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In southern China, the karst landform areas possess a complex geological and
topographic environment, a fragile ecosystem, poor surface stability, and frequent
occurrences of landslides and other geological disasters. To effectively monitor
and predict such events, it is crucial to process landslide monitoring data and
establish reliable prediction models. This paper presents an IPSO-ELM
displacement prediction model that integrates the improved particle swarm
optimization algorithm (IPSO) and extreme learning machine (ELM). The
proposed coupling model predicts decomposed displacement subsequences
individually, which are then reconstructed to obtain the total displacement
prediction value. In this study, displacement monitoring data from a typical
landslide in the karst landform area between 2007 and 2012 were selected.
Various prediction and verification scenarios were established to validate the
accuracy and stability of the prediction model. The MAPE of the IPSO-ELM
model is 0.18%, which outperforms the ELM and BPNN models with MAPEs of
0.56% and 0.65%, respectively, in predicting landslide displacement in karst
landform areas. This study provides a solid theoretical foundation and practical
value for landslide displacement prediction.
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1 Introduction

Karst of China are widely distributed in mountainous areas with complex geological and
topographical environments, fragile ecosystems and poor surface stability. The typical
landslide disaster in this paper is located in the area with the most active karst landform
in China. The karst activities on the underground surface are very frequent, resulting in the
very active micro-movement of the underground surface and frequent geological disasters.
The prediction of landslide displacement in this area is helpful to predict natural disasters
such as landslides (Li et al., 2023; Liu et al., 2023a; Liu et al., 2023b; Liu et al., 2023c; Zhang
et al., 2023a; Liu et al., 2022; Zhou et al., 2022; Li et al., 2021).

Landslides seriously damage to the natural environment, and cause social property
losses. How to use the landslide monitoring data to predict the deformation of landslide and
disaster is an important scientific subject in the research of geological disaster prevention.
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The formation of most landslides is a gradual accumulation process,
so the long-term deformation monitoring data of landslides is an
important basis for landslide deformation prediction at present.
There are many prediction methods for landslide deformation based
on the monitoring data of landslide cumulative deformation. The
mainstream method is to decompose the time series of landslide
cumulative displacement into trend, periodic, and random items,
and use different methods to carry out targeted prediction. For
example, Peng et al. and Zhang et al. decomposed the landslide
deformation based on time series and ignored the influence of
random items (Peng et al., 2013; Zhang LB. et al., 2023). Qiu
et al. used the grey model to solve the trend term, and ignored
the random term and then used the AR model to solve the periodic
term (Qiu et al., 2020). Guo et al. used the reverse order method to
calculate the trend and trigonometric functions to fit the periodic
term (Guo et al., 2018). Jiang et al. used the variational mode to
decompose the accumulated deformation of the landslide, and then
used different methods to solve it respectively (Jiang et al., 2022).
Huang et al. used the moving average method to decompose the
cumulative displacement into trend term and periodic term
displacement, and used the support vector machine model to
predict the landslide deformation (Huang et al., 2014). Li et al.
and Huang et al. established an autoregressive moving average time
series model and used support vector machines, neural networks
and other algorithms to predict landslides (Huang et al., 2018; Li
et al., 2018).

