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Gravity-based imaging of the subsurface has increased worldwide recently.
Improvements in the processing and analysis of gravity data have allowed us to
locate the basement surface, map geologic basins, and define structural patterns.
In this study, gravity data were analyzed to study the Bahira basin’s underlying
geology. The Bahira basin is very important economically. The Ganntour plateau is
distinctive due to the importance of the phosphatemining resources. Using gravity
data, we mapped the subsurface and determined the underlying structural
patterns that affect the study area. In this study, we used several techniques to
edge detection including Total horizontal derivative (THDR), first vertical derivative
(FVD), tilt derivative (TDR), and its horizontal derivative (THDR_TDR) methods.
Accordingly, the geological history of the Bahira basin suggests that the main
lineaments/faults trends are NE-SW, NW-SE, ENE-WSW, and WNW-ESE. The 3D
Euler deconvolution showed the depth and location of lineaments/faults, and
matched edge detection results. The eastern Bahira basin’s sedimentary layer is
2–8 km deeper according to the Euler technique. Two-dimensional forward
modeling along three profiles in the Bahira basin revealed a horst-graben
basement structure. The outcomes of this study improved the subsurface
topographical variations of the Bahira Basin. The information collected so far
can help future studies in the area.
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1 Introduction

When dealing with a sedimentary basin that lacks geological and structural information,
exploring and understanding the subsurface of the basin can be challenging. However, there
are several approaches that can be employed to overcome this limitation and gain insights
into the basin’s geology. The exploration of sedimentary basins is a critical endeavor in
understanding the geological subsurface and unlocking its vast resources. Geoscientists and
geophysicists use a wide array of tools and techniques to unravel the complex geological
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structures and stratigraphy hidden beneath the surface. Among
these tools, gravity has emerged as a valuable geophysical method
for investigating sedimentary basins. By integrating gravity data with
geological and others geophysical information, we can estimate the
thickness and depth of sedimentary sequences, identify fault systems
and basement structures (Ekwok SE. et al., 2022; Frifita et al., 2020;
Saada et al., 2022; Nzeuga et al., 2022; El-Sehamy et al., 2022;
Eldosouky et al., 2022b).

Under sedimentary basins and structural frameworks, the
gravity method is ideally suited for basement mapping (Saleh
et al., 2018; Frifita et al., 2020; Araffa et al., 2021; Kebede et al.,
2021; Pham LT. et al., 2022; Zaghdoudi et al., 2020; Elabouyi et al.,
2022; Mohamed et al., 2022a; Eldosouky et al., 2022b; Saada et al.,
2021). Several field studies estimated sediment thickness and
geological and stratigraphical structure. Using magnetic and
gravity data analysis, Saleh et al. (2018) investigated the
basement complex beneath the Barramiya region in Egypt’s
Eastern Desert. Frifita et al. (2020) analyzed a sedimentary
basin (Mejerda, Tunisia) using gravity and seismic reflection to
establish the foundation form. Gravity data showed subsurface
structures and basement depth in El Moghra, Egypt by Araffa et al.
(2021). Using gravity and magnetic data, Kebede et al. (2021)
created a 2D/3D model for groundwater implication in the Ziway-
Shala Lakes Basin in Ethiopia. Pham LT. et al. (2022) conducted
research to evaluate filtering methods’ contributions to mapping
Phu Khanh basin, Vietnam’s subsurface features using gravity
data. Zaghdoudi et al. (2021) employed gravity and seismic data
to map Tunisia’s Bizerte geology. Elabouyi et al. (2022) examined
buried granite masses and structures in Morocco’s High Moulouya
basin using gravity measurements. Alqahtani et al. (2023a)
performed a study to identify the potential geothermal
resources in Rahat Volcanic field (kingdom of Saudi Arabia)
using gravity and magnetic data. The finding showed that, in
the western part, three geothermal anomalies associated with
high density and magnetic susceptibility are located. These
geothermal anomalies are identified beneath the historical
eruption, fissure eruption and north of the swarm area. Ikirri
et al. (2023) used gravity measurements to characterize Morocco’s
Western Anti-Atlas Ifni Inlier. Alqahtani et al. (2023b) employed
remote sensing, surface temperature and geophysical data for
geothermal exploration in Lunayyir Volcanic Field (Saudi
Arabia). The analysis of gravity and magnetic data show
subsurface geologic structures that may be interpreted as
potentially geothermal system. The land surface temperature
indicates a volcanic activity in the subsurface. This study
improves the assessment of the Lunayyir volcanic field in the
western part of Saudi Arabia for geothermal energy.

