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Post-collisional alkaline intrusive rocks from the Dabie orogen were studied for
their whole-rock major-trace elements and Sr-Nd-Hf-Pb isotopes, as well as
zircon U-Pb ages and Hf-O isotopes. The results provide geochemical constraints
on the nature of their mantle sources and thus insight into crust-mantle
interaction in the continental collision zone. The alkaline intrusive rocks are
composed of syenite and nepheline syenite. Syn-magmatic zircon U-Pb dating
by LA-ICP-MS for them yielded Early Cretaceous ages of 131.3 ± 1.4 Ma to 122.6 ±
0.6 Ma, coeval with the post-collisional magmatism in the Dabie orogen. One
relict zircon with U-Pb age of 211 Ma is consistent with the timing of
metamorphism for the ultrahigh-pressure (UHP) metamorphic rocks in this
orogen. They have arc-like trace element distribution patterns, such as
enrichment in LILE (large ion lithophile element) and LREE (light rare earth
element) but depletion in HFSE (high field strength element), and enriched
whole-rock Sr-Nd-Hf isotope compositions with high (87Sr/86Sr)i ratios of
0.7077–0.7131 but negative εNd(t) values of −16.0 to −9.4 and εHf(t) values
of −17.5 to −12.7. Their syn-magmatic zircons have three groups of Hf-O
isotope compositions comparable to those of UHP metamorphic rocks in
Central-South Dabie and North Dabie, which represent the upper and middle
continental crust of the subducted South China Block, respectively. In this regard,
slab–mantle interaction is evident during the Triassic continental collision. We
suggest that themelts derived from the subducted South China Block reactedwith
the lithospheric mantle wedge of the North China Block, resulting in phlogopite-
bearing metasomatites, whose partial melting would generate the post-collisional
alkaline intrusive rocks during the Early Cretaceous.
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1 Introduction

Post-collisional igneous rocks are widespread within continental
collision orogens, which are frequently associated with an
extensional tectonic stage after collision event (Zheng et al., 2020
and references therein). Silicic alkaline igneous rocks, though
accounting for a small volume among post-collisional igneous
rocks, have received considerable attention about their
petrogenesis due to their high alkalis, incompatible elements and
volatile species (e.g., Sørensen, 1974; Marks and Markl, 2017). A
number of models have been proposed, including the mantle
derivation model, the fractional crystallization model, the crust
derivation model, and the mixing model. The mantle derivation
model suggests that they are produced by low degrees of partial
melting of metasomatized mantle (Halama, 2004; Berger et al., 2014;
Hou et al., 2015), which is supported by the presence of mantle-
derived xenoliths and silica- and alkali-rich melt inclusions in their
minerals, and the lack of evidence for low-pressure differentiation
(Schiano and Clocchiatti, 1994; Schiano et al., 1998; Grant et al.,
2013). The fractional crystallization model suggests that their high
SiO2 parts are produced by fractional crystallization of primitive
alkaline magma with or without crustal assimilation based on the
coexistence of ultramafic to mafic rocks (Yang J.-H. et al., 2012;
Berger et al., 2014; Hou et al., 2015; Zhu et al., 2020). For the crustal
derivation model, it is suggested that they are formed by remelting of
mafic alkaline rocks or other crustal rocks (Hay and Wendlandt,
1995; Kaszuba andWendlandt, 2000; Legendre et al., 2005; Dai et al.,
2017), which is also supported by the experimental phonolitic melt
from the carbonated pelites at 2.5–5 GPa (Thomsen and Schmidt,
2008). The mixing model, on the other hand, suggests that they are
produced by the mixing of crustal anatectic granitic and mantle-
derived mafic magma followed by crystal differentiation (Barker
et al., 1995; Litvinovsky et al., 2002). In this regard, it is still
challenging to determine the origin of evolved alkaline rocks in
the presence or absence of associated ultramafic to mafic rocks.

The Dabie-Sulu orogenic belt was formed by the collision
between the South China Block and North China Block during
the Triassic (Li et al., 1993; 1999; Zheng, 2008). Except for
widespread high-pressure (HP) and ultrahigh-pressure (UHP)
metamorphic rocks, voluminous post-collisional igneous rocks of
Late Jurassic to Early Cretaceous are exposed in this orogenic belt
(Huang et al., 2007; He et al., 2011; Zhao et al., 2013; Zhao et al.,
2017). Different from the Sulu orogen with both Late Jurassic and
Early Cretaceous post-collisional igneous rocks, the Dabie orogen
contains only Early Cretaceous post-collisional igneous rocks (Zhao
and Zheng, 2009; Zhao et al., 2017). A large portion of these igneous
rocks are felsic intrusive rocks and a small portion are mafic
intrusive rocks, with volcanic rocks only sporadically found in
the North Dabie and Beihuaiyang zones (Dai et al., 2017; Zhao
et al., 2017). The Beihuaiyang zone contains various types of Early
Cretaceous igneous rocks, such as granite, syenite, phonolite,
trachyte, andesite and dacite. The Beihuaiyang alkaline intrusive
rocks, though outcrop in a small area, provide good samples for
understanding the cycling of subducted continental crust and
tectonic evolution of this orogen. Nevertheless, it is still
controversial with respect to the nature of their magma source.
Zhou et al. (1995) suggested that the ancient continental crust has
played a major role in the genesis of these rocks, whose whole-rock

Sr-Nd isotope compositions are similar to the North China Block. In
contrast, it has also been suggested that these alkaline intrusive rocks
were derived from a lithospheric mantle metasomatized by the
subducted continental crust materials (Yang et al., 2002; Fan
et al., 2004; Xu et al., 2008; Zhou et al., 2014).

This paper presents a combined study of whole-rockmajor-trace
elements and Sr–Nd–Pb isotopes as well as zircon U–Pb ages and
Hf-O isotopes for the post-collisional alkaline intrusive rocks in the
Beihuaiyang zone of the Dabie orogen. The studied rocks exhibit
whole-rock Sr-Nd-Pb isotope compositions and zircon in situ Hf-O
isotope compositions comparable to the upper and middle
continental crust of the subducted South China Block, indicating
their origination from the orogenic lithospheric mantle
metasomatized by melts from the subducted continental crust.
Therefore, our results provide insights into the nature of magma
source and crust-mantle interaction for the post-collisional alkaline
intrusive rocks in collisional orogens.

