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A multi-parameter comprehensive early warning method for coal pillar-type
rockburst risk based on the deep neural network (DNN) is proposed in this
study. By utilizing preprocessed data from the surveillance of coal pillar impact
hazards in Yangcheng Coal Mine, this study incorporates training samples derived
from three distinct coal pillar-type impact hazard monitoring methodologies:
microseismic monitoring, borehole cutting analysis, and real-time stress
monitoring. The data characteristics of the monitoring data were extracted,
evaluated, classified, and verified by monitoring the data of different working
faces. This method was applied to develop the depth of multi-parameter neural
network comprehensive early warning software in engineering practice. The
results showed that the accuracy of the depth for burst monitoring data
processing is improved by 6.89%–16.87% compared to the traditional
monitoring methods. This method has a better early warning effect to avoid
the occurrence of coal pillar rockburst hazard.
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1 Introduction

Currently, most impact risk monitoring data processing methods are directly obtained
and classified according to warning values or processed by statistical machine learning
methods based on shallow models. In the feature selection process, these methods rely more
on human subjective factors, which affects the accuracy of impact risk assessment. The
rockburst hazard monitoring data are processed by deep learning feature extraction methods
to avoid the shortcomings of the traditional shallow learning models in feature selection (Ji
et al, 2003; Jiang et al, 2014; Chen et al, 2015; He et al, 2022; Wang, 2022; Li et al, 2023).

The deep learning algorithm is derived from an artificial neural network, known as a
deep neural network (DNN), which is a multilayer perceptron with multiple hidden layers.
The algorithm can learn, adjust, improve, and understand huge data contents and
independently find the optimal solution from data changes (Ren, 2016; Zheng, 2022;
Wang et al, 2023). The rockburst hazard monitoring data are enormous, and the drilling
chip method generally requires drilling multiple holes to judge the rockburst hazard of a
specific roadway or working face while driving and mining (Chen et al, 2013; Zhang, 2020; Li
et al, 2022). Microearthquake monitoring requires arranging 6-8 groups of measuring points.
Each group of measuring points acquires and records monitoring data every 10 seconds,
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stress online monitoring is utilized to arrange more than a dozen
groups of measuring points and record data every few seconds, and a
large number of impact hazard monitoring data are obtained in
actual mining scenarios. However, there are great deficiencies in the
application and processing of data, especially in the in-depth mining
processing of monitoring data feature information (Yuan et al, 2018;
Bao et al, 2019; Ai et al, 2020). Therefore, Chen et al (2020) proposed
the integrated high-precision intelligent microseismic monitoring
technology based on the high-precision time synchronization
strategy of PTP. In general, the velocity model database was used
to match the micro-source location algorithm, and these
technologies were integrated. Many chaotic initial data were
abstracted into distinguishing feature information, evaluated, and
classified through the DNN to ensure that the precursor information
of rockburst hazard monitoring can be accurately identified in the
subsequent monitoring and early warning (Pan, 2003; Bosch et al,
2007; Sun et al, 2013; Lu et al, 2021; Yin, 2022; Zhang et al, 2023).

2 Monitoring method of rockburst
hazard

2.1 Monitoring technology

Rockburst hazard monitoring mainly includes drilling chip
method monitoring, microearthquake monitoring, stress online
monitoring, and electromagnetic radiation (Jiang and Zhao, 2015;
Lan and Zhang, 2022).

Among them, the drilling chip method monitoring mainly
monitors the discharge amount of drilling cuttings, the change in
particle size of drilling cuttings, and the change in drilling noise and
strength and judges the crushing zone range, plastic zone, and elastic
zone in the coal body using a number of drilling cuttings. The rockburst
hazard of the coal pillar is judged by the dynamic effect during drilling
to identify the stress state of the coal body (Zhu et al, 2014; Jia et al,
2019). Generally, a rockburst hazard occurs when the average
pulverized coal amount per meter exceeds the critical pulverized

coal amount. When the pulverized coal increases first and then
decreases with the increase in the drilling depth, it is considered that
there is no impact hazard but stress concentration. The dynamic
properties, such as drilling suction and sticking, are based on the
dynamic characteristics of the rockburst. This is more obvious from
the increase in drill cuttings’ particle size of pulverized coal.