The research shows that the deformation of landslides is often
affected by many factors, and different methods and models are used to
decompose the cumulative deformation, and different decomposition
results will reduce the accuracy of data fitting. For the prediction of
cumulative deformation under the influence ofmultiple variables, Duan
et al. and others used different smoothing parameters to predict the
deformation of landslides under different monthly rainfall conditions,
but the selection of models and the weight of different factors have a
great impact on the results (Duan et al., 2016). Yang et al. used short-
term and short-term memory neural networks to predict landslides,
proving the feasibility and high accuracy of using neural networks to
predict landslides (Yang et al., 2019). Genetic algorithm is used to
optimize the structure of BP neural network, and a nonlinear synergetic
bifurcation model is established to predict the deformation of single
variable (Guo et al., 2011). Cai et al., 2019 and others used FA algorithm
to optimize the selection of neural network structure, but the same
network structure will also lead to different training effects due to the
random selection of initial value (Cai et al., 2019). The above results
have been well applied in the study of deformation prediction using
long-term monitoring data of landslides, but there are still some areas
for improvement in the accuracy of the prediction results. Zhou et al.
proposed a new extreme gradient boost (XGBoost) and Hodgrick
Prescott (HP) filtering coupling method to predict landslide
displacement (Zhou et al., 2022). Tang et al. developed a progressive
landslide displacement prediction model driven by Semantic
information, which includes the identifier of the displacement stage
and the predictor of acceleration stage (Tang et al. . 2022). Miao et al.
took the Baishui River landslide as the research object and decomposed
the landslide displacement into three parts (trend term, periodic term,
and random term) through variational mode decomposition (VMD),
introduced a data mining algorithm to select the triggering factors of
periodic displacement, and applied the fruit fly optimization algorithm

backpropagation neural network to train and predict periodic and
random displacement (Miao et al., 2022). Long et al. applied the multi-
feature fusion transfer learning method to the Baijiapu landslide scene
to obtain sufficient monitoring data and laws, improving landslide
prediction ability (Long et al., 2022). Zheng et al. proposed a
displacement prediction method based on multi-source domain
transfer learning, and used the optimal variational mode
decomposition model based on minimum sample entropy to
decompose the cumulative displacement into trend component,
periodic component and random component (Zheng et al., 2023).
The trend component is predicted by the autoregressive model, and the
cycle component is predicted by the long-term and short-termmemory.
For random components, a combination of Wasserstein-generated
adversarial networks, and multi-source domain transfer learning is
used for prediction to improve prediction accuracy.

Therefore, the difficulty of landslide displacement prediction
research lies in the scientific and reasonable analysis of the original
data and improving the accuracy of the prediction model as much as
possible. On the basis of previous research results, this paper adopts the
variational modal decomposition algorithm to decompose the landslide
displacement sequence, which can avoidmodal aliasing in the process of
decomposition and can control the number of sub-sequences. The
improved particle swarm optimization algorithm is used to optimize
the ELM parameters, and IPSO-ELM is constructed. The model is used
to predict the decomposed displacement subsequences respectively, and
the prediction results of each subsequence are reconstructed to obtain the
predicted value of landslide cumulative displacement. On the basis of the
above work, the displacement prediction values obtained by the model
used in this paper are compared with those obtained by the traditional
ISPO-ELM, extreme learning machine (ELM), and back propagation
neural network (BPNN) models. The mean square error (MSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) of
these models are calculated, respectively. Thus, the prediction accuracies
of these threemodels were quantitatively compared, and themodels with
the highest prediction accuracy were indicated.

2 Principle and algorithm of variational
mode decomposition (VMD)

The landslide displacement sequence is a nonlinear and non-
stationary time series. If the prediction is made directly on the basis
of the original cumulative displacement monitoring data, it is easy to
produce large errors. In relevant research, the method of
decomposing the original displacement sequence using a
decomposition algorithm (i.e., decomposing first and then
predicting) is widely used, and the landslide displacement
prediction based on this method has achieved good prediction
results. By decomposing the original sequence, on the one hand, the
complexity of the data is reduced, on the other hand, the information of
the original monitoring data is fully utilized, and the prediction accuracy
is improved. Typical sequence decomposition algorithms include wavelet
analysis, empirical mode decomposition (EMD), ensemble empirical
mode decomposition (EEMD), etc (Shihabudheen, 2017; Miao et al.,
2022).

Variational mode decomposition (VMD) can convert the
original signal into non-recursive VMD mode. Compared with
EMD algorithm and EEMD algorithm, VMD algorithm has an
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excellent performance in anti-noise. In addition, the VMD
algorithm controls the convergence conditions and the number
of decompositions reasonably, and the number of modes
obtained after decomposition is also less than EMD and EEMD.
Therefore, VMD has the advantages of solid mathematical
foundation and fast calculation speed, which is extremely
beneficial to reduce the workload of later prediction.