2 Geological setting and samples

The Dabie-Sulu orogenic belt (Figure 1A), located in east-central
China, is a typical continental collision orogen formed by the
collision between the South China Block and the North China
Block in the Triassic (e.g., Cong, 1996; Faure et al., 2003; Zheng
et al., 2003). Influenced by the Tanlu fault zone (a left-lateral strike-
slip fault), the Sulu orogen has been displaced northward by about
500 km in relation to the Dabie orogen (Figure 1A; Okay, 1993; Zhu
et al., 2005). The presence of ultrahigh-pressure (UHP)
metamorphic minerals such as coesite (Okay et al., 1989; Wang
et al., 1989; 1992) and diamond (Xu et al., 1992; 2003; 2005; Xu et al.,
1998; Liu et al., 2007) in the metamorphic rocks of this orogenic belt
indicate that crustal rocks have subducted to mantle depths
of >100 km and subsequently exhumated to the crustal level. The
UHP metamorphic rocks in the Dabie orogen are dominated by
orthogneiss with subordinate eclogite, granulite, amphibolite,
migmatite and marble (Zheng et al., 2003). Previous studies on
zircon U-Pb geochronology andmineral O isotopes have shown that
the subducted continental crust is primarily composed of the
Precambrian basement and its overlying sediment of the South
China Block (Zheng et al., 2005; 2006). The Dabie UHP
metamorphic belt can be divided into five zones based on their
different metamorphic P-T conditions. From north to south, they
are the Beihuaiyang low-T/low-P greenschist-facies zone (BHY), the
North Dabie high-T/UHP granulite-facies zone (NDB), the Central
Dabie middle-T/UHP eclogite-facies zone (CDB), the South Dabie
low-T/UHP eclogite-facies zone (SDB), and the Susong low-T/HP
blueschist-facies zone (SSZ) (Figure 1B; Xu et al., 2005; Zheng et al.,
2005). All of these units were intruded by the post-collisional
igneous rocks composed mainly of felsic granitoids and minor
mafic-ultramafic rocks (e.g., Zhao and Zheng, 2009).
Geochronological studies show that post-collisional magmatism
occurred in the Early Cretaceous (Zhao et al., 2017; Yan et al.,
2021; and references therein).

The Beihuaiyang zone, located between the Xiaotian-Mozitan
Fault and the Lu’an-Hefei Fault (Figure 1B), is composed of Late
Neoproterozoic to Early Paleozoic flysch sediments of the Foziling
Group and the Neoproterozoic Luzhenguan Complex, which have
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experienced greenschist-facies low grade metamorphism (Zheng
et al., 2005; 2007). A series of alkaline igneous rocks were
intruded in the Foziling Group schist, constituting an alkaline
complex at Xianghongdian in the Beihuaiyang zone (Figure 1C).
The alkaline volcanic rocks consist of phonolite and trachyte, while
the alkaline intrusive rocks are syenite and nepheline syenite. The
alkaline volcanic rocks in the Dabie orogen were suggested to be
derived from partial melting of the subducted lower continental
crust of the South China Block based on whole-rock Sr-Nd-Hf and
zircon in situO isotope compositions (Dai et al., 2017). However, the
petrogenesis of the alkaline intrusive rocks is still controversial.

The alkaline intrusive rocks in this study, including syenite and
nepheline syenite, were collected from the Beihuaiyang zone in the
Dabie orogen (Figure 1C). Syenite is mainly composed of alkaline
feldspar (~55%), quartz (~15%), biotite (~20%), hornblende (~10%)
and a small amount of accessory minerals such as epidote, titanite
and zircon (Figures 2A, D). Alkaline feldspar is granular and
subhedral (0.5 mm–2 mm in length) with dirt-brown color
(Figure 2A). Hornblende, biotite and aegirine with a yellowish-
brown color are the dominant mafic minerals. Hornblende
(0.5 mm–2 mm in length) and biotite (0.5 mm–1.5 mm in
length) generally show subhedral plate-like shape. In contrast,

FIGURE 1
(A)Geological sketch map of the Dabie-Sulu orogenic belt and the study area in the Dabie orogen; (B)Distribution of post-collisional igneous rocks
in the Beihuaiyang and North Dabie zones (modified after Dai et al., 2017); (C)Geological map of the alkaline complex in the Beihuaiyang zone (modified
after Zhou et al., 2014; Dai et al., 2017). Abbreviations: BHY= Beihuaiyang low-T/low-P greenschist-facies zone, NDB = North Dabie high-T/UHP
granulite-facies zone, CDB = Central Dabie Mid-T/UHP eclogite-facies zone, SDB = South Dabie low-T/UHP eclogite-facies zone, SSZ = Susong
low-T/HP blueschist-facies zone.
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aegirine has small sizes (0.2 mm–0.5 mm) and its edge is partially
altered into chlorite. Nepheline syenite (Figures 2B, C) is mainly
composed of alkaline feldspar and nepheline with variable degrees of
alteration (Figure 2C). Alkaline feldspar (0.2 mm–0.5 mm in
diameter) is subhedral plate in shape (Figure 2D), some of which
are altered into clay minerals (Figure 2C). Nepheline (1 mm–3 mm
in diameter) displays first-order gray interference color and has
cracks, along which minerals such as calcite and albite are filled.

3 Analytical methods

3.1 Whole-rock major and trace elements

The alkaline intrusive rocks analyzed in this study are fresh with
no apparent alteration. These samples were crushed to powders of
200 mesh before analysis. Whole-rock major element analysis was
carried out at the Chinese Academy of Sciences (CAS) Key
Laboratory of Crust-Mantle Materials and Environments at the
University of Science and Technology of China (USTC), Hefei,
China. A ceramic crucible with 0.5 g dried sample powder was
heated in a muffler at 1050°C for 8 hours. After cooling, the loss on
ignition (LOI) was calculated by the weight difference before and
after heating. A mixture with 0.8 g powder and 8 g Li2Bi4O7 was
fused in an auto fluxer at 1050°C–1100°C, the yielded flat molten
glass disk was used to take major element analysis by an X-ray
fluorescence spectrometer. The analytical precision of this
procedure is better than ±1%–2%. Whole-rock trace element

analysis was carried out at ALS Chemx Co. Ltd. (Guangzhou,
China). To determine the trace element contents, 0.2 g whole-
rock powder was mixed with 0.9 g lithium metaborate flux and
then melted in a furnace at 1000°C. After cooling, the resulting glass
was dissolved in 100 mL of 4% nitric acid, and the yielding solution
was then analyzed by ICP-MS. The analytical precision is better
than ±5% for trace elements.

