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Global climate change and the process of urbanization have had a significant
impact on land surface temperature (LST). This study selects the Chengdu
metropolitan area in China as a typical research subject. Based on the seasonal
heterogeneity and spatial distribution characteristics of LST, different types of
potential influencing factors are selected for Principal Component Analysis (PCA)
to determine the categories of these factors. Subsequently, a multiple linear
regression analysis is conducted to explore the relationship between LST and
the identified potential influencing factors during different seasons. The findings of
this study suggest that the regions with high temperatures and secondary high
temperatures in the Chengdu metropolitan area are primarily concentrated in
Chengdu and its adjacent localities, exhibiting noticeable seasonal variations. In
the summer, high-temperature zone and second high-temperature zone of the
LST show a central aggregation pattern. In the transition season, the high-
temperature zone of the LST presents a “large dispersion, small aggregation”
pattern. In the winter, it presents a dispersed pattern. In terms of influencing
factors, elevation, slope, wind speed, humidity, and surface vegetation cover
related to natural geographical conditions have a significant impact on LST,
reaching a peak during the transition season. Factors associated with social
and economic conditions, such as population size, nighttime light index, and
road density, have a pronounced effect on LST during the summer season. During
winter, LST is mainly influenced by landscape pattern-related factors such as
Shannon Diversity Index, Edge Density, Largest Patch Index, and Patch Density.
This study not only assesses the seasonal and spatial characteristics of LST in the
Chengdu metropolitan area but also provides valuable insights for formulating
phased measures to mitigate the Urban Heat Island (UHI) in other regions.
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1 Introduction

With the ongoing global climate change and urbanization
process, the continuous development of cities worldwide and the
concentration of population in urban areas have had a significant
impact on the urban ecological environment. The advancing
urbanization exerts a strong force on climate change in cities and
their surrounding areas. Among these forces, the urban heat island
(UHI) effect plays a crucial role. (Grimm et al., 2008). This
phenomenon is identified by a considerable rise in air and land
surface temperature (LST) within urban regions, contrasting with
the adjacent rural surroundings (Thompson and Perry, 1997). The
Surface Urban Heat Island (SUHI) effect can be identified using
conventional thermal-infrared remote sensing techniques, which
can effectively interpret the land-surface energy flow characteristics
in terms of numerical values. The SUHI effect exhibits pronounced
spatial and temporal variations when compared to the UHI effect
described by air temperature. It is also more susceptible to variations
in land surface characteristics and human activity. Furthermore, the
rise in LST gives rise to an upward movement of air currents, which
can provide better insight into the underlying causes of UHI than air
temperature-based evaluations (Wang Z. et al., 2022; Hu and Li,
2022). SUHI effect exerts a significant force on human production
and living. In recent years, it has drawn attention from various
disciplines such as geography, ecology, meteorology, and urban
planning. Many scholars have begun to explore the
characteristics of LST changes and the mechanisms behind the
formation of SUHI(Zakšek and Oštir, 2012). They have been
investigating different approaches to mitigate the rise in surface
temperature and, consequently, alleviate the impact of UHI on
human production and living. Therefore, it is of vital importance
to scientifically investigate the spatial and temporal distribution of
UHI and its influencing factors to understand the functioning of the
urban heat island effect and find ways to mitigate its impact.

Currently, the conventional approach of identifying LST
through weather stations has no longer sufficient to meet
practical needs. Multivariate remote sensing data, such as
Landsat Thematic Mapper, Advanced Very High-Resolution
Radiometer (AVHRR) satellite data, Moderate Resolution
Imaging Spectroradiometer (Modis), and Advanced Spaceborne
Thermal Emission and Radiation (Aster), have revolutionized the
field of LST detection. Compared to traditional methods of
measuring LST, remote sensing technology has proven to be
more reliable and efficient in capturing the complex and dynamic
nature of LST variations over time and space (Imhoff et al., 2010). In
this study, MODIS11A2 data is utilized, which is captured by long-
term surface satellites and processed through techniques such as
stitching, projection conversion, and other image processing. This
method offers a more accurate and extended detection time range of
LST data (Wan, 2008).

Merely examining the spatial distribution of LST might not be
adequate in effectively mitigating UHI hazards; it is crucial to
investigate the probable factors behind LST changes. Numerous
statistical techniques have been utilized for examining the impacts of
LST including geographically-weighted regression models to explore
the connection between LST variation and its driving forces (Gao
et al., 2022), geographic detectors (Geo-detectors) for identifying the
impact of surface parameters on LST (Wang W. et al., 2021), and

