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Identifying snow phenomena in images from automatic weather station (AWS) is
crucial for live weather monitoring. In this paper, we propose a convolutional
neural network (CNN) basedmodel for snow identification using images fromAWS
cameras. Themodel combines the attentionmechanism of the DANetmodel with
the classical residual network ResNet-34 to better extract the features of snow
cover in camera images. To improve the generalizability of the model, we also use
images from public datasets in addition to images taken by cameras from
unmanned weather stations. Our results show that the proposed model
achieved a POD of 91.65%, a FAR of 7.34% and a TS score of 85.45%,
demonstrating its effectiveness in snow identification. This study has the
potential to facilitate more efficient and effective weather monitoring in a
variety of locations.
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1 Introduction

The formation of snow is a complex process influenced by various meteorological factors
at the ground level (Yang et al., 2019). Snow is a major winter disaster that can result in
extensive accumulation, which can damage crops and disrupt transportation (Andrey et al.,
2003). However, the occurrence and intensity of snow vary greatly at a local level, making it
difficult to predict using traditional statistical methods (Strle and Ogrin, 2022). Therefore,
accurate identification of snow weather from images is crucial for understanding these
variations and improving real-time weather monitoring.

Satellite observations from space provide a major data source for identifying different
types of weather, including rain, clouds, and snow. Many image processing and recognition
algorithms have been developed based on different satellite and ground radar remote sensing
data to identify snow surface cover or weather phenomena such as snow or rain. For
multispectral satellite images, the Normalized Difference Snow Index (NDSI) is often used to
identify snow because it is sensitive to snow signals in the image (Song et al., 2011). Satellite-
borne passive microwave radiometers have been used to retrieve snow depth on Arctic sea ice
using lower frequencies and artificial neural networks (Rostosky et al., 2018) (Zaerpour et al.,
2020). Although satellite images are useful for weather monitoring at regional, continental,
and global scales, they have relatively coarse spatial resolutions and are not suitable for real-
time weather identification (Liang et al., 2008; Jiang et al., 2014; Getirana et al., 2020).

Compared to satellite sensors, AWS provide a different method for weather
identification in local areas. AWS have become essential infrastructure for urban
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meteorological forecasting, disaster prevention, and mitigation in
many countries (Lu et al., 2020). They are usually equipped with
video and meteorological equipment, making them more suitable
for monitoring real-time weather at a local scale (Munandar et al.,
2017). While meteorological equipment captures meteorological
parameters such as temperature and humidity, video captures
sequence images of the surroundings, enabling the identification
of different types of weather (Kumari et al., 2020).

Traditional manual identification methods suffer from low
efficiency and are not conducive to conducting large-scale data
analysis. Consequently, automatically identifying snow weather
from video images is valuable but challenging for real-time
weather identification. Many image classification methods,
such as supervised support vector machines, have been used to
identify local weather phenomena (Roser and Moosmann, 2008).
The NDSI is widely used for ice and snow identification, and
some studies have also developed a similar RGBNDSI index for
snow identification in RGB images (Hinkler et al., 2002).
However, these methods often require a specially designed
camera system and careful arrangement of the camera position
and shooting angle to observe specific targets. There is also the
use of blue channel thresholding for snow and non-snow
recognition in RGB images, which is based on the digital
number value of blue channel component histogram (Salvatori
et al., 2011). This method is sensitive to lighting conditions,
surface roughness, and the distance from the camera (Härer et al.,
2013).

The identification of snow in video images obtained by
meteorologists is a challenging task due to issues such as
deformation, illumination, and blur. In recent years, deep
learning methods, particularly convolutional neural networks
(CNNs), have emerged as effective alternatives to traditional
machine learning algorithms for extracting semantic
information from images (Ibrahim et al., 2019). One example
of a CNN-based method is the Faster R-CNN approach, which
uses a region generation network to directly determine the region
for image identification (Ren et al., 2017). The Inception
V3 model of Google Inception has also been applied to CNNs
for snow cover identification from video images taken by weather
stations (Huang et al., 2019). Despite their effectiveness, there is
still room for improvement in CNN models. In recent years,
attention mechanisms have gained significant attention in the
deep learning community. These modules allow CNNs to focus
on relevant regions or features, leading to improved performance
(Li et al., 2020). The limitation of insufficient training data poses
a challenge in CNN applications, as models may struggle to
generalize well (Alzubaidi et al., 2021).