3.2 Whole-rock Sr–Nd–Hf-Pb isotope
analyses

Whole-rock Sr, Nd, Hf and Pb isotope ratios were determined
using a Thermo Scientific Neptune multi-collector (MC)–ICP–MS
at the CAS Key Laboratory of Crust-Mantle Materials and
Environments at USTC, Hefei, China. Chemical separation prior
to analysis was undertaken using conventional ion-exchange
approaches, with details of the protocol can be found elsewhere
(Yang et al., 2010; 2011; Yang et al., 2012 Y.-H.; Li et al., 2016a; Chu
et al., 2019; Ma et al., 2022). About 100–150 mg fine sample powder
was dissolved in a mixture of 2.5 mL concentrated HF, 0.2 mL
HNO3 and HClO4 in a steel-jacketed Teflon bomb and then
placed in an oven at 190°C for 1 week. After complete
dissolution, each sample was dried at high temperature (fuming
HClO4) on a hot plate, followed by treatment with 14 M HNO3,
evaporation overnight, and subsequent taking up in 3 M HNO3 +
3% m/v H3BO3. After resealing the capsule, it was heated on a hot
plate at 100°C overnight for chemical purification.

FIGURE 2
Photomicrographs (under crossed polarized light) for the Beihuaiyang alkaline intrusive rocks in the Dabie orogen. Mineral abbreviations are after
Whitney and Evans (2010).
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Using Eichrom DGA resin (50–100 μm, 2 mL), Sr, Nd, and Pb
were first separated from the matrix. After eluting and collecting the
major elements fraction with 3 M HNO3+3%m/v H3BO3, Sr and Pb
fractions were collected for further purification. The column was
then rinsed with 12 M HNO3 to remove any residual Ca effectively
before the Hf fraction was collected, followed by separation of the Hf
fraction using 3.5 M HNO3 and 0.2 M HF. A 2 M HCl was finally
used to elute the Nd fraction. Further purification of the Sr and Pb
fraction was performed with a Sr-specific resin (100–150 μm,
0.2 mL) prior to mass spectrometer analysis (Yang Y.-H. et al.,
2012; Li et al., 2016a; Ma et al., 2022).

An analysis of Sr, Nd, Hf and Pb isotope ratios was conducted at
the CAS Key Laboratory of Crust-Mantle Materials and
Environments in USTC, Hefei, China, using a Neptune Plus MC-

ICP-MS. Whole procedural blanks were less than 100 pg for Sr,
50 pg for Nd and 50 pg for Pb. The 87Sr/86Sr, 143Nd/144Nd and 176Hf/
177Hf ratios were normalized to 86Sr/88Sr = 0.1194, 146Nd/144Nd =
0.7219 and 179Hf/177Hf = 0.7325, respectively, using the exponential
law. During the period of data acquisition, standard analyses yielded
results of 87Sr/86Sr = 0.710266 ± 12 (2σ, n=12) for NBS987, 143Nd/
144Nd = 0.512097 ± 6 (2σ, n=12) for JNdi, 176Hf/177Hf = 0.282185 ± 6
(2σ, n=12) for Alfa Hf, and 206Pb/204Pb = 16.9397 ± 8 (2σ, n=8),
207Pb/204Pb = 15.4969 ± 8 (2σ, n=8), 208Pb/204Pb = 36.7156 ± 2 (2σ,
n=8) for NBS981. In addition, USGS reference material BHVO-2
was also processed for Sr-Nd-Hf-Pb isotope analyses, giving ratios of
0.703474 ± 10 (2σ, n=2) for 87Sr/86Sr, 0.512982 ± 6 (2σ, n=2) for
143Nd/144Nd, 0.283084 ± 6 (2σ, n=2) for 176Hf/177Hf, and 18.6485 ± 8
(2σ, n=2), 15.5288 ± 20 (2σ) and 38.2379 ± 2 (2σ, n=2) for 206Pb/

FIGURE 3
Representative zircon CL images and concordia diagrams of LA-ICP-MS U–Pb isotopic data for the Beihuaiyang alkaline intrusive rocks in the Dabie
orogen. The inside smallest circles denote the analytical spots for O isotopes; the middle and outside circles denote the analytical spots for U–Pb ages
and Hf isotopes. The numbers below zircon grains denote U-Pb ages, εHf(t) and δ18O values in order.
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204Pb, 207Pb/204Pb, and 208Pb/204Pb, respectively, which are consistent
with the recommended values within analytical errors (Weis et al.,
2005; 2006; 2007).

3.3 Zircon in situ U-Pb and Hf isotopes

Zircon grains were mounted in an epoxy resin and polished to
reveal their inner centers. Cathodoluminescence (CL) imaging was
conducted to select positions before in situ U-Pb dating and Hf isotope
analysis. The zircon U–Pb analyses were conducted using a
LA–ICP–MS at the CAS Key Laboratory of Crust–Mantle Materials
and Environments, USTC, Hefei, China. According to the approach
outlined by Yuan et al. (2004), a GeoLasHD ablation system equipped
with a 193 nm excimer laser was employed with an Agilent 7900 ICP-
MS. A carrier gas was used, helium, which was combined with argon in
a homogenizer before entering the ICP. The zircon standards 91500 and
GJ-1, alongwith the standard glasses BHVO-2G, BCR-1G, and BIR-2G,
were evaluated for isotopic fractionation and trace element
determinations. ICPMSDataCal (Liu et al., 2008) was used to reduce
the resulting data and Isoplot version 3.0 was used to calculate ages
(Ludwig, 2003). Age uncertainties are quoted at the 95% confidence
level, and the GJ-1 standard zircon analysis gave an age of 602.3 ±
4.6 Ma (2 SD, n = 30).