Over the last few years, there has been a growing interest in
potential field data analysis using edge detection methods. The
application of edge detection methods in gravity and magnetic
data plays a crucial role in geophysical exploration and geological
mapping. Moreover, the application of edge detection methods has
witnessed a significant expansion in specific studies encompassing
subsurface geological structure, mining exploration, geothermal
investigations and hydrogeological studies (Melouah et al., 2021;
Eldosouky et al., 2022a; Ekwok SE. et al., 2022; Mohamed et al.,
2022b; El-Sehamy et al., 2022; Kharbish et al., 2022; Mahdi et al.,
2022; Saada et al., 2022; Abdelrahman et al., 2023).

Different and efficient upgraded approaches have been
employed for mapping the subsurface geological structure. A
more accurate geological model and stronger visualization of data
are two goals of using enhancement approaches. 3D Euler
deconvolution locates anomalies and estimates depth, phase
derivatives locate source body edges (contact/fault), and power
spectrum analysis separates regional and residual potential field
components. Rabii et al. (2018) used these methods to study the
upper crustal structure of the Utica-Mateur area in northern
Tunisia. Horizontal gravity gradients, 2D power spectrum
analysis, and Euler deconvolution determined the depths of
major density discrepancies and structural lineaments. Okpolin
and Akingboye (2019) used gravity data to characterize the
lithostructural and depth properties of Igabi (Northwestern
Nigeria). Satyakumar et al. (2022) used improved gravity data to
map structural and tectonic features in the Mahanadi basin (eastern
India). Ayoola and Osinowo (2022) interpreted potential field data
for hydrocarbon development (Southern Nigeria) to create a novel
structure that better understood the research region’s tectonic and
structural outline. According to enhanced gravity and magnetic data
used to assess petroleum potential, the basement beneath the
sedimentary basin is 10–15 km deep. Pham et al. (2023) applied
gravity data to map the western Gulf of Guinea’s structural
framework.

Recently, new improved edge detection methods have been
introduced to accurately highlight the geological underground
and to delineate structural lineaments originating from both
shallow and deep geological sources (Pham L. T. et al., 2021;
Pham L. T. et al., 2021; Ekwok S. E. et al., 2022; Ekwok et al.,
2022a; Pham L. T. et al., 2022; Eldosouky et al., 2022b; 2022c; 2022d;
Eldosouky et al., 2022 A. M.; 2022f; Pham LT. et al., 2022; Nzeuga
et al., 2022; Prasad et al., 2022; Pham et al., 2023). The use of high-
precision filters, such as the enhanced horizontal gradient
amplitude, improved tilt angle, tilt angle of total horizontal
gradient, improved theta map, softsign function, logistic function,
have emerged (Pham L. T. et al., 2021; Pham et al., 2021 L. T.; Ekwok
S. E. et al., 2022; Eldosouky et al., 2022c; 2022d). Through the
application of these filters on potential field data, their remarkable
efficiency and precision in qualitatively delineating and interpreting
geological structures have been demonstrated (Ekwok S. E. et al.,
2022; Eldosouky et al., 2022c; 2022d; Nzeuga et al., 2022; Prasad
et al., 2022; Pham et al., 2023).

The Bahira basin is one of the most important sedimentary
basins in western Moroccan Meseta (Michard, 1996). It has been
noticed that limited research has been performed to assess the whole
Bahira basin, they are some works mainly focused on the western
part of the basin where Ganntour phosphatic plateau is located. Er-
rouane (1996) offered hydrogeological attention to the Bahira
basin’s subsurface structure using electrical resistivity tomography
and gravity techniques. Karroum et al. (2014) explored the Bahira
basin. Findings agree with those of Er-rouane (1996) research and
provided data for outlining the plain’s many significant geological
formations. Jaffal et al. (2022) used gravity data to study the western
Bahira basin geology.