However, there are still challenges to be addressed in this field.
For instance, current methods do not fully exploit local snow cover
information, and the incorporation of attention modules into
different features may be necessary as CNNs continue to evolve.
Additionally, the construction of CNNs for snow identification
should consider the use of various open-source images
containing different weather phenomena, as the limited images
captured by each AWS camera at a fixed angle, height, and view
may not be representative of the full range of snow and other
weather phenomena.

This paper presents a novel CNN-based approach for snow
identification in AWS images. The proposed method has two
main advantages compared to previous models. Firstly, it utilizes
an attention convolutional neural network model, specifically a
double attention network (DANet), to enhance the accuracy of
snow identification. By incorporating both channel attention and
spatial attention, the DANet can focus on the target area of snow
in the global image and suppress irrelevant information.
Secondly, the proposed method is based on open-source
weather images, rather than video images from a single
camera, as in previous studies. The performance of the DANet
was evaluated using a dataset of more than 20,000 images and
compared to traditional CNN models. The results demonstrate
the effectiveness of the proposed approach in accurately
identifying snow in unattended AWS images.

2 Study area and data

2.1 Study area

The study area is located in Wuhan, China, which is situated
in the middle reaches of the Yangtze River. Wuhan has a
subtropical monsoon climate with four distinct seasons, and
experiences frequent occurrences of snow and rime in the
winter months. The research utilized video images of snow
captured by a weather station located in the Dongxihu district
of Wuhan (30°60′N, 114°05′ E). The station’s camera, which has a
fixed shooting angle and a shooting distance of approximately
50 m, was used to provide the images for snow identification.

2.2 Data

The video images used for snow identification in this study
were obtained from the camera of an automatic meteorological
observation station at the Wuhan weather station. The snow
images were collected between Beijing local time 11:00 and 15:30,
and from 18:00 to 21:00 on 29 December 2020, when there was
snow in Wuhan. The non-snow images were from 14 December
2020, and were also taken from the same camera at the Wuhan
weather station. Images of the ground covered in snow or
experiencing ongoing snowfall are manually labeled as snow
images. A total of 1,000 images with or without snow labels
were extracted from the video data by automatically selecting
every 10th frame, forming the test dataset for this study. The
images have a resolution of 2,048 × 1,536 pixels and were resized
to 600 × 400 pixels for computation efficiency.

The location and climatic conditions of Wuhan Station are
particularly distinctive, with a scarcity of significant snowfall
events, making it challenging to acquire a comprehensive dataset
of snow-related images. Consequently, this study aims to address
this limitation by selecting publicly available weather datasets as
the training data and leveraging real-time observational data for
testing and precision evaluation purposes. Among them, the
positive samples consist of 10,000 images depicting snowy
weather conditions, while the negative samples encompass
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2,000 images each of clear, rainy, foggy, cloudy, and
thunderstorm weather phenomena.

3 Snow identification network based on
DANet

The flowchart of the proposed snow identification network
based on the attention convolutional neural network is shown in
Figure 1. It can be divided into a data preparation module and a
snow identification module. In the data preparation module, the
open-source weather image set is used to construct the training and
validation sets for neural network training. The total sample is split
into a training set and a validation set in a 4:1 ratio. The images are
normalized and standardized to improve numerical stability during
backpropagation and accelerate the convergence of the neural
network. In the snow identification module, the residual network
model (ResNet-34) is used for image convolution and deep semantic
feature extraction to obtain the convolutional snow feature
map. ResNet-34 consists of 34 layers, with the majority being 3 ×
3 convolutional layers. It incorporates residual learning and skip
connections to address the degradation problem in deep networks.
Then, the attention module, including position and channel
attention, is used to focus on the snow feature for snow
identification. The position attention module performs position-
weighted summation on the convolutional layer, while the channel
attention module performs channel-dependent correlation on the
same convolutional layer. Both pixel feature maps obtained from
these processes are superimposed pixel-wise, focusing
simultaneously on the most salient position and channel
characteristics in the image. Finally, the fully connected layer is
used for snow identification. An image with a probability greater