spatial regression models to examine the influence of urban spatial
structure on UHI at the community level (Guo A. et al., 2020). The
above study explores the spatial characteristics and influencing
factors of urban heat islands from different perspectives,
providing valuable suggestions for mitigating the urban heat
island effect. However, there are several limitations. Firstly, from
a temporal perspective, many studies focus on the surface
temperature during the summer season, overlooking the seasonal
variations and making it difficult to assess the phased characteristics
of surface temperature. Secondly, from a spatial perspective,
numerous studies concentrate on individual cities or large urban
clusters, neglecting the closer connections within urban
agglomerations that encompass economic, social, and natural
aspects. Furthermore, many studies have focused on the impacts
of natural geographical features and human socio-economic
activities on urban heat islands (Ward et al., 2016). In recent
years, the influence of landscape patterns on urban heat islands
has also been gradually addressed. Several studies have indicated a
relationship between urban green spaces and urban heat islands (Li
et al., 2013). Common landscape indicators are often used to explore
the connection between urban thermal environments and landscape
pattern factors (Peng et al., 2016; Sun et al., 2022). However, many of
these studies overlook the interactions between multiple influencing
factors and the seasonal variations in these factors. To address this
gap, our research will consider multiple types of influencing factors,
emphasizing the elimination of interactions among these factors.
This approach allows for a more intuitive identification of the
dominant factors influencing urban heat islands at different
stages. Additionally, considering the seasonal variability of the
driving factors for surface temperature, we will propose tailored
mitigation measures. Nevertheless, there are still limitations in the
current research regarding this aspect.

Since China’s reform and opening-up, cities have developed
rapidly. The continuous advancement of urbanization has put
forward new requirements for the construction and development
of Chinese cities. Urban agglomerations and metropolitan areas
have become important models for the development of Chinese
cities. Nevertheless, metropolitan areas exhibit more proximate
material and spatial linkages compared to urban agglomerations.
Furthermore, they play a crucial role in the evolvement of urban
agglomerations (Fang, 2021; Wang Q. et al., 2022). In 2021, the
Chinese government released the Chengdu Metropolitan Area
Development Plan, designating the Chengdu metropolitan area as
a significant growth center in southwest China. However, due to its
location in the Sichuan Basin, the area faces challenges in heat
dissipation and is prone to forming a heat island. In recent years, the
UHI effect in Chengdu has had a stronger influence on people’s
production and life, and at the same time, it has posed challenges to
the sustainable development of the city (Guo J. et al., 2020; Wu et al.,
2021). Currently, there are multiple perspectives in the research on
surface temperature in the Chengdu region to explore the urban heat
island phenomenon and the driving factors influencing it. These
perspectives include examining the relationship between urban land
changes and the urban heat island effect (Zhigang et al., 2016; Yu
et al., 2022; Zhe et al., 2022), investigating the relationship between
the built environment in the Chengdu region and surface
temperature (Sun et al., 2022; Luo et al., 2023), exploring the
impact of changes in health indices of urban and rural residents
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in China on surface temperature (Ren et al., 2021), studying the
influence of landscape patterns on the intensity of the urban heat
island (Sun et al., 2022), and using remote sensing satellite products
to investigate the impact of meteorological factors on the intensity of
the urban heat island (Lai et al., 2018; Liao et al., 2022). However, the
current research on the Chengdu regionmostly focuses on the urban
heat island characteristics within the city itself, while there is
relatively little research on the urban heat island effect in the
Chengdu metropolitan area, lacking an exploration of the
characteristics of the urban heat island effect within the
metropolitan area that spans administrative boundaries and has
close interconnections among its elements.

Therefore, this study focuses on the Chengdu metropolitan area,
aiming to fill the research gap on urban heat islands in the Chengdu
metropolitan area and provide recommendations for mitigating the
urban heat island effect. In summary, although there are many
studies focusing on exploring the characteristics and influencing
factors of the urban heat island effect, this study has several key
innovations compared to previous research. Firstly, in terms of the
choice of research area, this study takes the perspective of the
metropolitan area and selects the Chengdu metropolitan area as
the research object. As the first approved metropolitan area in
Southwest China and an important growth pole in the region,
there is relatively limited research on the Chengdu metropolitan
area. Therefore, this study focuses on the Chengdu metropolitan
area, which has important theoretical value for mitigating the urban
heat island effect at the metropolitan scale. Secondly, in terms of
research methods, this study examines the characteristics of the
urban heat island in different seasons, conducts correlation analysis
to explore potential driving factors influencing surface temperature
in the Chengdu metropolitan area, and finally utilizes principal
component analysis and multiple linear regression to investigate the
relationships among the driving factors, thereby identifying the
main factors influencing surface temperature in different seasons
in the Chengdu metropolitan area. Thirdly, from a theoretical and
practical perspective, this study identifies the dominant factors
influencing surface temperature in different seasons and proposes
seasonal mitigation measures, providing reference and guidance for
local governments and urban planners to a certain extent. This study
is of theoretical significance and practical relevance to the
construction and development of the Chengdu metropolitan area.