Due to the limited availability of geological data and restricted
drilling that provide only shallower geological information, we
resorted to analyzing gravity data as a valuable resource to gain a
deeper understanding of the internal structure of the Bahira basin.
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The primary aim of this ongoing research is to offer new insights
into the subsurface geological structure of the Bahira basin through
the utilization of diverse gravity data analysis methods. To that end,
a new strategy with better techniques was implemented. Bahira
Basin’s key features and structural trends were characterized
utilizing power spectrum analysis, total horizontal derivatives,
first vertical derivative, tilt derivative, and its horizontal
derivative. To estimate the properties of these structures, the 3D
Euler deconvolution was used. Two-dimensional forward modeling
was developed using three intersecting profiles to identify the Bahira
basin’s form and structure. The finding of this study allowed to
illuminate the Bahira Basin’s structure and essential features.

2 Materials and methods

2.1 Description of the study area

The Bahira basin is a huge syncline depression between the
southern Jebilet Paleozoic basement and the northern Rehamna
basement. It covers 5,000 square kilometers in northern Morocco,
30 km from Marrakech (Figure 1). Specifically, it is located between
31° 55′ and 32° 20′ North and between 7°15′ and 8°50’ West. The
western Ganntour plateau rises to heights of 531 m above sea level,
while the eastern Bahira region features lower elevations of 404 m.
The climate is classified as semi-arid. The predicted potential
evapotranspiration is greater than 1000 mm/year (Er-rouane, 1996;
Karroum et al., 2014), while annual precipitation averages 206 mm.

2.2 Geological setting

The Bahira basin is situated within the Western Meseta domain
(Michard, 1996) and represents an expansive closed depression
oriented in an Est-West direction. It lies between two Hercynian
massifs, namely, the Jbilet and Rehamna. The primary massif of
Rehamna forms its northern boundary, while the Jbilet defines the
southern limit. The Tessaout river serves as its eastern boundary,
and the secondary plateau of Mouissate marks its western extent
(Figure 2). Geologically, the Bahira basin is a synclinal trough
characterized by a Paleozoic basement overlain by secondary and
tertiary formations. The sedimentary units comprising the basin
extend from the Permo-Triassic to the Quaternary periods, with a
particular emphasis on the Maastrichtian to Eocene phosphatic
layers of Ganntour (Figure 2) (Er-rouane, 1996; Michard, 1996).
These formations are exposed in the northern part of the plain, dip
and taper off towards the south, and are covered by continental
Neogene sedimentary infill. The majority of the plain’s surface is
occupied by Quaternary deposits.

The Palaeozoic basement has a significant thickness spanning
several thousand meters. It outcrops in the Rehamna massif to
the North and the Jbilet massifs to the South. In the Rehamna
massif, the Paleozoic section comprises Cambrian schists,
sandstones, micaschists, Hercynian granites, and Westphalo-
Autunian molasse conglomerates. The Jbilet massif exhibits
massive limestones, shales with intercalated sandstones, and
carbonate shales of Middle Cambrian age (Huvelin, 1977).
The entire region is characterized by folding and fracturing,

FIGURE 1
Geographic situation and elevation map of Bahira basin.
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resulting in north-south trending folds. Small outcrops of the
Hercynian basement consisting of Sarhlef schists can also be
observed in the study area near of Rhirat Village (Figure 2) (Er-
rouane, 1996).

The Bahira basin is part of the western Moroccan Meseta, which
is one of the five structural domains in Morocco. This domain has
been affected by various deformation events related to different
orogenies that have occurred over time, including the Hercynian
orogeny and the Atlasic (alpine) orogeny. During the Hercynian
orogeny, the Cretaceous terrains were extensively covered by
secondary, tertiary, and Plio-Quaternary deposits. Recognizing
pre-Cretaceous tectonic movements is only feasible along the
edges, particularly in the Jbilet massif. Studies conducted by
Huvelin (1977) indicated that the primary basement experienced
extensive folding and undulation, characterized by highly curved
folds, faults in multiple orientations, and localized schistosity near
Hercynian granite intrusions. The Triassic movements followed the
Hercynian orogeny, controlling the Permo-Triassic deposits
preserved in grabens bounded by NE-SW faults. Post-Triassic

movements involved reactivation of Hercynian faults, following
the vertical movements initiated during the Triassic period
(Huvelin, 1977). During the Atlas orogeny, faults with varying
degrees of displacement affected the Eo-Cretaceous formations.
The main phase occurred during the Eocene, resulting in large
ENE-WSW-oriented flexures observed in the Jurassic cover of the
Mouissate region, along with low-amplitude undulations (Er-
rouane, 1996). The most recent tectonic movements encompass
post-Miocene and Plio-Villafranchian deformations, which have
resulted in the formation of significant faults. These faults are
particularly prominent along the Jbilet-Bahira boundary and are
manifested by fault planes with a displacement of approximately a
thousand meters.