The overall idea of VMD algorithm is to construct a variational
problem first, and then decompose a real value signal S into a
discrete number of modes Sk(t), k � 1, 2,/, K by solving the
variational problem, and assume that each mode is
approximately compact around the center pulse. Wiener filter,
Hilbert transform and frequency mixing in signal analysis are the
important basis of VMD algorithm.

3 Improved particle swarm
optimization extreme learning machine
(IPSO-ELM)

3.1 Extreme learning machine (ELM)

The extreme learning machine was proposed in 2004. Because of
its simple structure, less parameters and fast learning speed, many
scholars have studied and applied the algorithm (Huang et al., 2006;
Marti et al., 2011; Xue et al., 2020; Panghal et al., 2021). The principle
of extreme machine learning is shown in Figure 1.

In a single hidden layer neural network, it is assumed that there
are N samples (xi, yi), where xi � [xi1, xi2, xi3,/, xin]T ∈ Rn,
yi � [yi1, yi2, yi3,/, yim]T ∈ Rm, when in a single hidden layer
neural network, the output samples can be expressed as:

yi � ∑l
i�1
βig ωi gxi + bi( ) (1)

Where, βi is the output weight; g() is the activation function; ωi is
the input weight; bi is the offset of hidden layer nodes; ωi · xi is the
inner product of ωi and xi.

The purpose of using ELM model is to minimize the output
error value. Assume that when the error value is 0, the output of
the existence, and make formula βi, ωi and bi is equal to the
actual output, and the following matrix can be established:

Y � βH
Y � y1, y2,/, yi( )
β � β1, β2,/, βi( )
H �

g ω1 · x1 + b1( ) . . .g ω1 · xi + b1( )
M M

g ωi · x1 + bi( ) . . .g ωi · xi + bi( )

⎧⎪⎨⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

To sum up, calculate the minimum value ‖Hβ − Y‖2, where Y is
the actual output; H is determined according to the value of ωi and
bi, from which it can be concluded that the prediction model is
established.

3.2 Improved particle swarm optimization
(IPSO)

Particle swarm optimization algorithm (PSO) is an evolutionary
computing technique derived from the study of bird swarm predation
behavior. The algorithm was originally inspired by the regularity of bird
cluster activity and then a simplified model using swarm intelligence.
Each particle represents different possible solutions. The quality of the
particle’s position is judged according to the fitness function value.
Through continuous learning from the global optimization and
individual optimization, the particle’s position and speed are updated
to achieve the optimization purpose.

Assume that in the dimensional space, it represents the position of
particles and the speed. Under this condition, Xi � (Xi1,Xi2,/,Xid)

FIGURE 1
The Schematic of extreme machine learning.
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indicates the position of particles, Vi � (Vi1, Vi2,/, Vid) indicates
speed, its position and speed are updated according to formulaunder
this condition:

Xt+1
id � Xt

id + Vt+1
id (3)

Vt+1
id � ω · Vt

id + c1r1 pt
id −Xt

id( ) + c2r2 pt
gd −Xt

id( ) (4)

Where, ω is inertia weight; pt
id is the best individual under this

condition; pt
gd is the corresponding global optimum; c1, c2 is the sub-

factor of students; r1, r2 is a random number with a value range
of [ 0 1 ].

In particle swarm optimization, inertia weight ω, as one of the
important parameters, plays a vital role in the search effect. The
value of ω determines the global search ability of PSO. The larger
the value of ω, the stronger the global search ability of PSO;
otherwise, the stronger the local search ability of PSO. In order to
achieve higher search efficiency, the random weight method is
introduced to optimize this algorithm in the optimization
process. When optimizing based on this method, the PSO
algorithm is considered to be random. The advantages of this
setting are:

(1) When the initial position is close to the global optimum, the
random value obtained is small, which is beneficial to improve
the convergence speed.