Microearthquake monitoring is mainly used to monitor the
whole mine according to microseismic sensors, determine the
location and energy of the seismic source, compare it with the
energy calculated according to the minimum energy principle, and
adjust the early warning energy combined with the actual
monitoring experience of the mine to determine the monitoring
indicators within the monitoring coal pillar. The driving and mining
speed affect the evolution process of strata fracture movement. The
determination of an early warning value for microearthquake
monitoring should fully reflect the influence of tunneling and
mining, with the early warning value of microearthquake
monitoring for a single event being set to 105 J (Tan et al, 2022;
Wang et al, 2014; Liu et al, 2022; Zhang et al, 2023).

FIGURE 1
Comprehensive early warning technology application diagram.

FIGURE 2
Activation function structure diagram.
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Stress online monitoring takes coal stress increment as the
rockburst hazard evaluation index. Before a rockburst hazard
occurs, there will be a gradual increase in stress, and only when

the stress reaches the coal failure’s ultimate stress, the rockburst will
be caused. At the same time, the stress state in the coal pillar can be
reflected by stress online monitoring, and the safety factor of the coal

FIGURE 3
SVM classification process.

FIGURE 4
Evaluation of the neural network structure by an impact ground.
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pillar can also be obtained by the coal pillar strength. The early
warning of coal pillar impact hazard can be obtained based on the
change in stress increment (Wang et al, 2015; Dou et al, 2020).

2.2 Multi-parameter comprehensive early
warning

The impact monitoring methods are becoming complicated,
with the increase in monitoring data. When monitoring is equipped
with multiple monitoring systems, especially when the monitoring
data are contradictory, it is a common problem to rely on one of the
monitoring methods or comprehensively evaluate multiple
monitoring methods simultaneously (Jiang et al, 2011; Luo et al,
2013; Lv et al, 2013; Wang et al, 2018; Liu and Li, 2023).

Microearthquake monitoring is a means of regional rockburst
hazard monitoring, which has a wide monitoring range and is
suitable for large-scale regional rockburst monitoring. The position
and level of energy events are reflected and confirmed through
microearthquake monitoring. Hence, microearthquake monitoring is
an effective means of regional rockburst monitoring. The earthquake,
quantity, frequency, intensity, density, scale, and properties of rockmass
fracture can be monitored by microseismic monitoring. Stress online
monitoring has the advantages of good continuity and the capability of
monitoring stress change in the coal pillar while reflecting its stress
change. Hence, it is suitable for continuous monitoring of long-term
impact hazards. The position of the stress peak in the coal body and
whether the supporting pressure of the coal body reaches its limit
strength are based on the relationship between the drilling chip’s
monitoring value obtained by the drilling chip method and the
stress state and damage degree of the working face and coal pillar.
The stress in coal mass is reflected by the amount of drilling chips,

which effectively monitors the rockburst risk at a fixed point. The
application of comprehensive multi-parameter monitoring and early
warning technology of rockburst is shown in Figure 1.

For coal pillar rockburst, due to many influencing factors,
rockburst has different stress characteristics and energy variation
laws, and it is difficult to effectively monitor the rockburst hazard by
using a monitoring method. Therefore, an appropriate monitoring
method should be selected based on the expected rockburst
performance characteristics (Jia et al, 2014; Zhang, 2021; Wang
et al, 2022; Liu et al, 2023a; Liu et al, 2023b).

FIGURE 5
Position of the working face and geological condition.

FIGURE 6
Normalization of monitoring data.
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3 Deep learning analysis of monitoring
data

3.1 DNN

The DNN model structure includes an input layer and several
hidden layers. The difference between DNN and BP neural networks
is the number of hidden layers, where DNN has many hidden layers
that might exceed 10 in some cases. The data enter the network from
the input layer and passes through L hidden layers: H(1), H(2), H(3),
and H(L), to perform data abstraction and feature extraction step by
step. H(L) is the desired representation, and this process is the
representation learning of DNN.

The basic unit in DNN is the node which comprises an input,
a state function, and an activation function, wherein the input
includes an input value and a connection weight. The input value
is the same as the output value of the upper node, and the weight
adjusts the node’s connection strength. The state function is the
linear accumulation of the input values and weights, and the node
state is controlled by an offset term. The general state function
form is provided in Eq. 1, while the state function’s matrix is
given in Eq. 2. The activation function is the number used to
select a linear, non-linear, continuous, discrete, numerical, or
probability function to control the output range (Zhang et al,
2015), as shown in Figure 2.

yi � ∑
N

k�1
xkwk + bi, (1)

yi x( ) � xT × w + bi, (2)
where xk is the kth input value of the upper layer of the network,
including energy x1, frequency x2, drilling powder x3, deep hole
stress x4, and shallow hole stress x5; Wk is the connection strength
between the node and xk; and bi is the bias term.