than 0.5 is identified as a snow image, while an image with a
probability less than 0.5 is identified as a non-snow image. The
details of the various modules are described in the following
sections.

FIGURE 1
Snow identification network based on attention convolutional neural network.

FIGURE 2
ResNet-34 network structure.
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3.1 Snow feature extraction module based
on CNN

The residual network (ResNet) is a convolutional neural
network that addresses the problem of gradient explosion and
network recession in the Visual Geometry Group (VGG)
algorithm by adding residual units to the deep neural network.
ResNets have been shown to improve identification accuracy and are
well-suited for practical scenarios (Glorot et al., 2011; He et al.,
2016). ResNets are a popular choice for feature extraction and
classification, and can be divided into various structures based on
their convolutional depth, including ResNet-18, ResNet-34, ResNet-
50, ResNet-101, and ResNet-152. In this paper, the ResNet-34
structure is adopted, which consists of a 7 × 7 ×
64 convolutional layer, 16 blocks of residual modules each
composed of two convolutional layers, and a fully connected
layer. The network structure of ResNet-34 is shown in Figure 2.

3.2 Snow feature enhancement based on
attention module

The DANet model, introduced in CVPR 2019 (Xue et al., 2019),
uses deep semantic information about snow extracted by ResNet-34
to adaptively integrate local and global features. This is achieved
through the use of two modules: a position attention module and a
channel attention module. The position attention module allows the
network to selectively focus on the features of individual positions by
using weighted summation. The channel attention module
emphasizes the interrelated channel graph by combining relevant
features from all channel graphs. The feature graphs produced by
these two modules are combined to enhance the representation of
snow cover features.

3.2.1 Position attention module
To address the issue of lacking sensitivity in detecting local

features of snow due to CNN convolution and pooling, a position
attention module is used to extract more context information
about these local features. This allows the network to more
efficiently focus on and better detect both large- and small-
scale features of snow. The position attention module is
illustrated in Figure 3. It takes in a local feature map (A) with
dimensions of C × H ×W. The module then generates two feature
maps (B and C) through a convolution layer, which have
dimensions of C × H × W. The dimensions of B and C are

changed to C × N, where N is the number of pixels (N = H ×W). B
is transposed and multiplied with C, and the softmax function is
used to calculate the spatial attention map (S) (Eq. 1) with
dimensions of N × N (Liu et al., 2016). The map helps the
network focus on specific parts of the feature map, which has
dimensions of C × H × W.

Sji �
exp Bi · Cj( )

∑N
i�1 exp Bi · Cj( ) (1)

where Sji denotes the influence of ith position on jth. The more
similar the characteristics of the two positions, the higher correlation
between them.

The feature map D is created in a similar way to feature maps B
and C, through a convolution and a change in dimensions. It has
dimensions of C × H × W. Then, D and S are multiplied and
transformed through transposition and a change in dimensions. The
resulting map is multiplied by a scale parameter (α) and added to the
original feature map A, resulting in the final output feature map E
(Eq. 2) with dimensions of C × H × W.

Ej � α∑N
i�1
(SjiDi) + Aj (2)

where the scale parameter (α) is initially set to 0 and gradually learns
to assign more weight to certain features. In Eq. 2, all the points on
the E feature map are the weighted sum of features from all positions
and the original features, allowing the network to obtain a large
amount of global information and selectively focus on local features
according to the spatial attention map. This helps to better express
similar features, leading to increased compactness and semantic
consistency within the class.