(2) Overcome the limitation that the algorithm cannot converge to
the best point caused by linear decline.

The inertia weight is modified based on the following
expression:

ω � μ + σ × N 0, 1( )
μ � μ min + μ max − μ min( ) × r and 0, 1( ){ (5)

Where,N(0, 1) represents the random number of the standard state
distribution, and rand(0, 1) represents the random number
between [ 0 1 ].

The calculation steps of random weight method are as follows.

(1) Initializes the speed of particles.
(2) Calculate and determine the fitness of each particle, save its

position and fitness information in pbest, and compare and
analyze all of pbest to get the best individual value and then
store it in gbest.

(3)The displacement and velocity are updated by the following
expression:

xi,d t + 1( ) � xi,d t( ) + vi,d t + 1( ) (6)
vi,d t + 1( ) � ω · vi,d t( ) + c1r1 pi,d − xi,d t( )[ ] + c2r2 pg,d − xi,d t( )[ ]

(7)

(4) Update the inertia weight according to the formula.
(5) Compare the current position and the best position of particles,

and replace the latter with the current position in the case of
proximity. Compare all pbest and gbest and update gbest.

(6) If the algorithm meets the stop condition, the iteration
operation is ended and the result is output. On the contrary,
return to step (3).

3.3 IPSO-ELM model

The random weight method is applied to the PSO algorithm,
which overcomes the shortcomings of the PSO algorithm that the
global search ability and local search ability are poor due to the
improper value of inertia weight. The improved particle swarm
optimization algorithm (IPSO) is used to globally optimize the
connection weight and hidden layer threshold of the extreme
learning machine (ELM), and thus IPSO-ELM model is
constructed for landslide displacement prediction.

4 Landslide displacement prediction
process

The steps of landslide displacement prediction based on VMD
and IPSO-ELM coupling model are as follows, Figure 2 shows the
flow of landslide displacement prediction.

5 Engineering case analysis

5.1 Typical landslide engineering geology
and monitoring overview

A typical landslide selected for this project case analysis is
located on the south bank of the Yangtze River in the Three
Gorges Reservoir area, 56 km away from the dam site of the
Three Gorges Dam. The landslide is an old landslide, which has
repeatedly occurred bedding sliding in history. The landslide mass is
located in the broad valley section of the Yangtze River, a monoclinic
bedding slope, high in the south and low in the north, and is
distributed in a stepped manner towards the Yangtze River. The rear
edge elevation of the landslide is 410 m, bounded by the geotechnical
boundary, and the front edge is about 70 m, which has not been
below the reservoir water level, the eastern and western sides are
bounded by the bedrock ridge, with an overall slope of about 30°.

The deformation of typical landslide mainly occurs in the early
warning area of the sliding mass, and the deformation of other parts
of the sliding assembly obvious could be clearer. There are currently
6 GPS monitoring points in the early warning area. The monitoring
data shows that in 2011, the cumulative horizontal displacement of
GPS monitoring points M1, M2, and M3 for the whole year was
182.2, 128.5, and 145.8 mm, respectively, with an average rate of
15.2, 10.7, 12.2 mm/month; The cumulative horizontal
displacement of the whole year in 2012 was 239.6, 113.0, and
113.6 mm respectively, with the average rate of 20.0, 9.4, and
9.5 mm/month respectively.

5.2 Prediction of landslide displacement

Reasonable selection of landslide displacement influencing factors is
of great significance to the rationality and prediction accuracy of
displacement prediction. Based on the previous research experience,
the monthly rainfall, reservoir water level value, bimonthly rainfall,
inter-monthly reservoir water level variation, bimonthly reservoir water
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level variation and monthly displacement increment are considered the
displacement influencing factors system.

Under the conditions of engineering practice, the prediction
model must have strong adaptability to the dynamic monitoring
data to accurately and stably output the prediction results. To verify
the validity and stability of the proposed model, the monitoring data
of this typical landslide monitoring point is divided into two datasets
to train and test the model. Select the monitoring data from 2007 to
2010 as the training set, and the monitoring data from 2011 as the
corresponding test set.

