optimal parameters of RF for LC
classification at a local scale under the GEE platform with S1 and
S2 satellites in the model area. Then, the derived optimal parameters
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of RF were applied to classify LC type in the test area with the
suitable dataset for validation.

Our specific research objectives were 1) to examine optimum
parameters of RF for LC classification at local scale 2) to classify LC
data and assess accuracy in model area (Hefei City), 3) to identify a
suitable data type and dataset for LC classification and 4) to validate
optimum parameters of RF for LC classification with a suitable data
type and dataset in test area (Nanjing City). The proposed method
can reduce the cost for updating LC map at local scale.

2 Materials and methods

2.1 Study area

Hefei City and Nanjing City were selected as the model and test
areas respectively. Hefei City, with a population of more than
8 million, is the capital and the largest city in Anhui Province,
China. It was chosen to examine an optimal parameter of RF and to
identify a suitable data type and dataset for LC classification
(Figure 1A). At the same time, Nanjing City, with a population
of more than 8.5 million, is a sub-provincial city and the capital city
in Jiangsu Province, China. It was selected to validate the optimal
parameters of RF for LC classification under GEE with suitable
datatype and dataset (Figure 1B).

2.2 Data

The data used in this study were categorized into three groups: 1)
Sentinel satellite data, 2) auxiliary data, and 3) LC data. Brief
information on each data group is summarized below.

2.2.1 Sentinel satellite data
Both S1 and S2 satellites were launched by European Space

Agency (ESA).

(1) S1 data (ESA, 2023b). The S1 ground range detected (GRD)
products were delivered with polarizations of the vertical
transmit vertical receive (VV) and the vertical transmit
horizontal receive (VH). The S1 can provide continuous all-
weather, high spatial (10 m), and improved temporal resolution
images at C-band unaffected by clouds, to support land
monitoring (Cremer et al., 2020).

(2) S2 data (ESA, 2023c). The S2 multi-spectral instrument (MSI)
sensor provides high spatial (10 m) and multi-spectral images
over the global surface, with unprecedented potential in LC
monitoring and mapping (Drusch et al., 2012; Spoto et al., 2012;
Zheng et al., 2017).

In this study, S1 GRD and S2 MSI products acquired in
2020 were the primary data input for LC classification.

FIGURE 1
Location of the study area: (A) model area (Hefei City), and (B) test area (Nanjing City).
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2.2.2 Auxiliary data
(1) Elevation (NASA, 2023). The 30 m spatial resolution elevations

over the study area were extracted from the Shuttle Radar
Topography Mission (SRTM) data (Su et al., 2021). It is
helpful to distinguish various LC types if we adopt the
combination of satellite images and physiography variables
(Phan et al., 2020).

(2) Nighttime light products (EOG, 2023). Obtained from the
NPP-VIIRS day/night band (DNB), the 464 m spatial
resolution nighttime light products were used to
distinguish between artificial surfaces and bare ground
(Miller et al., 2013).

2.2.3 LC data
(1) ESA WorldCover (ESA, 2023a). It is a global LC product with

10 m spatial resolution published by the ESAWorldCover team
based on S1 and S2 data, which consists of 11 LC classes (Zanaga
et al., 2021).

(2) ESRI Land Cover (ESRI, 2023). It is also a global LC product
with 10 m spatial resolution produced by ESRI Impact
Observatory through S2 image, which consists of 10 LC
classes (Krishna et al., 2021).

The common areas of LC type of ESA WorldCover and ESRI
Land Cover products are used to select training and validation
samples in this study.

2.3 Methods

The research methodology consisted of 7 steps: 1) preprocessing
of Sentinel satellite data, 2) feature extraction and dataset
preparation, 3) selection of training and validation samples, 4)
optimal parameters identification of RF, 5) LC classification and
accuracy assessment in model area, 6) suitable datatype and dataset
identification for LC classification, and 7) LC classification and
accuracy assessment in test area. The workflow is displayed in
Figure 2. Details are described in the following sections.

2.3.1 Preprocessing of sentinel satellite data
There are two steps for preprocessing of Sentinel satellite data.

(1) Data selection, cloud pixels masking, and topographic
correction for S2

Unlike S1 data, which is not affected by the cloud, scenes covered
by cloud are typical in S2 data, so S2 data must be pre-processed to
minimize the impact of cloud coverage. Only S2 scenes with a cloud
coverage percentage of less than 85% were selected and used in
subsequent steps according to the mask information of QA60 in the
S2 image collection, while the S2 scenes with a cloud coverage
percentage of more than 85% were removed. Then, the cloud
coverage pixels in the selected S2 scene were identified and
masked based on the QA60 band information, and these cloud

FIGURE 2
Workflow of research methodology.
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coverage pixels did not participate in subsequent processing.
Moreover, topographic correction was performed (Soenen et al.,
2005) to compensate for the solar irradiance, thereby minimizing
terrain-induced reflectance changes. This work was implemented by
executing open-source code on GEE (https://mygeoblog.com/2018/
07/27/sentinel-2-terrain-correction/). Finally, all data used in this
study will be clipped to the scope of the study area to improve
computational efficiency.