3.2.2 Channel attention module
Each high-dimensional feature channel mapping can be thought

of as a specific response to a particular class, and there should be a
relationship between the information between classes. To better
understand this interdependence and emphasize interdependent
feature mappings, a channel attention module is used to
explicitly model the relationship between channels in order to
improve the representation of original features. This module is
shown in Figure 4.

Unlike the position attention module, the channel attention
module directly calculates feature map X with dimensions of C × C
from feature map A with dimensions of C × H × W. To do this, the
dimensions of A are transformed and multiplied with a matrix of A,

FIGURE 3
Position attention module.

FIGURE 4
Channel attention module.
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and the resulting map is passed through the softmax function (Eq. 3)
to generate the final feature map X.

xji �
exp Ai · Aj( )

∑C
i�1 exp Ai · Aj( ) (3)

where xji denotes the effect of the ith channel on jth.
In addition, matrix multiplication is used to transform feature

map X and multiply it with the transpose of feature map A. The
resulting map has dimensions of C × H × W, similar to the scale
parameter α. A new scale parameter (β) is introduced for this
multiplication, and the result is added to the pixels of feature
map A to produce the final feature map E (Eq. 4) with
dimensions of C × H × W.

Ej � β∑C
i�1
(xjiAi) + Aj (4)

In Eq. 4, the final feature of each channel is the weighted sum of
all channel features and original features, using a scale parameter (β)
that starts at zero and gradually learns to assign more weight. This
helps to strengthen the relationship between different channel
feature maps and improve the representation of distinctive
features of snow by emphasizing the rich semantic dependence
between channels.

3.3 Snow identification module based on
DANet

To fully incorporate information about spatial context, local
details, and class information, this paper combines the features from
the location and channel attention modules. The output of these two
modules is mapped to the same feature map through a convolution
layer and then combined by adding their respective pixels. Finally,
the snow is identified through a fully connected layer, namely:

Loss � − 1
N
∑N−1

i�0 Y ilogpi (5)

where Y is the true label of the sample, N is the number of samples
in a batch, and pi is the prediction probability of the sample.

4 Experiments

4.1 Hyper-parameter settings

The hyperparameters for the DANet model, including the
number and size of layers, convolution kernel size and step
length, pooling window size and step length, regularization
weight, learning rate, node loss rate, and batch size, are listed
in Table 1. The network is constructed using Linear, ReLU,
Normalization, and Dropout layers. The Adam optimization
algorithm and a learning rate attenuation technique are used
to speed up the convergence of the model. The learning rate is
continuously adjusted during training to reduce and stabilize the
loss value. Specifically, the model is trained in 80 batches, with a
learning rate of 10–2 for the first 20 batches, 10–3 for batches
21–40, 10–4 for batches 41–60, and 10–5 for batches 61–80.

4.2 Accuracy assessment

This paper used a total of 8,000 snow images and 8,000 non-
snow images to train the proposed DANet model, and 2,000 snow
images and 2,000 non-snow images were used for validation.
2,000 images from the AWS were used for model testing

TABLE 1 DANet model parameter change table.

Layers Outsize Operation

Conv1 112 × 112 7 × 7, 64, stride2

Conv2_x 56 × 56 3 × 3 max pool, stride2

3 × 3 64
3 × 3 64

[ ] × 3

Conv3_x 28 × 28 3 × 3 128
3 × 3 128

[ ] × 4

Conv4_x 14 × 14 3 × 3 256
3 × 3 256

[ ] × 6

Conv5_x 7 × 7 3 × 3 512
3 × 3 512

[ ] × 3

7 × 7 PAM_Module

7 × 7 CAM_Module

1 × 1 Average pool, 1000-d fc, softmax

FLOPs 3.6 × 109

TABLE 2 Distribution of snow and non-snow images in datasets.