Support vector machine (SVM) plays a critical role in
classification and linear regression. This method uses statistical
learning theory to establish a decision surface and maximize the
isolation between different results. In this paper, the early warning

identification results of coal pillar rockburst hazards are divided
into four situations: danger (DAN), probable danger (CRI),
probable danger (AN), and safety (NOR). The support vector
machine classifier is extended from binary classification to a
multi-class classifier. The classifier is constructed with n(n − 1)/2 �
6 based on the one-to-one method. Hence, six binary SVMs must
be constructed. The specific classification process is shown in
Figure 3.

The DNN constructed in this paper adopts the greedy
initialization method, and the data representation of the neural
network is obtained by iteration of input values. The network’s
internal parameters are initialized to obtain a better initial value that
reduces the possibility of the network falling into the local limit
value. The DNN model adopts greedy initialization layer by layer to
obtain a better training effect, or the optimal value, so that the low-
level network can be fully trained. First, the deep network is built by
restricted Boltzmann machine (RBM), and the marked data and
unlabeled data are used to find the network space W.

A fully connected directional multilayer neural network is
established. The input layer h0 includes energy, frequency,
powder drilling amount, deep-hole stress value, and shallow-
hole stress value. The label layer contains four units: danger,
probable danger, probable danger, and safety. The number of
hidden layers and nodes in each hidden layer are selected
through an iterative approach. In the training process, one
hidden layer is trained first, this layer is fixed next, then two
hidden layers are trained, and multiple hidden layers are trained
according to the second method. Thereafter, the spatial
parameter w of the multilayer network is found through label
data. The gradient descent method is used to train the deep
structure based on the exponential loss function, and the
parameter space is further optimized using the labeled data.
The structure of the rockburst evaluation neural network is
shown in Figure 4.

According to the DNN characteristics, if the number of nodes in
each layer is enough, each hidden layer’s output value contains the
input data’s complete information. Thus, each hidden layer
represents the input data, but the specific form is different.

FIGURE 7
Early warning index of the critical coal quantity.
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3.2 Sample data

The monitoring data of the drilling cutting method,
microseismic monitoring data, and stress online monitoring data
are analyzed based on the monitoring methods and conditions of the
rockburst in Yangcheng Coal Mine. The monitoring data of

rockburst hazards during mining in the 3303 working face of
Yangcheng Coal Mine were collected and used as training data to
develop the neural network. The layout of the 3303 working face of
Yangcheng Coal Mine is shown in Figure 5.

Before using the DNN model to train the impact monitoring
and early warning data, it is necessary to preprocess the mine

FIGURE 8
Daily energy and cumulative energy release curves of typical microearthquakes.

FIGURE 9
Typical stress monitoring curve.
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impact monitoring data and correct and deal with some missing
and obvious errors to ensure data reliability. Preprocessing of
rockburst hazard monitoring data mainly checks the data’s
completeness and accuracy. The specific processing methods
include removing the inaccurate data, trimming the missing
data, and rearranging the out-of-order monitoring data. The
microseismic monitoring system extracts, records, and saves
microseismic events and continuously saves energy signals. The
errors in microseismic monitoring are mainly related to timing
and wave velocity. However, because data processing software
of the microseismic system itself has good data judgment and
extraction ability, the preprocessing of microseismic
monitoring data only requires checking the integrity. Online
stress monitoring data errors are mainly caused by problems
such as initial pressure, pipeline length, and inner diameter, so
it is necessary to eliminate and correct the measuring points
with abnormal initial stress and the wrong points. The problems
of drilling cutting monitoring data are mainly data
discontinuity, errors caused by construction conditions, and
data loss caused by untimely records. Therefore, the processing
of drilling cutting monitoring data needs to complete the
monitoring data and eliminate the wrong parts. The
rockburst hazard monitoring training samples are selected,

FIGURE 10
Multi-parameter integrated flowchart.

FIGURE 11
DNN multi-parameter integrated early warning system.
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and the data are normalized by the mapminmax function. The
processing results are shown in Figure 6.