Following the Hercynian orogeny, the Paleozoic basement
experienced an extended period of continental conditions. During
this phase, the basement was strongly leveled, and the Triassic
deposits were preserved in pull-apart basins formed due to
Triassic movements. In the Jurassic period, marine sedimentation
resumed with the transgression. In the Lower Cretaceous, marine

FIGURE 2
Geological map of Bahira basin.
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conditions returned, particularly in the Youssoufia region. The end
of the Lower Cretaceous is characterized by the presence of red clay
layers, indicative of sea regression. The transgressions of the Middle
Cretaceous (Cenomanian, Turonian, Senonian) appear to be limited
to the eastern part of the region. However, the most significant
transgressions occurred during the Maastrichtian-Eocene period.
These transgressions affected almost the entire basin and are
characterized by the deposition of phosphate series.

2.3 Methodology

The Department of Mines and Geology created a Bouguer
anomaly map used in this investigation. The Italian firm
“Fondazione Lerici” launched the gravity prospection mission in
1964. Good coverage of the investigated region was achieved by the
gravimetric density measurements, which included 2372 locations
with an average of roughly 0.5 station/km2. The lower density of
2.2 g/cc was used to create the Bouguer anomaly map. The Geosoft
Oasis Montaj software is applied to process and analyze gravity data.

By interpolating, filtering, and modeling the gravity data, we are
able to gain comprehensive information on the underlying geology.
Several steps of interpretation make use of data processing to give
the results a structural and geological context. Figure 3 gravitational
data has been analyzed intuitively and quantitatively. Power
spectrum analysis and FFT were used to differentiate deep and
shallow anomalies. Maximum Total Horizontal Derivatives
(THDR), First Vertical Derivatives (FVD), Tilt Derivatives
(TDR), and Total Horizontal Derivatives of Tilt Derivatives
(THDR_TDR) were all used to identify edges. The three-
dimensional Euler deconvolution was utilized for the purpose of
depth estimation of sources. 2D gravity forward modeling was used
to perform the quantitative interpretation.

2.3.1 The fast fourier transform (FFT)
To examine the residual (shallow) and regional (deep) sources,

as well as to compute the energy spectrum curves, the FFT was used
for the gravity data. Several researchers, including Spector and Grant
(1970), Bhattacharyya (1996), and others, have applied this
technique to the study of gravity data. The strategy depends on
how the frequential energy created by the differences between the
densities of surface and subsurface materials is distributed. This filter
can either pass or reject a range of frequencies based on its cut-off
frequencies. It varies with wavelengths in both the X and Y-axes. The
Fourier transform of the periodic function f () is given by
(Bhattacharyya, 1996):

f μ, γ( ) � ∫+∞

−∞
∫+∞

−∞
f x, y( ).e−i μx+γy( )dx.dy (1)

where (x) and (y) are the spatial coordinates in the x and y directions
respectively. μ and γ are the angular frequencies in the x and y
directions respectively.

2.3.2 The edge detection methods
2.3.2.1 Total horizontal derivatives (THDR)

Potential field data edges can be created using the THDR
technique. Finding the highest point of the sum of the horizontal
derivatives allows one to identify the steepest gradient. The THDR
establishes the limit on the number of structural boundaries
(contacts and faults). THDR is defined as follows (Cordell &
Grauch, 1985):

THDR x, y( ) � ��������������
∂f
∂x

( )2

+ ∂f
∂y

( )2

√√
(2)

where the orthogonal coordinates of the gravity field (f) are
represented by x and y.

FIGURE 3
Flow chart of the adopted methodology.
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Automatically locating the maximum of the horizontal gradient
was first proposed by Blakely and Simpson (1986). When applied to
a gravity map, this method reveals that the local maximum of
horizontal gradients creates ripples and constricts above sudden
changes in density. Inflection spots can also be identified by the
horizontal gradient modulus’s highest magnitude. Bouguer’s map
shows contact/fault dip directions as it rises. The horizontal gradient
and upward continuation of faults can define their location and dip
(Archibald and Bochetti, 1999). Whereas faults are represented by
linear contacts, the borders of intrusive bodies are represented by
circular contacts. Each successive level-up topographies a maximum
horizontal gradient. The biggest overlap occurs in vertical
constructions. When the extension is made upwards, however,
the maximum shifts, revealing the slope’s orientation.