2 Research region

The location of the Chengdu metropolitan area lies in the
northwestern vicinity of the Sichuan Basin, specifically positioned
within the southwestern boundaries of China’s Sichuan Province
(30°04′-31°42′N; 103°50′-105°27′E). The Chengdu metropolitan
area, with a total expanse of 33,100 square kilometers,
encompasses various counties and urban zones, including the
Jingyang District of Deyang City, Shifang City, and Guanghan
City, and is primarily centered around Chengdu City. The
topography of the region is predominantly flat, with ranges of
mountains situated towards the west. The bulk of the metropolitan
zone is located within the central subtropical belt (Liu et al., 2021a),
and its unique geographic location results in an average temperature
of 16.8°C in Chengdu City. The planning area is selected as the study

area (Figure 1) to provide a relevant reference for the planning and
construction of Chengdu metropolitan area.

This study is based on the climatic characteristics of the
Chengdu metropolitan area and previous research findings
(Wang Z. et al., 2022). We also take into account the
geographical environment of the Chengdu metropolitan area. On
one hand, we analyze the temperature and precipitation data for
each month. On the other hand, we consider the continuity of
human society’s seasonal division, resulting in the categorization of
the Chengdu metropolitan area into three seasons: summer,
transition season, and winter. The Chengdu metropolitan area
exhibits distinct subtropical monsoon humid climate
characteristics and is mainly situated in the central subtropical
region (Figure 2). During June to September, the average
temperatures are relatively high and exhibit a stable distribution.
The temperature fluctuations during these 4 months are minimal,
thus designating them as the summer season. In comparison, the
average temperatures from December to March are lower, especially
in January. Although the average temperature and precipitation in
March are slightly higher than in November, the seasonal
classification pattern considers the coherence in month-to-month
division. As a result, these 4 months are defined as the winter season.
The average temperatures in April-May and October-November are
relatively similar, as these months often serve as transitional periods
between summer and winter. Therefore, the study defined March,
April, May, and October as the transition seasons.

3 Data and methods

3.1 Data sources and processing

The data utilized in this study comprise LST data and potential
driving force that affect LST. These factors include a digital elevation
model, wind speed, humidity, slope, Shannon diversity index, edge
density, maximum patch area index, patch density, road density,
population density, night lighting, and vegetation cover, resulting in
a total of 12 potential driving force (Figure 3). Please refer to
(Table 1) for more details. To characterize the distribution
characteristics of various influencing factors, this study employed
the natural breakpoint method to reclassify the potential influencing
factors into five levels ranging from 1 to 5. A higher level indicates a
higher numerical value, and a more pronounced spatial expression
of the corresponding potential influencing factor.

The study utilizedMODIS11A2 data obtained from the Terra and
Aqua satellites, which are equippedwith the importantMODIS sensor.
ThesensorallowsfortheacquisitionofLSTdataat fourdaily intervals, it
was determined that MODIS11A2 data offers higher accuracy (Wan,
2008).Therefore, for this study, the2020MODIS11A2datawasutilized
toobtainprocessedLSTdata for theChengdumetropolitan area,which
was sourced from LAADS DAAC.

3.2 Research methodology

The logical framework for the research presented is illustrated in
the following (Figure 4). The main purpose is to summarize the LST
distribution characteristics of Chengdu metropolitan area by using
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LST characteristics in different seasons, and 12 potential driving
force are selected to analyze the potential factors affecting the spatial
distribution pattern of heat islands in Chengdu metropolitan area,
and to establish a season-al mathematical relationship model
affecting the LST of Chengdu metropolitan area by correlation
analysis, principal component analysis and multiple regression
analysis, and finally summarize the analysis results for discussion.

3.2.1 LST division
To investigate the seasonal fluctuations of Land Surface

Temperature (LST) throughout the Chengdu metropolitan area,
ArcGIS 10.8 was utilized to reclassify the LST data using the
mean−standard deviation technique (Table 2). Among them, Ts
represents the unit raster value of LST in Chengdu metropolitan
area, μ represents the mean value of LST in Chengdu metropolitan

FIGURE 1
(A) Extent of the research region (B) Research region land use (C) Administrative division of the research region.
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area in different seasons, and std represents the standard deviation
of LST in Chengdu metropolitan area in different seasons.
Combining with related studies (Hu et al., 2022a; Hu and Li,
2022), we define the mid-temperature zone, second high-
temperature zone and high-temperature zone as UHI regions
with high heat sources.

3.2.2 Landscape pattern indices
Landscape pattern index is commonly employed to quantify

landscape characteristics and effectively depict the shape and
distribution features of various patches within a landscape. Based
on previous studies (McGarigal et al., 2012; Zhang et al., 2020),
landscape edge density (ED), maximum patch index (LPI), Shannon
diversity index (SHDI), and patch density (PD) were selected in this
study. And the optimal window size was selected to calculate the
landscape pattern index using Fragstats 4.2 software, and the specific
formula is shown in the table below (Table 3).