(2) Monthly/Seasonal median calculation for S1 and S2

To minimize the influence of holes in the image caused by the
masked cloud cover pixels in the S2 scene in the previous step, and to
reduce the amount of data to improve the speed of classification, the
median calculation was performed. The monthly median for
12 months and seasonal median for four seasons were calculated
by time aggregation for both S1 and S2 data (Luo et al., 2021; Shetty
et al., 2021; Masroor et al., 2022).

2.3.2 Feature extraction and dataset preparation
For S1 data, each monthly/seasonal median included VV and

VH polarizations, and the ratio between VH and VV were extracted.
For S2 data, spectral bands (Blue, Green, Red, Red Edge 1, Red

Edge 2, Red Edge 3, NIR, Red Edge 4, SWIR 1, and SWIR 2) were
extracted. Additionally, three significant indices for representative
vegetation, urban and built-up and wetness features: normalized
difference vegetation index (NDVI) (Tucker, 1979), normalized
difference built index (NDBI) (Zha et al., 2003), and normalized

difference water index (NDWI) (Gao, 1996) were calculated using
the following equations.

NDVI � ρNIR − ρRED
ρNIR + ρRED

(1)

NDBI � ρSWIR2 − ρNIR

ρSWIR2 + ρNIR

(2)

NDWI � ρNIR − ρSWIR1

ρNIR + ρSWIR1

(3)

Where ρRED, ρNIR, ρSWIR2, and ρSWIR1 are Band 4, Band 8, Band 12,
and Band 11 of S2 satellite.

For auxiliary data, nighttime light data from the NPP-VIIRS
DNB and elevation data from the SRTM, were added to the S1 and
S2 data.

Finally, eighteen datasets were designed to examine an optimal
parameter of RF and suitable data type and dataset for LC
classification (Table 1). According to the data type, the datasets
were categorized into six groups: S1 data (D1–D3), S1 and auxiliary
data (D4–D6), S2 data (D7–D9), S2 and auxiliary data (D10–D12),
S1 and S2 data (D13–D15), and S1, S2, and auxiliary data
(D16–D18).

2.3.3 Selection of training and validation samples
In this study, samples were selected from the area with

consistent LC attributes of ESA WorldCover and ESRI Land
Cover data in 2020. In practice, the LC map from ESA
WorldCover and the LC map from ESRI Land Cover were
compared to find pixels with the same LC attributes, which are

TABLE 1 Combination of features in 18 datasets for classifying LC data.

Data type Dataset code Feature combination Number of features

S1 D1 S1 Monthly median (12 months × 3 features: VH, VV, VH/VV) 36

D2 S1 Season median (4 seasons × 3 features: VH, VV, VH/VV) 12

D3 S1 Monthly median + Season median (D1 + D2) 48

S1+ Auxiliary D4 S1 Monthly median + Elevation + Nighttime light 38

D5 S1 Season median + Elevation + Nighttime light 14

D6 S1 Monthly median + S1 Season median + Elevation + Nighttime light 50

S2 D7 S2 Monthly median (12 months × 13 features) 156

D8 S2 Season median (4 seasons × 13 features) 52

D9 S2 Monthly median + S2 Season median (D7 + D8) 208

S2+ Auxiliary D10 S2 Monthly median + Elevation + Nighttime light 158

D11 S2 Season median + Elevation + Nighttime light 54

D12 S2 Monthly median + S2 Season median + Elevation + Nighttime light 210

S1 and S2 D13 S1 and S2 Monthly median (36 features of S1 + 156 features of S2) 192

D14 S1 and S2 Season median (12 features of S1 + 52 features of S2) 64

D15 S1 and S2 Monthly median + S1 and S2 Season median (D13 + D14) 256

S1 and S2+ Auxiliary D16 S1 and S2 Monthly median + Elevation + Nighttime light 194

D17 S1 and S2 Season median + Elevation + Nighttime light 66

D18 S1 and S2 Monthly median + S1 and S2 Season median + Elevation + Nighttime light 258
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potential samples. Then, a stratified proportional random sampling
method was used to reselect the samples from the potential samples,
which could avoid the final samples from being too concentrated in a
certain area or a certain LC type. As a result, a total of 5,000 samples
were obtained in the model area (Hefei City), and 70% of the
training samples and 30% of the validation samples were divided
by using the “randomColumn” function on the GEE platform.

2.3.4 Optimal parameter of RF identification for LC
classification

The operation of the RF algorithm on the GEE platform requires
providing six parameters. In this study, the number of trees (NT)
from 100 to 1,000 at 100-tree intervals, the variables per split (VPS)
from 1 to 30 at 1-variable intervals, and the bag fraction (BF) from
0.1 to 1 at 0.1 fraction intervals were examined to identify optimal
parameters of RF for LC classification. As a result, a total of
3,000 combinations (NT = 10, VPS = 30, and BF = 10) were
generated and evaluated. To find suitable parameter values, the
RF classifier was executed 3,000 times for each dataset (D1 to D18).
Then, optimal values of three primary parameters: NT, VPS, and BF,
were selected based on the small out-of-bag (OOB) error.
Meanwhile, the other three parameters, maximum nodes,
minimum leaf population, and seed were set up using the default
values with values of null, 1, and 0, respectively.