5.2.1 Selection of mode number
Before the VMD decomposition of the original displacement

sequence, the number of decomposition subsequences needs to be
set first. In order to facilitate the subsequent prediction, the
cumulative displacement sequence of the monitoring point from
2007 to 2011 is decomposed, and the modal number is set as
K=2, 3, 4.

According to the previous test, the first sub-sequence (the main
component of the cumulative displacement sequence) obtained by
decomposition is obviously inconsistent with the original series in
the trend when K=4, and it is considered that there is over-
decomposition. Therefore, K=3 is more appropriate. To
maximize the use of the information of the original data, the
original cumulative displacement sequence is decomposed into

three sub-sequences, and the three modes are obtained by
decomposition.

5.2.2 Sub-sequence displacement prediction
According to the landslide displacement prediction flow, the

three subsequences obtained from the decomposition of the original
displacement sequence aremodelled and predicted, respectively, and
three groups of corresponding displacement prediction values are
obtained.

5.2.3 Sub-sequence prediction displacement
reconstruction

The final total landslide displacement prediction value is
obtained by superposition of three groups of prediction values,
and compared with the actual monitoring value. The prediction
accuracy results of the prediction model were obtained by the

FIGURE 2
Flow chart of landslide displacement prediction.(1) VMD is used to decompose the original cumulative displacement sequence to obtain the
subsequence components.(2) IPSO is used to optimize the parameters of ELM, and IPSO-ELM coupling model is established.(3) The IPSO-ELM coupling
model is used to predict the subsequences obtained from VMD decomposition.(4) Reconstruct the prediction results of each displacement subsequence
to obtain the total displacement prediction value of the monitoring point.(5) Error analysis. In error analysis, the degree of dispersion of prediction
results and the degree of deviation between prediction value and actual value are taken as careful consideration, and MSE, MAE andMAPE are selected as
accuracy evaluation indicators.

TABLE 1 Accuracy comparison of three models.

Error index IPSO-ELM ELM BPNN

MSE 115.23 496.21 762.12

MAE 4.95 15.36 20.14

MAPE 0.18% 0.56% 0.65%
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validation of the displacement data in 2011. The comparison of
prediction accuracies is shown in Table 1.

The comparison results show that.

(1) Both ELM and BPNN have prediction effects only in a particular
range, but the prediction accuracy in a more extensive range is
very low, indicating that the robustness and generalization
ability of these two models are relatively poor.

(2) The prediction accuracy of BPNN depends on the training of
large data samples. For the prediction of small samples similar
to this paper, BP neural network’s prediction accuracy and
generalization ability the are worse than ELM.

(3) The IPSO-ELM model proposed in this paper can adapt to the
changing data environment. Displacement data from different
scenarios were used for stability testing of the IPSO-ELMmodel.
The displacement data from 2007 to 2011 as training set and the
2012 data as test set. The results show slight differences in
prediction accuracy in different scenarios, but high accuracy,
indicating the good stability.

6 Conclusion

This paper studies the landslide displacement prediction based
on VMD and IPSO-ELM coupling model. In the landslide
displacement prediction, the original displacement sequence is
decomposed into three sub-sequences, and then predicted
separately is an effective method to make full use of the limited
data information. On the basis of VMD, IPSO algorithm is used to
optimize the parameters of ELM, which can effectively solve the
problem of premature particle swarm optimization algorithm. It is
easy to fall into the problem of local optimization, and it also retains
the advantages of particle swarm optimization algorithm itself, such
as fast convergence speed.

The verification results of typical landslide examples show that
the coupling model can accurately predict the displacement value of
landslides, with good accuracy and stability, and has high

application value in landslide displacement prediction. When
using IPSO-ELM coupling model based on VMD. When
predicting landslide displacement, the K value of VMD can be
set manually. When the appropriate K value is selected, the
prediction effect of the model is perfect.
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