From Table 3, it can be observed that this study selects four
different landscape pattern factors to represent distinct meanings.
Among them, Edge Density (ED) is the ratio of the total perimeter
of all patches to the total landscape area, often used to indicate the
degree of landscape fragmentation by boundaries, reflecting the
degree of landscape element fragmentation. The Largest Patch
Index (LPI) is the ratio of the largest patch area to the total
landscape area. It is used to calculate the proportion of the
largest patch within the spatial unit, helping identify dominant
patch types within the landscape and assessing human disturbance
to the landscape. The Shannon Diversity Index (SHDI) is
commonly used to measure landscape diversity, reflecting the
uneven distribution of patches within the landscape. It can also
detect changes in diversity and heterogeneity of the same
landscape at different periods. In a landscape system, the more

diverse the land use types, the richer the patch types, and
correspondingly, the higher the SHDI value. Patch Density
(PD) is the ratio of the total number of patches to the total
landscape area. It characterizes the degree of landscape
fragmentation caused by segmentation and reflects the degree of
human disturbance to the landscape. A higher Patch Density index
indicates a greater degree of landscape fragmentation within the
landscape unit (Zheng et al., 2010; Li et al., 2012).

3.2.3 Standard deviation ellipse
The standard deviation ellipse is commonly used to study the

spatial distribution characteristics of geographical elements,
displaying their distribution patterns in space and identifying
variations in the center of the elements. The long semi-axis of
the ellipse represents the main direction of the element distribution,
while the size of the short semi-axis indicates the degree of spatial
aggregation. The larger the difference between the lengths of the
long and short axes, the more pronounced the directional
distribution of the element. The azimuth represents the angle in
a clockwise direction from the north to the direction of the long axis
of the ellipse, indicating the main direction of the element’s
distribution (Zhao et al., 2022). Therefore, in this study, the
standard deviation ellipse is used to quantitatively describe the
spatial distribution and evolutionary characteristics of surface
temperature in the Chengdu metropolitan area. The calculations
are as follows:

x′ � xi − xave, y′ � yi − yave (1)

tanθ�
∑n

i�1w
2
i x′

2
i −∑n

i�1w
2
i y′

2
i( )+ ������������������������������∑n

i�1w
2
i x′

2
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2
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2
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2
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′
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2
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i
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FIGURE 2
(A) The climate zone in which the study area is located (I. Northern Temperate Zone Ⅱ. Central Temperate Zone Ⅲ. Southern Temperate Zone Ⅳ.
Highland climate zone V. Northern Subtropical VI. Central subtropicsⅦ. Southern subtropics VIII. Northern subtropicsⅨ. Northern subtropics X. Central
tropics Ⅺ. Southern tropics Ⅻ. South Sea islands) (B) Average monthly temperature and precipitation in the central subtropics.
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δx �

������������������������∑n
i�1 wix′i cos θ − wiy′i sin θ( )2∑n

i�1w
2
i

√√
(3)

δy �

������������������������∑n
i�1 wix′i sin θ − wiy′i cos θ( )2∑n

i�1w
2
i

√√
(4)

In the equation, (xave, yave)is the average center of (xi, yi), wi is
the LST, and (x′, y′) represents the relative coordinates of each point
to the centroid of the study area, where tan θ can obtain the azimuth
angle, and δx and δy are the standard deviations of the X and Y-axes.

3.2.4 Correlation analysis
Correlation analysis is a statistical method used to assess the

strength and direction of the relationship between two variables. In

FIGURE 3
Potential driving force affecting LST change in the Chengdumetropolitan area (A) ROAD (B) LIGHT (C) POP (D)NDVI (E) SHDI (F) ED (G) PD (H) LPI (I)
HUM (J) DEM (K) SLOPE (L) WIND.
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this study, this method is used to determine the correlation among
various potential factors influencing surface temperature in the
Chengdu metropolitan area, with a focus on determining the
degree of correlation between surface temperature and factors

such as elevation, slope, and humidity. Specifically, a random
sampling tool in ArcGIS 10.8 was used to select 20,000 points
and obtain their attribute values. Pearson correlation analysis was
then conducted using SPSS software to calculate the Pearson

TABLE 1 Potential driving force of LST.

Potential driving
force

Abbreviations Explanations Literature basis Data sources

Digital Elevation
Model

DEM This data is the annual data of 2020 after
the calculation and processing of remote
sensing satellite data, reflecting the surface

elevation in unit space

Wang et al. (2018), Wang Z. et al.
(2021)

The geospatial data cloud platform
(https://www.gscloud.cn/#page1/1,

accessed 16 February 2023)

Slope SLOPE This data is the DEM data calculated and
processed for the year 2020, responding to

the slope value in the unit space

Wang et al. (2018), Wang Z. et al.
(2021)

Using DEM elevation data and the slope
analysis tool in ArcGIS 10.8, the slope

information was obtained

Wind speed WIND The data is synthesized by the algorithm for
the year 2020, responding to the monthly
average wind speed at the surface per unit

space

Zhao et al. (2020) The National Earth System Science Data
Center (http://www.nesdc.org.cn/,

accessed 3 March 2023)

Humidity HUM This data is synthesized by algorithm for
the year 2020 and reflects the monthly

average humidity value of the surface in the
unit space

Zhao et al. (2020) The National Earth System Science Data
Center (http://www.nesdc.org.cn/,

accessed 3 March 2023)