2.3.5 LC classification and accuracy assessment in
model area

This study applied the RF algorithm with optimum parameters
on the GEE platform to classify six LC types: urban and built-up
land, cropland, forest land, grassland, water bodies, and bare land in
model area. Urban and built-up land comprises rural and urban
areas, commercial and industrial areas, transportation, utilities, and
infrastructures. Cropland consists of crops, orchards, tea gardens,
and vegetable fields. Forest land includes natural and man-made
forests. Grassland encompasses natural grass and artificial grassland.
Water bodies consists of rivers, streams, ponds, and lakes. Bare land
includes abandoned fields, exposed rock or soil, and open land. The
expected LC types in this study were considered on the basis of the
regional characteristics of Hefei City and the existing LC products.
The LC classification was performed by “ee.smileRandomForest”
function in the GEE.

In practices, the OA, Kappa index, producer’s accuracy (PA), and
user’s accuracy (UA) calculated using “confusionMatrix.accuracy,”
“ConfusionMatrix.kappa,” “confusionMatrix.producersAccuracy,”
and “confusionMatrix.consumersAccuracy” functions through GEE
platform, respectively, were used for the accuracy assessment (Huang
et al., 2017; Lyons et al., 2018). Then, 18 groups of the OA, Kappa
index, PA, and UA corresponding to 18 datasets were obtained after
executing RF classifier.

2.3.6 Suitable datatype and dataset identification
for LC classification

In this step, the appropriate datasets for LC classification were
selected by comparing the OA and Kappa index values. Average
values of OA and Kappa index by datatype, as categorized into six
groups in Table 1, were applied to identify an appropriate datatype
for LC classification using RF under GEE platform. Meanwhile,
Kappa index values with a thresholding value of 0.8 were compared

among 18 datasets to identify the suitable dataset for LC
classification using RF under GEE platform.

Moreover, pairwise Z-test among top three datasets providing
the highest Kappa values was applied to identify significant
difference value as suggested by (Congalton and Green, 2009) as
below.

Z � K̂1 − K̂2

∣∣∣∣ ∣∣∣∣����������������
v̂ar K̂1( ) + v̂ar K̂2( )

√ (4)

Where Z is standard normal distribution, K̂1, and K̂2 are Kappa
indices of the first and the second dataset, and v̂ar(̂K1) and v̂ar(̂K2)
are variances of Kappa indices of the first and the second dataset.
The variance of Kappa index was calculated through Eq. 5.

v̂ar K̂( ) � 1
n

θ1 1 − θ1( )
1 − θ2( )2 + 2 1 − θ1( ) 2θ1θ2 − θ3( )

1 − θ2( )3 + 1 − θ1( )2 θ4 − 4θ2
2( )

1 − θ2( )4{ }
(5)

where θ1 � 1
n∑k

i�1nii,

θ2 � 1
n2

∑k

i�1ni+n+i,

θ3 � 1
n2

∑k

i�1nii ni+ + n+i( ), and

θ4 � 1
n3

∑k

i�1∑k

j�1nij nj+ + n+i( )2
In principle, given the null hypothesis and the alternative, null

hypothesis is rejected if Z ≥ Zα/2 (Congalton and Green, 2009).

2.3.7 LC classification and accuracy assessment in
test area

A suitable datatype for LC classification in the model area
(Hefei City) was firstly prepared for test area (Nanjing City).
Then, the prepared suitable datatype was used to classify LC type
with an optimal parameter of RF as identified in the Step 2.3.4.
The classified LC map was assessed its thematic accuracy. The
thematic accuracy information of Hefei City and Nanjing City
was compared to validate LC classification using RF under GEE
platform.

3 Results

3.1 Optimal parameters of RF for LC
classification

For this study, the three critical parameters, NT, VPS, and BF,
of the RF classifier on the GEE platform were analyzed, and the
OOB error was used to select the optimal one for 18 datasets.
Figure 3 shows the average OOB error values of all 18 datasets at
different NT. The OOB error tends to decrease as the NT increases,
no matter what kind of datasets are used. When the NT is higher
than 600, the OOB error value changes less; however, the execution
time of the algorithm becomes longer when the NT increases. To
balance the efficiency and accuracy of the RF algorithm, the
optimal NT for all 18 datasets was set to 800 because the OOB
errors of all datasets did not change much after increasing the NT
to 900 and 1,000.
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Figure 4 shows the average OOB error values of all 18 datasets at
different BF when NT is 800. Regardless of the datasets used, OOB
errors first decrease and then increase as the BF increases. For D1,
D2, D3, and D5, the value of OOB reaches the minimum when the

BF is around 0.6, while for other datasets, the value of OOB is the
smallest when the BF is 0.9.