3.3 Classification index

Determining the monitoring and early warning index of the
drilling cutting method is performed to calculate the amount of
pulverized coal in the area without impact danger and discard the
first 1 m of pulverized coal. Under normal circumstances, the
pulverized coal per m is G, the drilling rate index is K, the
correction coefficient α is 1.1, and the critical pulverized coal
amount is Gi � G · K · α. According to test results, the critical
pulverized coal amount of the early warning index is calculated,
the rockburst danger in the monitored area is judged, and the impact
danger monitoring data sample is selected. The coal powder early
warning index of Yangcheng Coal Mine is shown in Figure 7.

The laws of early warning of impact hazards summarized from
the microseismic monitoring site include total energy active high-
frequency sub-vibration type, vibration silence maintaining high-
frequency sub-vibration type, typical strong impact hazard early
warning, monitoring daily energy release curve, and cumulative
energy characteristic curve, as shown in Figure 8.

According to the monitoring experience of Yangcheng Coal
Mine, early warning is required when the stress increment
reaches 2 MPa, the stress of 8 m measuring point reaches
11 MPa, or the stress of 14 m measuring point reaches
12.5 MPa. High-stress concentration and sudden change are
the necessary conditions to induce a rockburst, so before a
rockburst occurs, the stress values of the surrounding rock all
change greatly. Therefore, analyzing the borehole stress gauge
reveals the change in surrounding rock stress, and when the stress
changes greatly, the rockburst is warned. The typical rockburst
stress monitoring curve is shown in Figure 9.

3.4 Model training

After data preprocessing, the data of microseismic monitoring,
online stress monitoring, and drilling cutting monitoring are selected as
experimental samples. The data are further corresponded according to
timepoints to obtain input vectors, and the sample data are divided into
training and verification data. The microseismic data include energy
and frequency, online stress monitoring data include deep hole stress
and shallow hole stress, and the drilling cuttingmonitoring data include
the number of drilling cuttings.

FIGURE 12
Schematic diagram of DNN multi-parameter comprehensive early warning.
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In the DNNmodel, the performance may be improved with the
deepening of the network layers, but there may also be over-fitting.
For the DNN, there may be a small gradient near the input layer
and a large gradient near the output layer. When the model’s
learning rate is constant, the learning rate near the input layer will
be slow, while that near the output layer will be too fast, which may
lead to local minimum. For such problems, the neural network is
generally optimized by changing the activation function or the
learning rate. Using the ReLU activation function instead of
sigmoid activation function solves the training gradient vanish

problem, and the output of the ReLU activation function is
calculated as max(0, xTw + b).

After preprocessing the data, five-dimensional parameters
corresponding to the pulverized coal amount, energy, frequency,
shallow hole stress, and deep hole stress can be obtained. The
standard sample output divides the impact hazard monitoring
results into four levels: danger, probable danger, probable danger,
and safety. This paper uses the early warning information of
rockburst hazards extracted from the monitoring data of
1310 and 3303 working faces in Yangcheng Coal Mine as

FIGURE 13
Classification results of impact ground pressure evaluation. (A) Two-dimensional view of coal pillar impact hazardmonitoring data classification. (B)
Three-dimensional view of coal pillar hazard monitoring data classification.

TABLE 1 Multi-source information early-warning number table.

System name DAN/time CRI/time False alarm/time Accuracy/time Accuracy/%

Microearthquake 12 266 42 236 75.88

Stress 17 309 68 258 82.95

Drill chips 14 293 52 255 83.06

Comprehensive early warning of microearthquake stress 6 248 36 218 85.86

Multi-parameter comprehensive early warning 10 266 20 256 92.75
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training samples. According to the data characteristics, types, and
quantities of judgment results, it is determined that in the pre-
training stage, the number of iterations for each layer is 30, the
learning rate is 0.1, and the initial impulse ν is set to 0.5. In the
training stage of supervised learning, the conjugate gradient descent
method is used, and the number of training steps is 3,325.

4 Evaluation classificationmodel and its
application

4.1 Multi-parameter comprehensive early
warning software

The procedure for establishing DNN multi-parameter
comprehensive early warning is shown in Figure 10. The early
warning process of the impact hazard using multiple parameters
includes the following: when the model has not been trained, train
the model by configuring training parameters to select sample data and
basic algorithms; when the training is completed, directly select the data
to be evaluated and import the data into the trained model to obtain the
evaluation result. This method evaluates and classifies the output based
on the rockburst hazard monitoring data characteristics and obtains the
rockburst hazard grade.