Zircon Lu-Hf isotope analysis was undertaken using a Thermo
Scientific Neptune multi-collector (MC–ICP–MS) coupled with a
193 nm ArF excimer laser ablation system at the CAS Key
Laboratory of Crust-Mantle Materials and Environments at
USTC, Hefei, China. The analysis used the approach outlined by

Gu et al. (2019). Analysis spots were chosen within or close to the
exact zircon domains for U–Pb dating with a laser spot diameter of
44 μm and a repetition rate of 10 Hz. Analytical quality was
monitored by repeat analysis of the Qinghu and 91500 standard
zircons, yielding a mean 176Hf/177Hf ratio of 0.282990 ± 20 (2σ, n=5)
and 0.282290 ± 22 (2σ, n=4), respectively, consistent with the
reference values for these standards (Blichert-Toft, 2008; Morel
et al., 2008; Sláma et al., 2008; Li et al., 2013).

3.4 SIMS zircon O isotope analysis

Zircon in situ O analysis for samples 19BHY30, 19BHY49 and
19BHY59 was conducted by a Cameca IMS 1280-HR at the State
Key Laboratory of Isotope Geochemistry, Guangzhou Institute of
Geochemistry, CAS, Guangzhou. Analytical procedures are identical
to those described by Li et al. (2010a) and Yang et al. (2018, 2020).
The Cs+ primary ion beam with an intensity of ~2 nA was
accelerated to 10 kV and rasterized over 10 μm in size diameter.
For the correction of the instrumental mass fractionation (IMF), the
zircon standard Penglai was used, with a recommended δ18O value
of 5.31‰ ± 0.10‰ (Li et al., 2010b). The internal precision of every
single analysis of δ18O value is generally better than ±0.20‰. As
assessed by the reproducibility of repeated analyses of the Penglai
standard, the external precision during this study is 0.17‰ (2 SD,
n = 25). Accordingly, the measured δ18O value of Qinghu, which is
used as a reference value to verify the validity of the IMF, is 5.38‰ ±
0.12‰ (2 SD, n = 26), which is consistent with the reference value
within analytical error (Li et al., 2013).

FIGURE 4
Diagrams of SiO2 versus total alkali contents (A), Na2O contents versus K2O contents (B), chondrite-normalized REE (C) and primitive mantle-
normalized trace element (D) distribution for the Early Cretaceous Beihuaiyang alkaline intrusive rocks in the Dabie orogen. The classification in (A) is after
Middlemost (1994), the classification in (B) is after Turner et al. (1996), the chondrite REE contents and the primitive mantle trace element contents are
from McDonough and Sun (1995). The literature data are from Zhou et al. (1995), Yang et al. (2002), and Zhou et al. (2014).
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4 Results

4.1 Zircon U-Pb ages

In situ zircon U-Pb dating was performed on zircon grains from
six alkaline intrusive rocks, and the results are listed in
Supplementary Table S1. Zircon grains generally display
oscillatory, band or unclear zonings in CL images, which are
typical of magmatic origin (Figure 3). These samples yield U–Pb
ages of 122.6 ± 0.6 Ma (n = 25, MSWD = 1.2) to 131.3 ± 1.4 Ma (n =
18, MSWD = 1.6) for the syn-magmatic zircons. One residual
metamorphic zircon core with an age of 211 Ma is also observed
with a Th/U ratio of 0.02.

4.2 Whole-rock major and trace elements

A total of nineteen alkaline intrusive rocks from the Beihuaiyang
zone were analyzed for whole-rock major and trace elements, and
the results are presented in Supplementary Table S2. All major
element contents have been normalized to 100% on a loss of ignition
free basis prior to plotting.

These samples display high Na2O+K2O contents of 11.1–11.8
wt% and plot into the syenite and nepheline syenite fields in the total
alkali-silica (TAS) classification diagram (Figure 4A). They also have
high K2O/Na2O ratios of 1.30–2.69, except for 19BHY25 with a low

K2O/Na2O ratio of 0.62. On the diagram of K2O versus Na2O
(Figure 4B), they fall into the shoshonitic and ultrapotassic fields. In
the chondrite-normalized rare earth element (REE) diagram
(Figure 4C), the Beihuaiyang alkaline intrusive rocks are
characterized by strong LREE enrichment relative to heavy REE
(HREE) with high (La/Yb)N ratios of 31.7–218.3, and either negative
or positive Eu anomalies (Eu/Eu* = 0.51–1.17). In the primitive
mantle-normalized trace element diagram (Figure 4D), they are
characterized by the enrichment of LILE (Rb, K and Pb) but
depletion of P and high field strength elements (HFSE), such as
Nb, Ta and Ti.

Generally, the Fe2O3
T, TiO2, MgO and P2O5 contents of these

alkaline intrusive rocks show roughly decreasing trends with
increasing SiO2 (Figures 5A, C, E), whereas the K2O content
shows an increasing trend with increasing SiO2 (Figure 5B).
These samples have high Sr (480–3040 ppm) content and display
a decreasing trend with increasing SiO2 content (Figure 5F).

4.3 Whole-rock Sr-Nd-Hf-Pb isotopes

The Sr-Nd-Hf isotope analyses were performed on nineteen
Beihuaiyang alkaline intrusive rocks, and seventeen of them were
also performed for Pb isotope analysis (Supplementary Table S3).
The initial (87Sr/86Sr)i ratios, εNd(t) values, εHf(t) values and initial Pb
isotope ratios of the Beihuaiyang alkaline intrusive rocks were

FIGURE 5
Harker plots of SiO2 versus major and trace elements for the Beihuaiyang alkaline intrusive rocks in the Dabie orogen. Literature data are same as
those in Figure 4.

Frontiers in Earth Science frontiersin.org07

Sun et al. 10.3389/feart.2023.1194555

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1194555


calculated back to 126 Ma based on zircon U-Pb dating results
(Figure 3). These rocks have relatively high (87Sr/86Sr)i ratios of
0.7092–0.7098, negative εNd(t) values of −16.0 to −14.4 (Figure 6A),
corresponding to two-stage Nd model ages of 2230–2096 Ma
(Supplementary Table S3). They also show negative εHf(t) values
of −17.5 to −15.6 (Figure 6B), corresponding to two-stage Hf model
ages of 2303–2185 Ma. As shown in Figure 6B, the samples are
plotted near the Nd-Hf Terrestrial Array (εHf(t) = 1.55 × εNd(t) +
1.21; Vervoort et al., 2011) and do not exhibit significant Hf-Nd
isotope decoupling. The (206Pb/204Pb)i (207Pb/204Pb)i and (208Pb/
204Pb)i ratios of the Beihuaiyang alkaline intrusive rocks are
17.232–17.452, 15.501–15.529 and 37.710–38.018, respectively.
On the (207Pb/204Pb)i versus (206Pb/204Pb)i diagram, these alkaline
intrusive rocks are plotted left of the Earth Geochron and above the
Northern Hemisphere Reference Line (NHRL) (Figure 6C; Hart,
1984). In addition, they also fall above the NHRL on the (208Pb/
204Pb)i versus (

206Pb/204Pb)i diagram (Figure 6D).