Figure 5 shows the average OOB error values for all
18 datasets at different VPS when NT is 800. For D2, D5, D8,

FIGURE 3
The average OOB error values for the number of trees (NT) of 18 datasets: (A) D1–D6; (B) D7–D12; and (C) D13–D18.

FIGURE 4
The average OOB error values for the bag fraction (BF) of 18 datasets: (A) D1–D6; (B) D7–D12; and (C) D13–D18.
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D11, D14, and D17, which only use season median or season
median + auxiliary data, the OOB error showed a trend of
decreasing at first and then increasing. For other data sets,
OOB error shows a trend of decreasing and then tending to
be stable with the increase of VPS value. The VPS value
corresponding to the red solid circle in Figure 5 is the
suggested value of GEE (square root of the number of
variables). In Figure 5A, we found that when only the S1 data
or S1+auxiliary data are used, the VPS value suggested by GEE is
appropriate, and the OOB value obtained at this time is smaller.
In Figures 5B, C, it is beneficial to use a VPS value larger than the
GEE recommendation to reduce the value of OOB, especially for
the four data sets D10, D12, D16 and D18. So, without loss of
generality, we recommend using 1.5 times the square root of the
number of variables as the value of VPS, as marked by the blue
solid circle in the figure. At this time, the OBB errors of the
12 data sets D7-D18 are all small.

Table 2 summarizes the optimal combination values for the
parameter pair of VPS and BF with the smallest OOB error value

when the NT value is set to 800. It was found that the optimal BF
value was 0.9 for D7 to D18, see Table 2, which differs from the
default value of BF (0.5) suggested by the GEE.

3.2 LC classification in model area

The results of a LC classification in model area (Hefei City) in
2020 of 18 datasets (D1-D18) using the identified optimum
parameters of the RF on the GEE are presented in Figure 6 and
Table 3.

As a result, in Figure 7, the patterns of LC distribution from
18 datasets are slightly different according to the number of features
in the datasets. Likewise, the area of each LC type of 18 datasets in
Table 3 is changed according to the number of features in the
datasets. These phenomena can be clearly observed in each LC type
change from 18 datasets (see Figure 7). Urban and built-up land
areas are increased after adding auxiliary data to Sentinel-1 data
(D1–D3), and they are relatively stable. Similarly, areas of forest land
are stable using D7–D18 datasets. On the contrary, areas of
cropland, grassland, water bodies, and bare land fluctuate for all
18 datasets.

3.3 Thematic accuracy assessment of LC
map in model area

The results of the OA and Kappa index for the thematic accuracy
assessment of LC maps of 18 datasets (D1–D18) in model area
(Hefei City) are presented in Figure 8. As a result, the OA values vary
from 71.37% for D2 to 93.62% for D18, and the Kappa index values
vary from 0.6017 for D2 to 0.9154 for D18.

FIGURE 5
The average OOB error values for the variables per split (VPS) of 18 datasets: (A) D1–D6; (B) D7–D12; and (C) D13–D18.

TABLE 2 Optimal combination values of VPS and BF.

Dataset VPS BF Dataset VPS BF Dataset VPS BF

D1 6 0.6 D7 19 0.9 D13 21 0.9

D2 3 0.6 D8 11 0.9 D14 12 0.9

D3 7 0.6 D9 22 0.9 D15 24 0.9

D4 6 0.9 D10 19 0.9 D16 21 0.9

D5 4 0.6 D11 11 0.9 D17 12 0.9

D6 7 0.9 D12 22 0.9 D18 24 0.9
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Meanwhile, the PA and UA values of each LC type are calculated
on GEE. The PA values of urban and built-up land vary from about
51% for D2 to 95% for D18, the PA values of bare land vary from
about 26% for D1 to 80% for D10, the PA values of cropland vary
from about 89% for D2 to 98% for D10, the PA values of forest land
vary from about 58% for D2 to 95% for D16, the PA values of
grassland vary from about 12% for D1 to 82% for D12, and the PA
values of water bodies vary from about 95% for D5 to 99% for D9.
The UA values of urban and built-up land vary from about 67% for
D3 to 93% for D12, the UA values of bare land vary from about 46%
for D2 to 91% for D10, the UA values for cropland vary from about
69% for D2 to 93% for D18, the UA values of forest land vary from
about 64% for D2 to 98% for D16, the UA values of grassland vary
from about 45% for D2 to 95% for D18, and the UA values of water
bodies vary from about 97% for D3 to 100% for D14 and D16.

In addition, the average PA and UA of three main data types of
18 datasets, S1 (D1–D6), S2 (D7–D12), and S1 and S2 (D13–D18),
are summarized in Table 4.

For average PA in Table 4, the six datasets of S1 data (without
and with auxiliary data), D1-D6, delivered average PA values from
32.20% for bare land to 96.84% for water bodies. On the contrary,
the six datasets of S2 data (without and with auxiliary data),
D7–D12, delivered average PA values from 73.00% for grassland
to 98.16% for water bodies. Meanwhile, the six datasets of S1 and

S2 data (without and with auxiliary data), D13–D18, delivered
average PA values from 72.69% for bare land to 97.55% for water
bodies.