2.3.2.2 First vertical derivative (FVD)
If you take the FFT transformation of the potential field signal

with height, you get the first-order vertical derivative (FVD), which
acts as an enhancement filter (Milligan and Gunn, 1997). The FVD
filter emphasized anomalies at shorter wavelengths. It is a crucial
filter for distinguishing subsurface features and boundaries. The
FVD can be expressed mathematically as:

FVD � ∂f
∂z

(3)

2.3.2.3 Tilt angle derivative (TDR) and the total horizontal
derivative of the tilt derivative (THDR_TDR)

Miller and Singh (1994), followed by Verduzco et al. (2004),
Salem et al. (2008), and Fairhead et al. (2004), all contributed to the
advancement of the tilt derivative (TDR) filter. Salem et al. (2008)
and Fairhead et al. (2004) provide the following definition for this
filter:

TDR � θ � tan−1 FVD

THDR
( ) (4)

Where; FVD is the vertical derivative, while THDR is the total
horizontal derivative.

Tilt derivative amplitudes range from - π/2 to π/2 (radians).
Salem et al. (2008) used TDR map contours to estimate source
depth. Miller and Singh (1994) find that the zero-contour tilt
derivative (TDR) defines structure limits. The total horizontal
derivative of tilt angle provides a well-defined maximum centered
over the source boundaries (Verduzco et al., 2004). The total
horizontal derivative of tilt angle (THDR_TDR) can measure the
body source’s uppermost edge depth. THDRTDR amplitude is
inversely related to source top depth.

TDR in the x and y directions is equal to the square root of the
sum square (Fairhead et al., 2004).

THDRofTDR �

�������������������
∂TDR

∂x
( )2

+ ∂TDR

∂y
( )2

√√
(5)

2.3.3 3D-euler deconvolution (ED)
The Euler deconvolution technique generates automated

localization and depth estimation of potential field data sources.

According to Al-Badani and Al-Wathaf (2018); Thompson (1982),
we can write the Euler equation as follows:

∂f
∂x

x − x0( ) + ∂f
∂y

y − y0( ) + ∂f
∂z

z − z0( ) � SI B − f( ) (6)

As defined by (Reid et al., 1990), where B is the overall field, f is
the measured field at a specific position (x, y, z), and SI is the
structural index. The structural index (SI) characterizes source type
and the rate at which field amplitude falls with distance from the
source. Finding the values for x0, y0, z0 (the origin’s coordinates),
and B in the above-mentioned equation.

Grid spacing, structural index, and window size help solve the
Euler equation. To find the thin sheet’s edge, the Euler solutions used
a structural index of SI=0; to find the horizontal cylinders/faults,
SI=1; and to find the sphere’s shape, Supporting Material=2 (Reid,
et al., 2013). Selecting an appropriate structural index and window
size is crucial to accurate depth estimation. In this study, we
employed a grid size of 500 m × 500 m, a window size of 10 ×
10, and a structural index of SI = 1.

2.3.4 2D forward modeling
Potential field data is subjected to 2D forward modeling in order

to obtain a geological image of the basement, integrating depth and
density. There have been a number of research (Mickus, 2008; Sayed
and Aboud, 2012; Beshr et al., 2021; Alencar et al., 2022) that
demonstrate the significance of two-dimensional modeling in the
establishment of basement structures. 2D gravity modeling
visualizes the Bahira basin structure in the current research. GM-
SYS-2D/Oasis Montaj, which implements Talwani and Heirtzler
(1964), analyzed three profiles (P1, P2, and P3) (Figure 5B). The
models’ setups have been tweaked iteratively in order to obtain the
best possible match between the computed and the observed
gravity data.

Paleozoic schists and mica-schists make up the models’ basics,
while Cretaceous and Eocene sedimentary rocks (containing rich
phosphate layers) and Pliocene-Quaternary sediments make up the
models’ sediment cover. Previous geological and geophysical studies
(Er-rouane, 1996; Karroum et al., 2014) have given a density value of
2.67 g/cm3 to the Paleozoic basement. However, the density is
calculated to be 2.45 g/cm3 for the sediment cover, which is less
than that of the basement rocks.