Shannon Diversity
Index

SHDI This number was calculated using
2020 land use data and reflects the richness

of landscape types

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Edge Density ED This number is calculated using 2020 land
use data and reflects the edge density of

landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Largest Patch Index LPI This number is calculated using 2020 land
use data and reflects the maximum area

index of landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Patch Density PD This number was calculated using
2020 land use data and reflects the density

of landscape patches

Ren et al. (2016), Peng et al. (2018),
Guo G. et al. (2020)

Based on the latest land-use data from the
research area, landscape pattern indices
were calculated using Fragstats software,
Land-use data from Globeland30 (http://
www.globallandcover.com/, accessed

3 March 2023)

Road density ROAD This data is obtained after kernel density
processing using 2020 road vector data,

pre-processed and corrected

Correa et al. (2012) The non-profit map service platform
Open Street Map (http://www.
openstreetmap.org/, ac-cessed

27 February 2023)

Population density POP This number is the algorithm synthesized
data for the year 2020, reflecting the
number of people in the unit space

Peng et al. (2018), Geng et al. (2023) Worldpop (https://www.worldpop.org/,
accessed 26 February 2023)

Night light LIGHT The data is synthesized by algorithm for the
year 2020, reflecting the value of nighttime
lighting in the unit space

Peng et al. (2018) The Resource and Environmental Science
and Data Center of the Institute of

Geographical Sciences and Resources,
Chinese Academy of Sciences (https://
www.resdc.cn/, accessed 25 February

2023)

NDVI NDVI This data is synthesized by the algorithm
for the year 2020 and reflects the amount of
vegetation cover per unit space

Yang et al. (2019) The national ecological data center
resource sharing service platform (http://
www.nesdc.org.cn/, February 26s, 2023)
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correlation coefficients between each factor and surface
temperature. Correlation analysis enables the identification of the
main factors influencing surface temperature in the Chengdu
metropolitan area and the assessment of the interrelationship
among potential influencing factors. The correlation coefficient
(R) can be expressed using the following formula:

R � ∑n
i�1 xi − �x( ) yi − �y( ))�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (5)

In the formula, n represents the number of variables; xi represents
the independent variable (in this case, the potential influencing
factor); yi represents the dependent variable (in this case, the LST
value). The range of the correlation coefficient R is |R|≤1. When the
absolute value of R approaches 1, it indicates a stronger correlation
between the variables; otherwise, it indicates a weaker correlation.

3.2.5 Principal component analysis
Principal component analysis (PCA) is a statistical method used

for dimensionality reduction and data compression. Its main objective
is to transform the original variables into a set of uncorrelated principal
components to explain the variability in the data. In this study, PCA is
employed to identify the main components or factors that explain the
variations in surface temperature in the Chengdu metropolitan area.
By reducing the number of variables, PCA helps simplify the model
and better understand the underlying driving forces. Specifically, the
study conducts PCA using SPSS software to analyze the potential
influencing factors of surface temperature. The 16 potential influencing
factors are subjected to dimensionality reduction based on their
contribution rates, with values greater than 0.5 used as grouping
criteria to classify them into different categories. This process
eliminates the correlation among the factors and categorizes the

FIGURE 4
The framework for exploring the spatial and temporal distribution patterns of LST and the driving factors.

TABLE 2 Classification criteria for LST classes.

Temperature level Classification method

High-temperature zone Ts>μ+std

Second high-temperature zone μ+0.5std≤Ts≤μ+std

Mid-temperature zone μ-0.5std≤Ts≤μ+0.5std

Second low-temperature zone μ-std≤Ts≤μ-0.5std

Low-temperature zone Ts≤μ-std
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16 potential influencing factors into different groups of latent
influencing factors.The calculation proceeded as follows:

Assuming that the original variables have m samples, with each
sample having n observations, the matrix of the original variables is:

X �
x1n / x1m
..
.

1 ..
.

xm1 / xnm

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (6)

In the formula, X represents the potential driving force, n
represents the number of potential driving force, and m
represents the number of samples.

After obtaining each principal component, the extraction of
principal components was performed according to Eq. 7:

αk � λk∑n
i�1λi

(7)

Where, αk is the variance contribution of the i-th principal
component, indicating the degree of explanation of each component
to the information of the original variables; λi is the characteristic
root of the correlation coefficient matrix.

Expressions for different categories of principal components:

F1 � a11x1 + a12x2 + . . . + a1nxn
F2 � a21x1 + a22x2 + . . . + a2nxn
F3 � a31x1 + a32x2 + . . . + a3nxn

⎧⎪⎨⎪⎩ (8)

Where, F1, F2 . . . Fn are the 1st principal component, 2nd
principal component . . . nth principal component; a11, a21 . . .

anm are the principal component coefficients.

3.2.6 Multiple linear regression
Multiple regression analysis is a statistical method used to

establish the relationship between a dependent variable and
multiple independent variables. In order to further investigate
whether different categories of potential influencing factors have
an impact on surface temperature, this study employs multiple
linear regression to determine the effects of different categories of
potential influencing factors on surface temperature. It identifies the
important role played by each category of factors in the seasonal
variation of surface temperature and their relative weights. This
helps determine how surface temperature is influenced by different
categories of potential influencing factors, and allows for targeted
solutions to be proposed.