Like PA, for average UA in Table 4, the six datasets of S1 data
(without and with auxiliary data), D1-D6, delivered average UA
values from 54.75% for grassland to 97.88% for water bodies. On the
contrary, the six datasets of S2 data (without and with auxiliary
data), D7-D12, delivered average UA values from 84.19% for
grassland to 98.16% for water bodies. Meanwhile, the six datasets
of S1 and S2 data (without and with auxiliary data), D13-D18,
delivered average UA values from 84.55% for bare land to 99.47% for
water bodies.

Furthermore, all six datasets of S1 data (without and with
auxiliary data), (D1–D6), delivered a lower average PA and UA
than the other two main data types.

3.4 Suitable data type for LC classification in
model area

As summarized in Table 5, the OA, Kappa index, and the average
value by data type for S2 data without auxiliary data (D7–D9) and
with auxiliary data (D10–D12) were higher than that of S1 data
without auxiliary data (D1–D3) and with auxiliary data (D4–D6). The

FIGURE 6
LC maps of Hefei City in 2020 of 18 datasets: D1–D18.
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average values of OA for the datasets of S2 data without and with
auxiliary data were 90.94% and 92.64%, respectively, but the average
values of OA for the datasets of S1 data without and with auxiliary
data were only 72.61% and 82.66%, respectively. Likewise, the average
values of the Kappa index for datasets of S2 data without and with

auxiliary data were 0.8796 and 0.9004, respectively, but the average
values of the Kappa index for datasets of S1 data without and with
auxiliary data were only 0.6216 and 0.7667, respectively. Therefore,
S2 data with and without auxiliary data were suitable for LC
classification in terms of data type.

TABLE 3 Area of each LC type of 18 datasets: D1–D18.

Dataset Area of LC in sq. km

Urban and built-up land Cropland Forest land Grassland Water bodies Bare land

D1 912.28 7,723.11 1,292.85 204.08 1,133.52 199.16

D2 976.52 7,089.43 1,673.17 254.00 1,149.27 322.60

D3 925.18 7,429.65 1,560.45 152.01 1,129.74 267.97

D4 1,292.31 7,727.18 915.58 226.49 1,120.10 183.35

D5 1,215.92 7,644.06 1,009.02 258.60 1,130.44 206.96

D6 1,311.72 7,580.82 1,015.55 236.41 1,112.64 207.84

D7 1,271.13 7,453.79 1,167.42 142.97 1,175.13 254.56

D8 1,297.08 7,267.89 1,232.78 212.85 1,159.61 294.80

D9 1,251.57 7,443.08 1,200.51 157.28 1,138.10 274.46

D10 1,292.30 7,473.24 1,163.31 146.34 1,155.14 234.66

D11 1,288.11 7,345.78 1,215.92 192.19 1,127.70 295.30

D12 1,285.03 7,451.36 1,175.13 118.64 1,140.14 294.70

D13 1,280.82 7,452.87 1,167.64 125.29 1,157.41 280.97

D14 1,332.17 7,308.81 1,247.75 182.95 1,118.00 275.33

D15 1,258.65 7,452.53 1,204.60 124.23 1,144.16 280.82

D16 1,245.59 7,525.48 1,174.92 126.00 1,126.82 266.19

D17 1,275.14 7,419.25 1,209.28 151.27 1,126.90 283.15

D18 1,310.45 7,363.97 1,156.82 238.47 1,141.91 253.38

FIGURE 7
Change of each LC area from 18 datasets: (A) urban and built-up land, (B) cropland, (C) forest land, (D) grassland, (E)water bodies, and (F) bare land.

Frontiers in Earth Science frontiersin.org10

Sun and Ongsomwang 10.3389/feart.2023.1188093

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1188093


3.5 Suitable dataset for LC classification in
model area

To identify a suitable dataset for LC classification, Kappa index
values were compared among 18 datasets (see Table 5); the top three
datasets, D18, D16, and D12, provided the highest Kappa index, with
values of 0.9154, 0.9133, and 0.9102, respectively. On the contrary,
three datasets, D3, D1, and D2, displayed the lowest Kappa index,
with values of 0.6434, 0.6198, and 0.6017, respectively.

The z-statistic value for D12 and D16, D12 and D18, and D16 and
D18 are 0.130737, 0.341274, and 0.208664, respectively, which are less
than 1.28 (80% confidential level), 1.65 (90% confidential level), and 2.58
(100% confidential level). It means that when we consider the change of
Kappa index value of top three datasets (D12, D16, and D18), the
increasing of Kappa index of D16 and D18 is insignificant. So, D12 was
selected as the suitable dataset for LC classification since we can reduce
the time for preparing S1 data.

3.6 LC classification in test area

The results of LC classification in test area (Nanjing City) in
2020 from suitable data type (D7–D12) using RF on the GEE
platform are presented in Figure 9 and Table 6.