3 Results

Our qualitative and quantitative gravity data analysis is
presented here. Power spectral analysis, derivatives, 3D Euler
deconvolution, and 2D forward modelling contribute to these
results. Data will be evaluated to create a geological model of the
Bahira basin’s structure.

3.1 An examination of the power spectrum

The FFT power spectrum curve of gravity data exhibits local,
residual, and noise signals (Figure 4). The deep sources (regional
component) have a frequency of zero to four cycles per unit grid. In
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contrast, the frequencies of the shallow sources (residual
component) shift between 0.05 and 0.2 cycle/unit grid. A tangent
was drawn for each component segment. Archibald and Bochetti
(1999) propose using the tangent’s slope as a proxy for the mean
depth. The average depth of the regional sources was found to be
7.3 km (blue line), whereas the average depth of the shallow sources
was found to be 3 km (red line).

3.2 Bouguer and residual anomaly maps

The gravity values range laterally from −45 to 15.6 mGal, as
seen on the Bouguer anomaly map (Figure 5A). West of the studied
region, the Bouguer value gradient is increasing. The center and
eastern regions are home to a sharps-negative anomaly. These
irregularities may be low-density blocks or sedimentary basins.
High-density blocks are associated with the positive anomalies seen
in the west, south, and north. Different short wavelength anomalies
associated with shallow causal sources can be seen in the Bahira
basin’s residual gravity map (Figure 5B). The anomalies tend to
move in two broad orientations: NW-SE, ENE-WSW, and WNW-
ESE. The residual gravity anomaly values vary between −15 and
15 mGal. These changes are linked to underlying density shifts
caused by underlying geological features. Negative anomalies trend
NW-SE and NE-SW in the east. Deep sedimentary basins explain
these abnormalities. The major NW-SE anomaly is the Benguerir
granite intrusion beneath the cretaceous layer. A negative anomaly
reflects the northern Rehamna mountain’s Hercynian granite. The
northwest’s Valanginian limestones (Lower Cretaceous) has a
negative anomaly.

Positive anomalies have also been spotted. Both the southeast
and the northeast have the highest concentrations of positive
anomalies. They align with the north Hercynian basement
outcrop at Rehamana and the south Paleozoic basement (schist)
uplift at Jebilet. The center of the Bahira basin has an NW-SE-
oriented positive anomaly. The Paleozoic massif’s Rhirat threshold
causes this oddity. The deposit of secondary formations was
impeded by this critical threshold. The elevation of the
Hercynian massif of Rehamna is reflected by a positive anomaly
in the region’s northwestern corner. AWNW-ESE positive anomaly
in the southern portion of the study region indicates Paleozoic
basement uplift (Jebilet massif).

3.3 Total horizontal derivatives (THDR)

Figure 6 shows the map of the horizontal gradient, highlighting
various lineaments with prominent amplitudes. The local maximum
horizontal gradient obtained via a series of upward continuation
levels (0.250, 0.5, 1, 2, 3, 5, 8, 10, and 20 km) is superimposed on the
THDRmap to emphasize the lineament trend. These findings reveal
the most significant structural lineament/faults trend in NE-SW,
NW-SE, WSW-ENE, and ENE-WSW. The orientations of the
Hercynian structure fall along these directions.

3.4 First vertical derivative (FVD)

The first vertical derivative maps show short-wavelength
sources, horizontal extensions, and anomaly geometry. Figure 7

FIGURE 4
Radially averaged power spectrum of the Bouguer anomalies showing the averaging regional and residual depths of the Bahira basin.
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shows Bouguer gravity map FVD anomalies that match those in
residual gravity map (5b). ENE-WSW, NE-SW, and NW-SE local
anomaly trends match the THDR maximum.

3.5 Tilt angle derivative (TDR) and its total
horizontal derivative (THDR_TDR)

Figure 8 shows the TDR map created by filtering the Bouguer
anomaly map. It is clear where the negative anomaly (sedimentary
basin) contacts the positive anomaly (basement). Similarities
between the TDR and FVD maps may be seen in the positioning
of contacts and edge features, and both are well suited for
distinguishing shallow source structures. This map shows that the
amplitude of Bouguer anomaly tilt derivative anomalies ranges from
1.3 to 1.2 rad. Figure 8 shows the total horizontal derivative
maximum above the Tilt derivative zero outlines. The THDR
maximum and zero contours often overlap, but not always.