4.4 Zircon in situ Hf-O isotopes

The zircons from the six samples that were dated by LA-ICP-MS
were also analyzed for Lu–Hf isotopes by LA-MC-ICP-MS, and four
samples were selected to perform zircon in situ O isotopes by SIMS.
The analyzed domains for in situ U-Pb and Hf-O isotopes are the
same or close to each other. The syn-magmatic zircon domains
display three groups of δ18O values and εHf(t) values (Figure 7A).
Group I has low δ18O values of 3.00‰–3.82‰, high εHf(t) values
of −5.1 to 5.6 and young two-stage Hf model ages of 1497 to 820 Ma;
Group II has medium δ18O values of 4.42‰–5.17‰, variable and
negative εHf(t) values of −22.5 to −4.5 and variable old two-stage Hf
model ages of 2595 to 1463 Ma; Group III has high δ18O values of
5.87‰–6.74‰, negative εHf(t) values of −6.9 to −14.0 and medium
two-stage Hf model age of 2061 to 1615 Ma (Figures 7A, B). The
relict zircon with U-Pb age of 211 Ma has εHf(t) value of −15.0 and
two-stage Hf model age of 2187 Ma.

FIGURE 6
(A) Diagram of (87Sr/86Sr)i ratios versus εNd(t) values for the Early Cretaceous Beihuaiyang alkaline intrusive rocks in the Dabie orogen. The Sr-Nd
isotope compositions for the lithospheric mantle of the North China Block (Zhang and Yang, 2007), ultra-high pressure metamorphic rocks in Central
Dabie and South Dabie (Ames et al., 1996; Chavagnac and Jahn, 1996; Chen and Jahn, 1998; Li et al., 2000; Ma et al., 2000; Xia et al., 2008), ultra-high
pressuremetamorphic rocks in North Dabie (Ma et al., 2000; Zheng et al., 2000; Liu et al., 2005), post-collisional granitoids (Chen et al., 2002; Zhang
et al., 2002; 2010; Wang et al., 2007; Huang et al., 2008; Xu et al., 2008), and post-collisional mafic-ultramafic instrusives (PCMI) (Chen and Jahn, 1998; Li
et al., 1998; Jahn et al., 1999; Wang et al., 2005; Zhao et al., 2005; Huang et al., 2007; Dai et al., 2012) are also plotted for comparison. (B) Plot of whole-
rock εHf(t) versus εNd(t) for the Beihuaiyang alkaline intrusive rocks in the Dabie orogen. The Terrestrial Array is after Vervoort et al. (2011). All data are
calculated at t =126 Ma. Diagrams of initial 206Pb/204Pb ratios versus initial 207Pb/204Pb ratios (C) and initial 206Pb/204Pb ratios versus initial 208Pb/204Pb
ratios (D) for the Early Cretaceous Beihuaiyang alkaline intrusive rocks in the Dabie orogen. The Pb isotope compositions for the lithospheric mantle
of the North China Block (Zhang et al., 2002), ultra-high pressure metamorphic rocks in Central Dabie and South Dabie (Zhang et al., 2002; Li et al.,
2003; Shen et al., 2014), ultra-high pressure metamorphic rocks in North Dabie (Zhang et al., 2002; Li et al., 2003; Shen et al., 2014), post-collisional
granitoids (Zhang et al., 2002; Huang et al., 2008), and post-collisional mafic-ultramafic intrusives (PCMI) (Wang et al., 2005; Huang et al., 2007; Dai
et al., 2012) are also plotted for comparison. NHRL-Northern Hemisphere reference line (207Pb/204Pb)NHRL = 0.1084 × (206Pb/204Pb)i + 13.491 (208Pb/
204Pb)NHRL = 1.209 × (206Pb/204Pb)i + 15.627 (Hart, 1984). The literature data are from Zhou et al. (1995) and Yang (2002).
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5 Discussion

The LA-ICP-MS zircon U-Pb dating for the Beihuaiyang
alkaline intrusive rocks yielded concordant ages of 131.3 ±
1.4 Ma to 122.6 ± 0.6 Ma (Figure 3), which agree well with those
dating results by previous studies (Zhou et al., 1995; Yang et al.,
1999; Zhou et al., 2014). These ages are coeval with the Early
Cretaceous post-collisional magmatism in the Dabie orogen, but
postdate the UHP metamorphism due to the collision between the
South China Block and North China Block (Zhao and Zheng, 2009).
In this respect, these alkaline intrusive rocks belong to post-
collisional igneous rocks.

These post-collisional alkaline intrusive rocks have arc-like trace
element distribution patterns, such as enrichment in LREE and LILE
but depletion in HREE and HFSE, and enriched radiogenic whole-
rock Sr-Nd-Hf isotopes with high initial (87Sr/86Sr)i and negative
εNd(t) and εHf(t) values. These geochemical compositions show a
strong affinity to the continental crust, which is generally
characterized by arc-like trace element distribution patterns and
enriched radiogenic isotope compositions. Furthermore, one
residual zircon core with U–Pb age of 211 Ma was observed in
this study, consistent with the Triassic metamorphic age for the
UHP rocks in the Dabie–Sulu orogenic belt (Zheng et al., 2004; Tang

et al., 2008a; Tang et al., 2008b; Zheng et al., 2009). Therefore, the
geochemical compositions of the Early Cretaceous Beihuaiyang
alkaline intrusive rocks suggest that continental crust materials
have played an important role in their petrogenesis.