As a result, in Figure 9, the patterns of LC distribution from
6 datasets are different according to the number of features in the
datasets. Meanwhile, using the D7-D12 datasets, the areas of forest
land are stable, while the areas of urban and built-up land, cropland,
grassland, and water bodies fluctuate slightly (see Table 6).

Furthermore, thematic accuracy assessment of LC maps of
6 datasets (D7-D12) are presented in Table 6. The OA values
vary from 88.10% for D8 to 92.38% for D12, and the Kappa
index values vary from 0.8361 for D8 to 0.8914 for D12. As a
result, the classified LC map in test area (Nanjing City) using the
identified optimal parameters of RF from model area (Hefei city)
with the suitable dataset can be accepted.

4 Discussion

4.1 Optimal parameters for RFs

Based on OOB error measurement, an optimal number of trees
(NT) was 800 for balancing the efficiency and accuracy of the RF (see
Figure 3). Meanwhile, the optimal combination values of VPS and
BF of the RF algorithm for each dataset (D1–D18) were identified by
trial and error with the smaller OOB error value, summarized in
Table 2. The selection of a suitable NT and appropriate VPS and BF

FIGURE 8
OA and Kappa index results for the 18 datasets: (A) OA and (B) Kappa index.

TABLE 4 Average PA and UA of three primary data types of 18 datasets (D1–D18).

Land cover type Average PA value Average UA value

D1–D6 (%) D7–D12 (%) D13–D18 (%) D1–D6 (%) D7–D12 (%) D13–D18 (%)

Urban and Built-up land 66.44 92.06 92.34 73.26 88.41 89.97

Cropland 92.45 95.97 96.76 76.41 91.14 90.57

Forest land 69.79 90.40 92.23 74.36 94.79 95.09

Grassland 36.37 73.00 73.84 54.75 84.19 89.69

Water bodies 96.84 98.16 97.55 97.88 98.37 99.47

Bare land 32.20 73.96 72.69 60.19 85.82 84.55
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values can increase the classification accuracy of the RF classifier.
This finding was consistent with the Svoboda’s (Svoboda et al., 2022)
study that used the appropriate values of NT, VPS and BF of the RF
for land use change and forestry in the Czech Republic.

4.2 Suitable data type and dataset for LC
classification in model area

According to OA, the Kappa index, and the average value by
data type in Table 5, S2 data without and with auxiliary data,
D7–D9 and D10–D12, respectively, were suitable data types
compared with S1 data without and with auxiliary data,
D1–D3 and D4–D6, respectively. In this study, S2 data could
distinguish between forest land and grassland better than S1 data
since broad vegetation classes are discriminated more easily by their
physiology using the optical sensor than their physical structure
from the radar sensor. This finding is consistent with LC studies
combining optical and radar data in other geographic regions
(Vaglio Laurin et al., 2013; Stefanski et al., 2014).

For suitable dataset identification, when comparing the OA and
Kappa index of 18 datasets, the top three datasets, D18, D16, and
D12, provided the highest OA and Kappa index, as reported in
Table 5. However, the derived Kappa index of three datasets were
not significantly different according to pairwise Z test. This study
selected D12 (S2 Monthly median + S2 Season median + DNB +
Elevation), as the suitable dataset for LC classification. The
combining S2 and auxiliary data could provide an OA and a

Kappa index of 93.17% and 0.9102, respectively. This dataset was
sufficient and acceptable to classify LC with high accuracy, as
suggested by Anderson et al. (1976). and Rosenfield and
Fitzpatrick-Lins, (1986).

4.3 LC classification and its accuracy in
model area

As a result of LC classification in model area (Hefei City) shown
in Figure 6 and Table 3, patterns of LC distribution and the area of
each LC type were dependent on the selected features of each dataset
(D1–D18). Meanwhile, the OA values of the 18 datasets varied from
71.37% to about 94%, and their Kappa index values varied from
0.6017 (or about 60%) to 0.9154 (or about 92%) (see Figure 8). The
OA and Kappa index of LC maps from the D7–D18 dataset was
higher than 85% and 0.8, respectively, indicating that the
classification results are acceptable (Anderson et al., 1976;
Rosenfield and Fitzpatrick-Lins, 1986). The results suggested that
a dataset of S2 data without and with auxiliary data, D7–D12, could
classify LC better than a dataset of S1 data without and with auxiliary
data, D1–D6. The results are consistent with other studies (Gislason
et al., 2006; Rodriguez-Galiano et al., 2012; Pelletier et al., 2016;
Ghorbanian et al., 2020; Phan et al., 2020; Ghorbanian et al., 2021),
that is, when classifying LC, the classification accuracy of S2 data is
better than that of S1 data.

According to the results of PA and UA of each LC type
(Supplementary Appendix S1, S2) and the average PA and UA of

TABLE 5 OA, Kappa index, and average value by data type.