Where the maximum and zero contours intersect is where you’ll
find the faults (Fairhead, 2015). The most common fault lines run in
the NW–SE and ENE–WSW directions, respectively.

With a peak over the bodies’ edges, THDR_TDR provides the
shaped anomaly (Verduzco et al., 2004; Fairhead, 2015). In Figure 9,
edges retain the THDR and FVD maps’ trend. The scale of the
coloured bars estimates the source’s depth at 1.66–10 km. Bottomless
source bodies east of the research region cause it. The basement uplift
occurs in the central and eastern basins, while shallow cause bodies are
in the southern, western, and northern basins.

3.6 3D-euler deconvolution (ED)

The outcomes of edge detection methods are seen to be very
close to the 3D Euler deconvolution solutions (Figure 10). The Euler
solution closely follows the zero contour of the Tilt derivative
(TDR). NWSE, ENEWSW, and NESW are the most common

FIGURE 5
Gravity maps of the study area: (A) Bouguer anomaly, and (B) residual anomaly.
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tectonic directions seen in ED output. Euler’s calculated depths
extent a range of two to 8 km.

3.7 2D forward modeling

The depth to the Paleozoic basement decreases from about
1.3 km in the southwest to 0.8 km in the middle part, as seen in

profile P1 (Figure 11A). It is also clear that the depth increases in the
northeastern region, maintaining a consistent 1.5 km depth
elsewhere. The model displays a sub-tabular basement with a
raised part in the center. As demonstrated in Profile P2
(Figure 11B), the basement surface is at 0.5 km in the southwest,
3.3 km in the central area, and 0.5 km again in the northeast. Faults
may cause steep residual gravity anomaly fluctuations. The
simulated blocks show uplifted Paleozoic basement (horsts) in

FIGURE 6
Total horizontal derivative (THDR) map with superposed upward continuation maximum.

FIGURE 7
First vertical derivative map of the study area with displayed zero contour line.
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the southwest and northeast and down-faulted blocks (graben) in
the center.

Profile P3 (Figure 11C) shows the longitudinal basement plan.
The western section’s basement has a subtabulaire structure and an
outcropping at the Rhirat threshold. The basement deepens towards
the east. An inverted fault on the western flank of the Benguerir
granite intrusion connects the two zones. Diot (1989) suggests that
this structure is connected to the transformation of a westward
thrusting of the Eastern Rehamna into an EW compression.

4 Discussion

The analysis of the gravity field of the Bahira basin revealed the
structures of the basin that occurs under the sequence of Cretaceous
and Quaternary deposits. The various findings highlight the

influence of the Paleozoic basement topography. The Hercynian
substratum is exposed in the southern region of the study area in the
Jebilet massif, as well as in the northern part, represented by the
Rehamna massif. Total horizontal derivative (THDR) was used to
identify the structural framework of the study area. The finding
shows two main group of faults, oriented NE-SW and ENE–WSW
direction. The first group consists of shallow faults that have the
same trending as the Hercynian structures. The second group of
faults is characterized by major faults that are believed to have
played a crucial role in shaping the structure of the study area and
may be associated with the Atlas orogeny. The overlapping of the
0 contour of Tilt derivative on the THDR map confirmed the
localization of these faults.

The horizontal derivative of the tilt derivative evidenced the
same major trend as showing by the THDR, FVD and TDR.
Furthermore, the THDR_TDR map indicates that the uplift of

FIGURE 8
Tilt derivative map of the study area (top). The bold lines show contour: the 0 radians (black color). Themap at the bottom presents the overlaying of
the zero contours and maximum of the THDR.
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the basement shallow source bodies is present in the southern,
western, and northern basins. This finding matched with the
Paleozoic basement topography where the major fault bounding
the basin in the north and south. The Euler deconvolution (ED) was
applied to enable the mapping of geological structures and to
provide insights into the depth of the highlighted features. The
clustering of ED solutions around the majority of the identified
faults confirms the obtain results. The fault system responsible for

the basin structure extends to varying depths, ranging from two to
8 km. According the ED solutions results, the source bodies are
deeper in the eastern unit of the basin. These findings confirm
previous research work and suggest that the basement deepens
eastward (Er-rounae 1996; Karroum et al., 2014).