5.1 Influence of syn/post-magmatic
processes

Syn/post-magmatic processes, such as fractional crystallization
and/or crustal assimilation (AFC process) and water-rock
interaction, would influence the geochemical compositions of
magmas after they were formed in their sources. It is necessary
to evaluate these factors before discussing their petrogenesis and the
nature of their magma source. The low loss on ignition (LOI)
contents of 1.18–3.24 wt% and the poor relationship between the
LOI and fluid-mobile element contents (not shown) indicate that
later alteration has a negligible influence on the geochemical
compositions of the alkaline intrusive rocks in this study.

It is generally accepted that the continental crust is characterized
by high SiO2 content, high incompatible element contents and high
(87Sr/86Sr)i ratios but low εNd(t) values and compatible element
contents. Once influenced by crustal assimilation, the igneous
rocks would exhibit covariant trends between their SiO2 contents
and trace element contents or isotopes mentioned above. Although
the Beihuaiyang alkaline intrusive rocks have variable major and
trace elements, they have consistent REE and trace element
distribution patterns and restricted Sr-Nd-Hf-Pb isotope
compositions. Additionally, there are no obvious correlations
between their initial (87Sr/86Sr)i ratios (Figure 8A) or εNd(t) values
(Figure 8B) and their SiO2 contents. All these pieces of evidence
indicate that crustal assimilation has played a negligible role in their
geochemical compositions.

The Beihuaiyang alkaline intrusive rocks have moderate SiO2

contents of 55.5–60.4 wt%, low MgO contents of 0.25–2.07 wt%
and variable Mg# number of 17.57–50.44, indicating they may
experience fractional crystallization during their emplacement.
The decreasing Fe2O3

T, TiO2 and P2O5 contents with increasing
SiO2 content (Figures 5C–E) together with negative P and Ti
anomalies (Figure 4D) suggest Fe-Ti oxides and apatite may be
fractionated. In addition, the decreasing Sr content with increasing
SiO2 content and negative Eu, Ba and Sr anomalies for most samples
(Figure 4D) indicate the fractionation of K-feldspar and plagioclase.
This is because Ba is dominant in K-feldspar while Sr and Eu are
mainly hosted by plagioclase. Notably, a few samples also show
positive Eu, Ba and Sr anomalies and high contents of these
elements, which may indicate that they did not undergo
fractional crystallization but accumulation of K-feldspar and
plagioclase (Figure 4D).

In summary, the alkaline intrusive rocks from the Beihuaiyang
zone do not appear to be significantly affected by crustal
assimilation, but they did undergo considerable crystal
fractionation during magma ascent. Although the crystal
fractionation can significantly affect whole-rock major and trace
element compositions, it does not significantly affect their
radiogenic Sr-Nd-Hf-Pb and zircon in situ O isotope
compositions. This may explain why they show a wide range of
whole-rock major and trace elements content but a restricted range

FIGURE 7
ZirconHf andO isotope relationships for the Beihuaiyang alkaline
intrusive rocks in the Dabie orogen. (A) δ18O versus εHf(t), (B) δ18O
versus TDM2.
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of isotope compositions. As a result, their isotopic characteristics are
primarily determined bymagma source and can be used to constrain
the nature of magma source.

5.2 The source nature of the beihuaiyang
syenites

Numerous petrological, geochemical and experimental studies
have shown that alkaline intrusive rocks can be produced either by
fractional crystallization of alkaline basaltic magma (e.g., Irving and
Price, 1981; Eby et al., 1998) or partial melting of crustal rocks
caused by an influx of volatiles and alkalis (e.g., Hay andWendlandt,
1995; Kaszuba and Wendlandt, 2000; Legendre et al., 2005) or low
degrees of partial melting of metasomatized lithosphere mantle (e.g.,
Laporte et al., 2014; Ashwal et al., 2016). Due to the lack of
contemporaneous alkaline mafic igneous rock, we can exclude
the first possibility. Despite their variable Mg# values, a few
Beihuaiyang alkaline intrusive rocks have high Mg# values (up to

50.44) and MgO contents (2.02–2.07 wt%) as well as positive zircon
εHf(t) values, indicating their derivation from mantle rocks rather
than crustal rocks. According to previous studies (Jung et al., 2007;
Ding et al., 2011), K-rich alkaline intrusive rocks produced by partial
melting of mafic lower continental crust under high pressure
generally have high Al2O3 and Sr contents but low Y and HREE
contents, resulting in significantly high Sr/Y ratios. However, the
high K2O contents (>4 wt%), together with negative correlations
between Al2O3, Y contents and Sr/Y ratios (Figure 9), suggest that
they are unlikely to be the product of partial melting of mafic lower
continental crust.

Low-degree partial melting of pre-enriched lherzolite at
pressures of 1.0–1.5 GPa can produce phonolitic melts with Mg#
of 50–60 (Irving and Price, 1981; Draper and Green, 1997; Laporte
et al., 2014). Because of the lack of feldspar fractionation at mantle
pressures, Ba and Sr concentrations are typically very high and range
from several hundred to thousands of ppm (Irving and Price, 1981).
These features are consistent with those of the Beihuaiyang alkaline
intrusive rocks, supporting their origination from the mantle rather

FIGURE 8
Diagrams of SiO2 contents versus initial

87Sr/86Sr ratios (A) and SiO2 contents versus εNd(t) values for the Beihuaiyang alkaline intrusive rocks in the
Dabie orogen. The literature data sources are same as those in Figure 6.
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than ancient continental crust (Zhou et al., 1995). Based on the
enriched radiogenic isotope compositions and arc-like trace element
distribution patterns, it has been suggested that these alkaline
intrusive rocks originated from the enriched lithospheric mantle
metasomatized by the subducted continental crust materials (Yang
et al., 2002; Xia et al., 2008; Zhou et al., 2014). Nevertheless, the
origin and the nature of the subducted crustal material are still less
constrained.