Assuming that there are independent variables x1, x2, x3 . . . xn
and y is the dependent variable, then:

y � b0 + b1x1 + b2x2 + . . . bnxn (9)
And in this study y denotes the LST magnitude and x1, x2, x3...xn

denotes the potential impact factor.
The multiple regression coefficients obtained from the multiple

linear regression model need to undergo collinearity diagnosis to
determine the severity of collinearity in the multiple linear
regression model. The commonly used VIF values are used for
this purpose. The calculation formula is as follows:

VIF � 1
1 − R2

i

(10)

R2 is the coefficient of determination in linear regression, which
reflects the percentage of variation in the dependent variable
explained by the regression equation. It can be obtained by
squaring the multiple correlation coefficient between the
dependent variable and the independent variables. If all VIF values
are less than 10, it indicates that there is no multicollinearity problem
in the model and the model construction is good.

In summary, this study identified 12 potential factors that affect the
spatial distribution pattern of the urban heat island in the Chengdu
metropolitan area. Through correlation analysis, principal component
analysis (PCA), and multiple regression analysis, a seasonal
mathematical model was established to explain the influences on
surface temperature in the Chengdu metropolitan area. Specifically,
correlation analysis was used to determine the relationships between
factors, PCA was employed to reduce dimensionality and identify the
main components, and multiple regression analysis was utilized to
establish a mathematical model explaining the relationship between
the dependent and independent variables. Therefore, these three
research methods differ in analyzing the influencing factors of the
urban heat island’s spatial distribution pattern in the Chengdu
metropolitan area, and they complement each other. The
comprehensive use of these methods provides a comprehensive
understanding and modeling of the influencing factors of seasonal
variations in surface temperature in the Chengdu metropolitan area.

4 Results

4.1 Temporal-spatial characteristics of LST in
Chengdu metropolitan area

Figure 5 presents the annual LST patterns of Chengdu
metropolitan area, which were extracted from MOD11A2 data

TABLE 3 Calculation formulae for landscape indices and their ecological significance.

Indicators Meaning of indicators Calculation formula

ED The density of landscape patches within the spatial unit was measured (m/hm2). E is the total length of the boundary of all patches
in the landscape and A is the total area

ED � E
A10

6

LPI The proportion of the largest patches within the spatial unit was measured. aij is the area of patch ij and A is the total area LPI � max(aij )
A *100

SHDI Measurement of landscape diversity within a spatial unit. Pk is the ratio of the total area of category k to the window area
SHDI � −∑n

k�1
Pk ln(Pk)

PD The degree of patch fragmentation was measured, with a larger patch density index indicating a higher degree of landscape
fragmentation in that landscape unit. ni is the number of i patches in the landscape and A is the total landscape area

PD � ni
A
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and categorized into three phases: summer, transition season, and
winter. During summer, the monthly mean LST was 35.3°C, with a
maximum value of 46.5°C, a minimum of 19.4°C, and a standard
deviation of 3.66. In the transition season, the monthly average LST
reached 37.1°C, with a maximum value of 47.5°C, a minimum of

10.4°C, and a standard deviation of 5.09. As for winter, the monthly
average LST was 9.3°C, with a maximum value of 17.4°C, a minimum
of −8.1°C, and a standard deviation of 3.54.

In order to obtain different characteristics of temporal and
spatial changes of the UHI in the Chengdu metropolitan area,

FIGURE 5
Spatial pattern of LST in Chengdu metropolitan area in different
seasons: (A) summer (B) transition season (C) winter.

FIGURE 6
Spatial distribution of heat islands in Chengdu metropolitan area
in different seasons: (A) summer (B) transition season (C) winter.
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the study used themean−standard deviationmethod to reclassify the
LST into five zones: “high temperature zone, medium-high
temperature zone, medium temperature zone, medium-low
temperature zone, and low temperature zone” (Figure 6), in
order to investigate the changes in area and space of the LST in
different seasons.

Based on the level values of LST in Chengdu metropolitan
area after division, the area values of different temperature zones
in Chengdu metropolitan area during the transition season,
summer, and winter could be obtained. Based on the
classification criteria in Table 3, as shown in Table 4: it could
be found that the high-temperature zone and the second high-
temperature zone of the Chengdu metropolitan area in summer
have an area of 3328.25 km2 and 7778.57 km2 respectively,
accounting for 10.06% and 23.50% of the total area of the
Chengdu metropolitan area. Compared with the transition
season, the area of high-temperature zones in summer is
significantly higher, while compared with winter, the total area
of high-temperature zones and the second high-temperature
zones is significantly higher than in winter. From a seasonal
perspective, the temperature in the Chengdu metropolitan area is
generally high throughout the year, with relatively large areas of
high-temperature zones and the second high-temperature zones
in summer. In the transition season, the second high-temperature
zone reaches its peak, accounting for the highest proportion
(31.18%) among the three seasons; in winter, the high-
temperature zone reaches its peak, accounting for the highest
proportion (12.98%) among the three seasons (Figure 7).