Data type Dataset OA (%) Average by data type (%) Kappa index Average by data type

S1 D1 72.58 72.61 0.6198 0.6216

D2 71.37 0.6017

D3 73.87 0.6434

S1 + Auxiliary D4 82.37 82.66 0.7617 0.7667

D5 82.23 0.7612

D6 83.37 0.7771

S2 D7 90.51 90.94 0.8742 0.8796

D8 90.44 0.8736

D9 91.87 0.8910

S2 + Auxiliary D10 93.04 92.64 0.9024 0.9004

D11 91.72 0.8885

D12 93.17 0.9102

S1 + S2 D13 90.67 91.10 0.8750 0.8793

D14 90.65 0.8711

D15 91.97 0.8919

S1 + S2 + Auxiliary D16 93.43 93.03 0.9133 0.9077

D17 92.05 0.8943

D18 93.62 0.9154
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three primary data types of 18 datasets (Table 4), the derived
values of PA and UA of each LC depend on the data type and its
feature for LC classification using RF. In this study, water bodies
can be classified with a highly accurate value of PA and UA in
18 datasets. Similarly, cropland can be classified with a highly
accurate PA value in 18 datasets, while cropland can be classified
with high accurate UA value in 15 datasets, but not in D1–D3. On
the contrary, urban and built-up land, bare land, forest land, and
grassland can be classified with highly accurate PA and UA values
in 12 datasets, but not in D1–D6.

4.4 LC classification and its accuracy in test
area

For the result of LC classification in the model area (Nanjing City)
displayed in Figure 9 and Table 6, patterns of LC distribution and the
area of each LC type also rely on the selected features of each dataset
(D7-D12). In the meantime, the overall accuracy values of the six
datasets fluctuated between 88.10% and 92.38%, and their Kappa index
values varied from 0.8361 (or about 84%) to 0.8914 (or about 89%)
(see Table 6). The OA and Kappa indexes of each LC maps from

FIGURE 9
LC maps of Nanjing City in 2020 from datasets: D7–D12.
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D7–D12 datasets were higher than 85% and 80% respectively, indicating
that they can provide acceptable results (Anderson et al., 1976).

As a result, whether it is OA or Kappa index, the dataset of S2 data
with auxiliary data (D10–D12) is higher than the dataset of S2 data
without auxiliary data (D7–D9). In addition, datasets that adopt a
combination of monthly median and season median (D9 and D12)
have the highest OA and Kappa index, followed by the datasets using
themonthlymedian (D7 andD10). Although datasets utilizing season
median (D8 and D11) yield the lowest OA and Kappa, their values are
still higher than 85% and 0.8, respectively, which are still acceptable
results (Anderson et al., 1976).

4.5 Validation of optimal parameter of RF for
LC classification

As far as the NT is concerned, there is a decreasing relationship
between the value of OOB and the NT, which means that the more
the NT, themore conducive to improving the classification accuracy,
but the larger the value, the more memory and calculation time
required, which affects the classification efficiency. In addition, the
classification benefit brought by the increase in the NT also
decreases as the NT increases. Therefore, it is vital to choose an
appropriate NT. In this study, we choose 800 as a suitable value of
NT, which is similar to the previous studies that set 300 or 500
(Nguyen et al., 2020; Fekri et al., 2021; Piao et al., 2021; Xiao et al.,
2021; Yang et al., 2021).

As far as BF is concerned, the value of OOB and the value of BF
show a relationship of decreasing at first and then increasing. For the
D1, D2, D3, and D5 datasets, the most suitable BF value is about 0.6,
while for other datasets (D6, D6, and D7–D18), the most suitable BF
value is about 0.9, both of which are higher than the value suggested
by GEE (0.5). This finding is consistent with Patrick’s (Kacic et al.,
2021) work concluding that the classification accuracy is higher
when the BF is equal to 0.9. But the finding is more different from
the research (Svoboda et al., 2022), who set the value of bag fraction
to 0.1 when using S2 for land use change and forestry.

For the value of VPS, the datasets using season median data or
using season median data with auxiliary data (D2, D5, D8, D11, D14,
and D17), there is a relationship of decrease at beginning and then
increase between the value of VPS and the value of OOB. And the
other 12 datasets show a decreasing relationship between the value of
VPS and the value of OOB. In addition, the suitable values of VPS for
these 18 different datasets are related to the number of features in the
dataset. In this study, we choose 1.5 times square root of the number

of features as the appropriate value, which is higher thanGEE suggests
1 times square root of the number of features. This choice is consistent
with the result of Patrick’s (Kacic et al., 2021) research proposing that
the number of VPS holds positive correlations with classification
accuracy. But the finding is slightly different from the research
(Ghorbanian et al., 2021; Venter and Sydenham, 2021) using the
value of VPS suggested by GEE.

As shown in Figure 8, the OA and Kappa index of the LCmap in
Hefei City using D12 as the dataset through RF under GEE are
93.17% and 0.9102, respectively. Meanwhile, in Table 6, the OA and
Kappa index of the LC map in Nanjing City of D12 are 92.83% and
0.8914, respectively. The OA and Kappa index of the LC of the two
cities are higher than 90% and 0.8, respectively, indicating that the
appropriate data types, datasets and RF parameters obtained in this
study have certain generalizability and can be applied to other cities.