The Early Cretaceous Beihuaiyang alkaline intrusive rocks in the
Dabie orogen have more enriched Sr-Nd isotope compositions than
the North China lithospheric mantle (Figure 6A), suggesting that
they were not directly derived from the unmetasomatized North
China lithospheric mantle. The Beihuaiyang alkaline intrusive rocks
are located within the Dabie orogen, which was built by the
northward subduction of the South China Block beneath the
North China Block during the Triassic (e.g., Cong, 1996; Faure
et al., 2003; Zheng et al., 2003). These facts suggest that the crustal
materials metasomatized the overlying lithospheric mantle of North
China most likely come from the subducted South China Block.
Previous studies on the post-collisional mafic igneous rocks in the

Dabie-Sulu orogenic belt and the southeastern margin of North
China have demonstrated that the subducted continental crust
materials were involved in their mantle sources (Zhao et al.,
2013; 2015). A three-layer crustal architecture was proposed for
the Dabie orogen before the Early Cretaceous magmatism according
to Sr-Nd-Hf-Pb isotope compositions of the metamorphic rocks and
post-collisional granites (Zhang et al., 2002; Li et al., 2003; Zhao
et al., 2008; 2011; Shen et al., 2014), with Central Dabie and South
Dabie representing the upper layer, North Dabie representing the
middle layer and the source of the post-collisional granites
representing the lower layer of the subducted South China Block.
The Sr-Nd-Hf isotope compositions are gradually enriched from the
upper to lower layers, while the Pb isotope composition
progressively becomes depleted (Figure 6).

The Sr-Nd isotope compositions of these alkaline intrusive rocks fall
within the fields of the Central-South Dabie and North Dabie
metamorphic rocks (Figure 6A). However, in the Pb isotope
composition diagrams (Figures 6C,D), most of them fall within the
fields of the Central and South Dabie metamorphic rocks, with only a
few samples in the North Dabie field. In this regard, the mantle source
of the alkaline intrusive rocks would be metasomatized by materials
from the subducted upper and middle continental crust of the South
China Block. It is generally accepted that the metasomatic agents in
subduction zones are generally aqueous solutions and hydrous melts,
the former is only capable of carrying water-mobile elements, such as
LILE, while the latter carries not only water-mobile elements but water-
immobile elements, such as REE and HFSE (Zheng, 2019). Given that
the Beihuaiyang alkaline intrusive rocks have similar Sr-Nd-Pb isotope
compositions comparable to the subducted upper and middle crust of
the South China Block and that their Nd-Hf isotope compositions are
not decoupled (Figure 6), we suggest that the mantle source of the Early
Cretaceous Beihuiayang alkaline intrusive rocks is the lithospheric
mantle of the North China Block metasomatized by the melts from
the subducted upper and middle continental crust of the South China
Block during the Triassic.

The zircons in these alkaline intrusive rocks have three groups of
Hf-O isotope compositions, suggesting the mantle source contains
crustal materials with both low to high εHf(t) and δ18O values. Group
I zircon has low δ18O values of 3.00‰–3.82‰, high εHf(t) values
of −5.1 to 5.6 and young two-stage Hf model ages of 1497 to 820 Ma,
which are comparable to the metaigneous rocks in the Central Dabie
(Figures 10A, B). Based on the result of Li et al. (2011), the εHf(t)
value (t = 126 Ma) of the lithospheric mantle beneath the North
China Block is about −13.1. As its O isotope composition was
unconstrained, we assume that it has the normal mantle zircon
δ18O values of 5.3‰ ± 0.3‰ (Valley et al., 1998). Therefore, the Hf-
O isotope compositions of Group I zircon can be mainly attributed
to the recycling of the subducted upper crust of the South China
Block, which have undergone high-T water-rock interaction during
the Neoproterozoic (Zheng et al., 2003; 2004; 2009; Chen et al., 2007;
2010; Tang et al., 2008a; 2008b; He et al., 2016). Although Group II
and Group III zircons have different δ18O values of 4.42‰–5.17‰
and 5.87‰–6.74‰, they have similar two-stage Hf model ages of
2595 to 1463 Ma, which are comparable to the metaigneous rocks in
North Dabie (Figures 10C, D) but different from those of the
lithospheric mantle beneath the North China Block. The lower
zircon εHf(t) values and older Hf model ages as well as higher
δ18O values for Group II and III zircons suggest their origination

FIGURE 9
Diagrams of Al2O3 contents versus Sr/Y ratios (A) and Y contents
versus Sr/Y ratios (B) for the Beihuaiyang alkaline intrusive rocks in the
Dabie orogen. The literature data sources are same as those in
Figure 5.
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from the recycled middle crust as represented by the North Dabie
UHP rocks. In addition, materials from the different layers of the
subducted South China Block were also suggested to be incorporated
into themantle source of post-collisional mafic to ultramafic igneous
rocks in the Dabie orogen based on their zircon Hf-O isotope
compositions (Dai et al., 2011).

The Early Cretaceous Beihuaiyang alkaline intrusive rocks in the
Dabie orogen have moderate SiO2 contents (55.5–60.4 wt%), high
K2O contents (4.26–9.40 wt%) and high K2O/Na2O ratios
(0.62–2.69), which require the presence of potassium-rich
minerals in their mantle source (Wang H. et al., 2014). It is
generally acknowledged that phlogopite and amphibole are the
two major potassium-rich phases in the lithospheric mantle
(Spāth et al., 1996; Turner et al., 1996; Sun et al., 2014; Conticelli
et al., 2015). According to the results of previous studies (Furman
and Graham, 1999), melts from phlogopite-bearing mantle source
have high Rb/Sr ratios (>0.1) but low Ba/Rb ratios (<20), while melts
from amphibole-bearing mantle source have low Rb/Sr ratios
(<0.05) but high Ba/Rb ratios (>30). The Early Cretaceous
Beihuaiyang alkaline intrusive rocks in the Dabie orogen show
high Rb/Sr (0.06–0.70) and low Ba/Rb (0.89–30.16) ratios
(Figure 11), indicating that phlogopite is the dominant
potassium-rich phase in their mantle source. Experimental
studies have shown that partial melting of phlogopite-bearing
mantle peridotite can directly produce potassic magmas with
SiO2 contents of 52–64 wt% (Condamine and Médard, 2014;
Mallik et al., 2015; Förster et al., 2019). Therefore, the Early
Cretaceous Beihuaiyang alkaline intrusive rocks may originate
from partial melting of the phlogopite-bearing mantle source.
Meanwhile, the presence of phlogopite in the mantle source
suggests that the mantle source was enriched in potassium by
metasomatism before magmatism (Laporte et al., 2014).
Combined with the element and isotope compositions of the
Early Cretaceous Beihuaiyang alkaline intrusive rocks, we suggest
that they originated from low degrees of partial melting of the

FIGURE 10
Comparisons of zircon Hf and O isotope compositions between the Beihuaiyang alkaline intrusive rocks and the UHP metamorphic rocks in the
Dabie orogen. Data sources: the UHP granitic gneisses and eclogites in Central Dabie (Zheng et al., 2004; Zheng et al., 2005; Zheng et al., 2006); the UHP
granitic gneisses and granulites in North Dabie (Zheng et al., 2004; Zhao et al., 2005; 2008; Lei and Wu, 2008). Groups I (A, B) and Group II and III (C, D)
zircon δ18O values and Hf model ages for the Beihuaiyang alkaline intrusive rocks are comparable to those of the subducted continental crust in
Central Dabie (upper layer) and North Dabie (middle layer), respectively.