In order to explore the spatial characteristics of surface
temperature variations in the Chengdu metropolitan area, a
standard deviation ellipse analysis was conducted. The analysis
results (see Figure 8) show significant differences in the length of
the major and minor axes of the ellipses for the three seasons. It
can be observed that the temperature variations in the Chengdu
metropolitan area exhibit a strong directional pattern in
different seasons. From the figure, it can be seen that the
temperature variations in the Chengdu metropolitan area
follow a northeast-southwest direction. In the summer
season, the length of the minor axis of the ellipse is
significantly smaller than that in the transitional and winter
seasons. The transitional season also shows a relatively smaller
value compared to the winter season. Therefore, it can be
inferred that the temperature variations in the summer
season exhibit the most significant clustering characteristics,
followed by the transitional and winter seasons. From winter to
transition season, the heat island center moved southeastward
by 49.3 km at a deviation angle of 7.5. From transition season to
summer, the heat island center shifted northwest by 22.4 km
with a deviation angle of 6.3°. Overall, the LST in Chengdu
metropolitan area changed significantly with the seasons. In
summer, the high-temperature zone was concentrated in the
central area. In the transition season, the dispersion of the high-
temperature zone caused the center of the heat island to move
towards the plain area. In winter, most areas were normal, with
low-temperature zones and second low temperature zones
located in the northern mountainous areas, causing the
center of the heat island to move towards the northern
mountainous areas.

4.2 Potential drivers of LST in the Chengdu
metropolitan area

To identify the factors influencing LST, the study considered various
potential drivers, including POP, LIGHT, DEM, SLOPE, HUM,WIND,
ROAD, ED, LPI, PD, SHDI, and NDVI. These factors were analyzed
using SPSS and ArcGIS 10.8 to determine their correlation with LST in
different seasons. The Spearman correlation analysis method was
employed to calculate correlation coefficients between the potential
factors and LST (Figure 9), and the results passed the significance
test. Specifically, LPI, NDVI, DEM, and SLOPE were negatively
correlated with LST in different seasons, indicating that they can
significantly reduce LST. On the other hand, ED, PD, SHDI, WIND,
HUM, ROAD, POP, and LIGHT were positively correlated with LST in
different seasons, indicating that they can significantly increase LST.
Meanwhile, the degree of influence on LST varies in different seasons,
with slight differences observed in different seasons.

In order to further explore the differences in the driving factors
of land surface temperature in different seasons, this study used
principal component analysis to further investigate them. Based on
the findings presented in Tables 5, 6, principal component analysis
(PCA) was employed to reduce the dimensionality of the twelve
potential factors. The PCA results revealed that the first three
principal components possessed eigenvalues greater than 1,
suggesting that they accurately captured the variations in LST.
Based on the component matrix after four iterations of rotation,
we identified the three main factors affecting LST changes in
Chengdu metropolitan area: landscape pattern, natural
geography, and human influence factors.

4.3 Seasonal relationship between LST and
potential drivers in Chengdu metropolitan
area

The study further explored the potential factors affecting LST
in Chengdu metropolitan area by using the three principal
components identified through principal component analysis,
and established regression equations based on seasonal LST.
From Tables 6, 7, it can be observed that the linear regression
coefficients (R2) between the independent variables and dependent
variables have different values in different seasons. When
analyzing the temperature data for summer, the R2 is 0.621,
indicating that the regression equation can explain 62.1% of the
sample data. When analyzing the temperature data for the
transitional season, the R2 is 0.746, indicating that the
regression equation can explain 74.6% of the sample data.
When analyzing the temperature data for winter, the R2 is
0.497, indicating that the regression equation can explain 49.7%
of the sample data. Furthermore, in the collinearity analysis, the
VIF (variance inflation factor) and TLR (tolerance limit ratio)
values of Principal Component 1 are 9.7408 and 0.1027,
respectively. For Principal Component 2, the VIF and TLR
values are 3.6464 and 0.2742, respectively. For Principal
Component 3, the VIF and TLR values are 7.2896 and 0.1372,
respectively. It can be seen that the VIF and TLR values of Principal
Component 2 (natural geography) are relatively good, indicating
that the regression equation does not have a serious collinearity
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problem. However, the VIF and TLR values of Principal
Component 1 (landscape pattern) and Principal Component 3
(socio-economics) are relatively poor. Based on the VIF and
Tolerance values, it can be concluded that the regression
equation does not have a serious collinearity problem.