Based on the characteristics of coal pillar rockburst monitoring
data, it is determined that the functional modules of the DNN multi-
parameter comprehensive early warning model include the graphic
module, data loading module, and algorithm analysis module. The
graphic module mainly displays data and early warning results. The
data loading module is used to create new data or extract stored data
and classify the data. The algorithm module is used to select the basic
parameters of the neural networkmodel, and its DNNmulti-parameter
comprehensive early warning software interface is shown in Figure 11.

The real-time database is established through the monitoring
data obtained by the drilling chip method, microearthquake
monitoring, and stress online monitoring. In addition, the
continuous numerical curves of different impact hazard
monitoring data are drawn, and the data are preprocessed.
Intelligent identification method for coal pillar rockburst hazard
monitoring finds the characteristics of monitoring data, including
the relationship between indicators and causality or correlation
between indicators and evaluation targets. Studying the data and
mining the data characteristics are needed to establish an evaluation
model. Using the DNN multi-parameter comprehensive early
warning model, the imported information of rockburst hazard
monitoring is evaluated, and conclusive information on the safety
status of the rockburst hazard is obtained. Data processing is carried
out in the multi-parameter comprehensive early warning system to
obtain the interface information, as shown in Figure 12.

4.2 Early warning result analysis

The DNN model is used to evaluate and classify the test data. Two
groups of stress onlinemonitoring andmicroearthquakemonitoring data
are selected for training to obtain two-dimensional stress and energy
classification results. Three groups of microearthquake, stress, and drill
chip data are selected for training to obtain three-dimensional

classification stress, pulverized coal, and energy results, where yellow
indicates danger, red indicates probable danger, pink indicates probable
danger, and blue indicates safety. The evaluation and classification results
of the test data are shown in Figure 13.

Pre-training abstractly extracted feature information of impact
hazard monitoring data, learning impact hazard monitoring data
through DNN, and evaluating and classifying different data groups.
The node’s output value reflects the feature extraction result of the input
data by the neural network in this layer structure to obtain new data
representation.When the output value of a node is large, that is, closer to
1, the role and position of the node in representation are great, and
conversely, the output value is small, and its importance is negligible.
Hence, the situation of feature learning can be judged according to the
node’s output value.

In the early warningmode of multi-parameter comprehensive early
warning, comprehensive monitoring information is obtained through
different monitoring means. However, there is a lack of an effective,
comprehensive evaluation method when there is a contradiction in
monitoring data, and the daily obtained monitoring data are not used
deeply enough. Thus, the monitoring data are not mined. The DNN
model is used to extract the features of the monitoring data, then
evaluate and classify the monitoring data, and make early warnings of
rockburst hazards according to the classification results. The DNN
SVM classification method is used to judge the accuracy of the
rockburst hazard. Compared to the traditional monitoring and early
warning methods, this approach fully uses the monitoring data and has
a better early warning effect. The specific comparison results are shown
in Table 1 (Qin et al, 2022; Zhang et al, 2022).

5 Conclusion

(1) The coal pillar rockburst model is established based on the DNN
analysis using the drilling chip method, stress online, and
comprehensive microearthquake monitoring. The energy, stress,
and pulverized coal data recorded in the mining process of
Yangcheng Coal Mine are used for training, and the precursor
characteristic information of rockburst hazard monitoring data is
extracted to realize the evaluation and classification of rockburst
hazard monitoring results, and a multi-parameter comprehensive
early warning system based on DNN is designed to perform the
comprehensive monitoring and early warning of the coal pillar
rockburst hazard.

(2) The DNNmodel can learn data features independently. The DNN
model is trained by the collected rockburst hazardmonitoring data.
The features with discrimination are extracted from themonitoring
data by greedy layer-by-layer training methods. The unsupervised
learning model is optimized by the symmetric hidden layer
method. The supervised learning model is optimized by adding
a single-layer algorithm to obtain the standard output value, which
improves the data processing ability of the model.

(3) Multi-parameter comprehensive early warning based on DNN
improves the early warning accuracy of rockburst risks.
Compared with traditional microseismic monitoring, drilling
cuttings method, online stress monitoring, and comprehensive
microseismic stress early warning, the accuracy of this method is
improved by 16.87%, 9.8%, 9.69%, and 6.89%, respectively. This
study provides a new method for rockburst monitoring and early
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warning and introduces a new research idea for rockburst
monitoring and early warning.
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