FIGURE 11
Diagram of Ba/Rb ratios versus Rb/Sr ratios for the Beihuaiyang
alkaline intrusive rocks in the Dabie orogen. The literature data sources
are same as those in Figure 5.
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lithospheric mantle metasomatized by the melts from the subducted
upper and middle crust of the South China Block.

5.3 Crust-mantle interaction during the
continental collision

The Early Cretaceous (131.3–122.6 Ma) Beihuaiyang alkaline
intrusive rocks are coeval with the post-collisional magmatism in the
Dabie orogen (e.g., Zhao and Zheng, 2009), indicating that they are
post-collisional igneous rocks. As discussed above, they originated
from partial melting of the enriched lithospheric mantle, which was
metasomatized by melts from the subducted upper and middle crust
of the South China Block in the Triassic. Thus, the melt-peridotite
reaction would be themechanism for producing the enrichedmantle
source.

Previous studies on UHP metamorphic rocks in the Dabie-Sulu
orogenic belt have confirmed that the subducted continental crust
were partially melted at varying degrees during the continental
subduction/collision in the Triassic (Xia et al., 2008; Zheng et al.,
2011; Liu et al., 2012; 2014; Chen et al., 2013; Wang L. et al., 2014).
Furthermore, M-type peridotites in the Dabie-Sulu orogenic belt
also record extensive evidence of melt/fluid metasomatism (Zhang

et al., 2011; Zheng et al., 2011), which was demonstrated by many
petrological and geochemical evidence, such as the metasomatism-
generated zircons with 206Pb/238U ages ranging from 220 ± 2 Ma to
231 ± 4 Ma (Zhang et al., 2005; Li et al., 2016b), their whole-rock arc-
type trace element signatures and enriched Sr-Nd isotope
compositions, and the occurrence of water-bearing minerals (e.g.,
auriferous mica and Ti-plagioclase magnesite). All these pieces of
evidence suggest that during the collision between the South China
Block and North China Block in the Triassic, the continental
lithospheric mantle wedge of the North China Block was
metasomatized by the melts/fluids released from the subducted
South China Block, forming a fertile and enriched orogenic
lithospheric mantle (Zheng, 2012; Zheng and Hermann, 2014).
For the Early Cretaceous Beihuaiyang alkaline intrusive rocks, the
involvement of the subducted crustal materials into their mantle
source can explain their arc-like trace element distribution patterns
(i.e., enrichment in LREE and LILE but depletion in HREE and
HFSE) and enriched radiogenic isotope compositions (i.e., high
initial (87Sr/86Sr)i ratios and negative εNd(t) and εHf(t) values,
Figures 6A,B). Meanwhile, the (87Sr/86Sr)i ratios, εNd(t) values and
initial Pb isotope compositions of the Early Cretaceous Beihuaiyang
alkaline intrusive rocks in the Dabie orogen fall within the fields of
the Central Dabie, South Dabie and North Dabie UHPmetamorphic
rocks (Figure 6), which represent the upper and middle continental
crust of the subducted South China Block (Zheng et al., 2005; Zheng
et al., 2006; Liu and Li, 2008; Liu, 2018). This suggests that the crustal
materials involved in the mantle source of the Early Cretaceous
Beihuaiyang alkaline intrusive rocks mainly originated from the
upper and middle continental crust of the South China Block.

Collectively, the subducted upper and middle continental crust of
the SouthChina Blockwas partiallymelted during the Triassic, resulting
in felsic melts that were enriched in LREE, LILE and radiogenic
isotopes, but depleted in HREE and HFSE. These melts have reacted
with the lithospheric mantle wedge of the North China Block, resulting
in phlogopite-bearing metasomatites that were stored for about
100 Myr (Figure 12A). During the post-collisional stage in Early
Cretaceous (Figure 12B), the metasomatized lithospheric mantle was
partially melted to form the Beihuaiyang alkaline intrusive rocks due to
the extension of the continental lithospheric and the collapse of the
orogen (Zheng and Zhao, 2017).

6 Conclusion

The Early Cretaceous Beihuaiyang alkaline intrusive rocks were
formed at 123–131 Ma, which are consistent with the time of
significant post-collisional magmatism in the Dabie orogen. They
were produced by low degrees of partial melting of the enriched
lithospheric mantle based on their element and isotope
characteristics. During the continental collision between the
South China Block and the North China Block in the Triassic,
the subducted upper and middle continental crust of the South
China Block was partially melted, and the resulting felsic melts have
reacted with the lithospheric mantle of the North China Block to
produce the enriched mantle metasomatites. As the lithosphere of
the orogen was thinned and extended in the post-collisional stage,
partial melting of these mantle metasomatites resulted in the
formation of the Early Cretaceous Beihuaiyang alkaline intrusive

FIGURE 12
Schematic cartoon illustrating interaction between the overlying
lithospheric mantle and the subducted continental crust, and the
formation of Beihuaiyang alkaline intrusive rocks in the Dabie orogen.
(A) Metasomatism of the overlying lithospheric mantle wedge
peridotite by hydrous silicate melts derived from the upper (Central
Dabie) and middle layers (Noth Dabie) of the subducted South China
Block to form the orogenic lithospheric mantle in the Triassic. (B)
Partial melting of the metasomatized mantle to form the Beihuaiyang
alkaline intrusive rocks due to the extension of the continental
lithosphere and the collapse of the orogen in the Early Cretaceous.
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rocks. Therefore, the Early Cretaceous Beihuaiyang alkaline
intrusive rocks in the Dabie orogen provide a new perspective for
understanding the crust-mantle interaction and the post-collisional
magmatism in the continental collision orogen.
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