4.6 Impact of Sentinel-2 data missing on LC
classification

Since S2 data is susceptible to atmospheric influences, it is likely that
some regions or some years do not have S2median data during the rainy
season. To study the effect of S2 median data missing on LC
classification, taking the D7 dataset (OA = 90.51%) as a reference,
the S2 median data of a certain month were artificially removed. We
found that when the median data of S2 in any month are missing, the
OA does not change much, and the change of OA is within ±1%. OA
decreased the most (−0.83%) when the median data for June were
missing, andOA improved themost (+0.94%)when themedian data for
July were missing. The possible reason is that there were more cloudy
and rainy days in July, and some cloud coverage pixels were not
identified by the QA band, which cause the data in July to play a
negative role in the LU classification. Taking the D8 dataset (OA =
90.44%) as a reference, the S2 median data of a certain season were
artificially removed. We found that when the median data of Spring,
Summer, Autumn, and Winter were missing, the OA changed to
90.62%, 88.71%, 89.98%, and 90.22%. It shows that the median data
of Spring have a slight negative impact on the classification of LC. The
median data of Summer are more important than other seasons, and
when the data aremissing, the classification accuracy of LC is reduced by
about 1.7%. This shows thatmedian data of Summer aremore important
for LC classification, but at the same time, it should be noted that the
quality of data in some months of Summer may be low. So, accurate
identification of cloud contamination pixels is conducive to improving
the OA of LC classification.

TABLE 6 Area of each LC type and OA and Kappa index results in Nanjing City in 2020.

Dataset Urban and built-up land Cropland Forest land Grassland Water bodies OA (%) Kappa index

D7 1374.76 2853.74 1112.78 161.74 783.14 90.58 0.8712

D8 1406.47 2778.26 1091.14 191.14 815.56 88.10 0.8361

D9 1360.64 2833.79 1118.59 170.78 798.72 90.80 0.8720

D10 1380.76 2835.37 1094.61 175.27 796.51 91.76 0.8861

D11 1393.85 2778.99 1103.09 186.87 819.76 91.33 0.8818

D12 1368.58 2837.40 1115.56 170.79 790.19 92.38 0.8914
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4.7 Strength and limitation of google earth
engine

GEE’s data archive contains more than 40 years of historical
datasets that are updated and expanded daily, including the Landsat,
Sentinel, MODIS, land cover data, and so on. GEE also provides a
variety of ML classification algorithms, such as CART, RF, SVM,
naive Bayes, and decision tree. Since it is cloud-based, there is no
need to download a large number of image files, and when the
relevant parameters are set, the classification results of city-scale LC
can be obtained within a few minutes. When running analytics on
platforms like ERDAS and ENVI, it can take hours or even days to
download the data and process the analytics. Therefore, the research
method developed based on GEE can be applied to the update of LC
maps where LC changes quickly occur. However, GEE is also limited
in some cases, such as memory overflow, and other cloud platforms
such as Amazon Web Services and Pixel Information Expert (PIE)
Engine can be tried in the future.

5 Conclusion

In recent years, the advantages of GEE’s abundance of available
data and fast processing of remote sensing data have facilitated the
remarkable development of RF algorithm for LC classification. To
this end, it is crucial to investigate suitable data types, datasets, and
input parameters of RF for LC classification.

This study classifies the LC of the model area (Hefei City) and
evaluates the accuracy to determine the suitable data types, datasets
and RF input parameters. The results show that the OA, Kappa
index, PA and UA of all six datasets of S2 data (D7–D12) are higher
than that of S1 data (D1–D6).

Meanwhile, the most suitable dataset for LC classification is D12,
which combines S2 and auxiliary data. The OA and Kappa index of
Hefei City reach 93.17% and 0.9102, respectively, when the values of
the three primary parameters NT, VPS and BF of RF are 800, 22 and
0.9, respectively. Then, the suitable dataset and parameters of the RF
obtained in the model area (Hefei City) were verified in a test area
(Nanjing City). The results show that the OA and Kappa index of
Nanjing City are 92.38% and 0.8914 respectively. The OA and
Kappa index of LC in Nanjing City and Hefei City are higher
than 90% and 0.85 respectively, and the OAs are also higher than the
accuracies reported by the LC products data providers themselves:
ESA WorldCover reported 74%; ESRI Land Cover reported 85%
(Venter et al., 2022). It turns out that based on the suitable data type
obtained from the model area (Hefei City), the dataset and the input
parameters of the RF can be generalized to test area (Nanjing City).
In conclusion, the proposed method and the appropriate data
types, datasets and RF parameters obtained in this study have
certain universality and reference, and can be used to update the
local LC information in other cities at low cost and high speed in
the future. However, LC classification usually depends heavily on
samples, data and algorithms. In future work, we will study sample
generation strategies based on data distribution characteristics,
open source databases, and existing land cover products; data
integration techniques on the basis of multi-scale, multi-platform,
and multi-modal; and algorithm integration of various ML and DL
algorithms.
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