The structural context of the Bahira basin described by the use of
the various upgraded techniques reveals distinct basement blocks,
indicating a compartmentalization of the underlying geological

FIGURE 9
Total horizontal derivative of the Tilt derivative map.

FIGURE 10
3D-Euler Deconvolution solutions plotted on the residual gravity map. The black contour corresponds to the 0 radians of the tilt angle.
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formation. Two distinct units, eastern and western, are identified. A
glacis zone gently sloping from the SSE to the north of the basin
defines the eastern unit. Deep sedimentary rock forms the Paleozoic

basement. The northern boundary is a locally major fault, while the
southern boundary is a big bordered coincidence trending ENE-
WSW. The western unit has a broad, sub-tabular Paleozoic

FIGURE 11
Two-dimensional interpreted gravity model along the profiles P1 (A), P2 (B), and P3 (C).
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basement. The Rhirat threshold breaks the sedimentary cover’s
southerly dip towards the Jebilet from the north of the basin.
Southern border accidents are far lower than Eastern ones. The
estimated basement depth makes the eastern Bahira Basin more
noticeable. The Hecynien orogeny was overthrust to the west in a
major tectonic setting (Diot, 1989). The techniques identified the
Bahira basin’s horst-graben basement structure.

The application of gravitymodeling enables the determination of the
trough’s geometry along three profiles. Through a 2D forward modeling
approach, it is revealed that the basin corresponds to an asymmetrical
syncline marked by a gradual increase in the depth of the Paleozoic
basement towards eastern part of the study area. The structure reveled by
the profiles agree with previous techniques result’s, they identified a
Bahira basin’s horst-graben basement structure.

This study’s enhanced methods confirmed many undescribed
lineaments. Our results map and model the basement structure,
unlike prior 2D studies that primarily examined the western basin.

5 Conclusion

The subsurface structure, tectonic framework, and basement
structure of the Bahira basin have all been mapped using gravity
measurements collected in the area of interest. Incorporating the
power spectrum, edge detection methods, 3D Euler deconvolution,
and a gravity model, this analysis was carried out. The density and
sediment thickness variations below the surface are reflected in the
Bouguer gravity anomaly. The results unveiled a correlation between
observed anomalies and surface geology. New subsurface structures
in the study area, previously unknown, has been described with the
use of upgraded techniques applied to gravity data. The FFTmethod
was first used to isolate the remaining regional components, which
allowed us to pinpoint the source’s periphery and depths. According
to the power spectrum study, the average depth of the regional
sources is roughly 7.3 km. Alternatively, the typical depth of shallow
sources is only 3 km. Multiple structural trends (NE-SW, NW-SE,
ENE-WSW, and WNW-ESE directions) were detected by the
majority of the used edge detection methods (THDR, FVD, TDR,
and HD_TDR). The analysis of structural lineaments reveals the
presence of two predominant sets of trends, namely, NE-SW and
ENE-WSW. These trends have a significant influence on the tectonic
activity within the region. The fault trending in the NE-SW direction
is attributed to the Hercynian orogeny, whereas the ENE-WSW fault
trend is linked to the Atlasic orogeny comprising major boarded
faults. These faults play a significant role in shaping the study area’s
structural configuration and bedrock topography. The Euler
deconvolution verified that the eastern unit’s basement depth is
greater, confirming edge detection’s subsurface features. The
structure of the Bahira basin may be visualized synthetically
thanks to 2D forward modeling. The western half of the Bahira

basin has a sub-tabular structure with a shallow basement, whereas
the eastern portion has a deep sedimentary layer. The structure is
attributed to a compressive phase that affecting the western
Moroccan Meseta characterized by faults trending in the NE-SW
and ENE-WSWdirections. The grabens structuring of the study area
could have resulted from this deformation.

The combining of gravity and geological data allows for the
construction of a comprehensive picture of the basin structure. New
techniques (improved methodologies and 2D modelling) for
analyzing gravity data have revealed previously unknown aspects
of the Bahira basin’s geological and structural framework. The new
study provides final data, completing the work of earlier researchers,
and can serve as a roadmap for future studies.
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