Dataset Snow Non-snow Total

Training set 8,000 8,000 16,000

Validation set 2,000 2,000 4,000

Test set (Wuhan) 1,000 1,000 2,000

Total 11,000 11,000 22,000

TABLE 3 Comparison of verification accuracy between ResNet and DANet
models.

POD (%) FAR (%) TS (%)

ResNet34 85.73 4.93 82.08

DANet 94.68 6.63 88.71

TABLE 4 Accuracy evaluation of the DANet model.

POD (%) FAR (%) TS (%)

Validation 94.68 6.63 88.71

Test (Wuhan) 91.65 7.34 85.45
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(Table 2). The performance of the model was evaluated using the
Probability of Detection (POD) (Eq. 6), False Alarm Rate (FAR) (Eq.
7), and Threat Score (TS) (Eq. 8).

POD � TP TP + FN( )−1 (6)
FAR � FP TP + FP( )−1 (7)

TS � TP TP + FN + FP( )−1 (8)
where TP (true positive) is the number of forecasts and observations
that are both true, FN (false negative) is the number of false forecasts
and true observations, and FP(false positive) is the number of true
forecasts and false observations.

5 Results

This paper evaluated the trained DANet model using a
validation image set and a separate test image set. Images
were classified as snow if they had a probability of higher than
50% and classified as non-snow if they had a probability of less
than 50%. The addition of the attention module led to significant
improvements in the overall TS and POD of the model, as
indicated by the results (Table 3). However, it is worth noting
that FAR also increased with the inclusion of the attention
module. The FAR increased because the model occasionally
recognized fuzzy features similar to snow as actual snow,
leading to false positive judgments (Figure 5).

The accuracy metrics for the proposed DANet model are
shown in Table 4. According to the test data, POD is 91.65%,
FAR is 7.34%, the TS score is 85.45%. These high accuracy scores
demonstrate the efficiency of the proposed model in snow
identification. The majority of the missing alarm errors
occurred at night, with 75.6% of the 84 mission alarm images
being captured during the night. Similarly, 69.1% of the 73 false
alarm images were also captured at night. This is likely due to
the strong contrast between night and daytime, as well as the
camera shake in windy conditions causing some images to be
unclear.

According to the test results at the Wuhan station, the TS
score was higher than 85%. The trained model was able to
effectively extract the features of snow and positively impact

snow identification. However, the winter weather in Wuhan can
be unstable, so it is recommended to increase the observation
time in the modelling process to ensure continuous snow weather
phenomena and improve accuracy. In cases where sufficient data
is available, it is recommended to use a “one station one model”
approach, which involves creating a separate model for each
station. This can help to better capture the unique characteristics
of the snow at each station.

6 Conclusion

In order to improve real-time weather monitoring, it is
important to develop methods for accurately identifying snow
in local areas. AWS equipped with video offers one potential
approach to this problem. In this paper, we address the problem
of recognizing weather phenomena from images at
meteorological stations, and propose improvements through
the use of open-source weather images and double attention
mechanisms.

The result shows that using an attention convolutional neural
network (CNN) with channel and position attention modules can
improve the accuracy of snow identification. When compared to
a traditional CNNmodel, the attention module CNN resulted in a
6.63% increase in the TS score and a 8.95% increase in the POD.
The attention module is able to focus on specific areas and extract
relevant details while ignoring unnecessary information, leading
to better classification performance. Additionally, our proposed
method simplifies the process of training the CNN by using an
open-source weather image set rather than relying on a large
amount of video camera images, which can be difficult to obtain
and time-consuming. This proposed DANet model has
demonstrated the ability to handle images from various AWS
cameras with different viewing angles and heights, making it a
potentially suitable tool for identifying weather phenomena
globally. The proposed improvements in this study have not
only advanced the field of meteorological image and video
analysis, but also have practical value for widespread use and
implementation at meteorological stations.

Further research could explore the application of this model to
other types of weather phenomena and in different environments, as

FIGURE 5
Missing judgment images and false alarm images at Wuhan station at night.
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well as investigate ways to optimize and refine the model for
improved performance.
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