Specifically, from Table 8, it can be seen that ED, PD, SHDI,
NDVI, DEM, and SLOPE are negatively correlated with land surface
temperature, while WIND, HUM, ROAD, POP, and LIGHT are
positively correlated with land surface temperature. Overall, natural
geographical factors such asWIND, HUM, DEM, and SLOPE have a
greater impact on land surface temperature, followed by social and
economic factors such as POP, LIGHT, NDVI, and ROAD.
Landscape pattern factors such as ED, LPI, PD, and SHDI have
the weakest impact on land surface temperature. In terms of
seasonality, POP (0.125) and LIGHT (0.16) reach their maximum
values in summer, while DEM (−0.857), SLOPE (−0.739), NDVI
(−0.203), HUM (0.747), WIND (0.453), and ROAD (0.298) reach
their maximum values in the transition season. ED (−0.08), LPI
(0.089), PD (−0.076), and SHDI (−0.08) reach their maximum
values in winter.

5 Discussion

5.1 Temporal-spatial characteristics of
seasonal LST in Chengdu metropolitan area

The study area is situated in a basin typical of its kind, bounded
by the Chengdu Plain to the east, the Minshan Mountains to the

north, and the Emei Mountains to the southwest. Results from the
analysis of LST reveal conspicuous spatial disparities in the UHI
effect across the Chengdu metropolitan area. Specifically, areas with
relatively low temperatures have formed in proximity to the
Minshan Mountains and the Emei Mountains, situated in the
north and southwest regions of the study area, respectively, while
regions with high temperatures have emerged in the central plain.
Collectively, these observations indicate that the thermal
environment of the Chengdu metropolitan area exhibits a
distinctive feature characterized by high temperatures in the
southeast and low temperatures in the northwest.

By considering the spatiotemporal characteristics, it is
observed that during summer, the regions with high and second
high temperatures are predominantly located in the Chengdu,
Deyang, Meishan, and Ziyang areas, with few other cities and
counties also exhibiting localized hotspots. Meanwhile, the areas
with low and second low temperatures are distributed mainly in
the northern mountainous regions of Dujiangyan and the
southwestern areas of the study region. In the transitional
season, high and second high temperature regions exhibit more
dispersed patterns with reduced regional coherence, whereas, low
and second low temperature areas have a more concentrated
distribution in the northwestern and southwestern sectors of
the Chengdu metropolitan area. In winter, the high-temperature
zone and the second high-temperature zone are mainly distributed
in the northeast of the Chengdu metropolitan area, and are divided
by the Longquan Mountains in a northeast-southwest direction.
The low-temperature zone and the second low-temperature zone
are distributed in the mountains in the northwest of the Chengdu

FIGURE 7
Seasonal urban heat island area in Chengdu metropolitan area.
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metropolitan area and the LongquanMountains in the southeast of
Chengdu city. These results are consistent with previous research
(Zhou et al., 2014).

Considering the distribution of cities, high-temperature
areas are mainly concentrated in cities such as Chengdu,
Deyang, Ziyang, Guanghan, and Meishan. These cities are
located in the plain area, with dense population, developed
economy, high level of urban construction, and compact
distribution of buildings, which cause the LST to rise (Zhao
et al., 2018; Hu et al., 2022b; Ren et al., 2022). And the study area
is located inside the Sichuan Basin, surrounded by high-altitude
mountains, which cannot disperse the heat airflow, resulting in
the accumulation of heat island in the basin area between the
mountains. This exacerbates the urban heat island effect (Wang
Z. et al., 2022). Concentrated regions of low temperature are
found primarily in the mountainous zones located in the
northwestern and southwestern sectors. These areas are
characterized by high-altitude mountainous terrain with
abundant water systems and lush vegetation. Water systems
and vegetation cover density can significantly contribute to
mitigating the UHI effect. Water systems can directly cool the
surface, while vegetation can reduce LST through transpiration
(Jin, 2012; Hu et al., 2022c).

5.2 Exploring the driving relationship of
seasonal LST in Chengdu metropolitan area

Based on the principal component analysis and judgment of the
content of potential influencing factors, the factors affecting surface
temperature in the Chengdu metropolitan area are categorized into
three groups: landscape pattern factors, natural geographic factors,
and socioeconomic factors. Current research indicates that
socioeconomic factors play a dominant role in the urban heat
island effect in plain areas (Zhou et al., 2016; Sun et al., 2019).
However, through the correlation coefficient analysis of multiple
linear regression, it is revealed that natural geographic factors have a
significant advantage in the formation process of the urban heat
island in the Chengdu metropolitan area. It is worth noting that the
current research findings may not be quantitatively refutable due to
differences in study design, data sources, and methods, which lead to
certain limitations. On the one hand, the selection of influencing
factors has a significant impact on research results. In this study,
typical driving factors were selected as independent variables in the
regression analysis, covering different aspects of variables as much as
possible. However, it is still challenging to fully consider all possible
factors. On the other hand, spatial and temporal scales also influence
research outcomes. The urban heat island effect exhibits different

FIGURE 8
Direction of heat island development in Chengdu metropolitan area.
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patterns at different spatial scales (such as within cities and
surrounding areas) and temporal scales (such as different seasons
and time periods).

The research findings of this study may be related to the
geographical environment of the study area, in which the
Chengdu plain in the Sichuan Basin is surrounded by large
mountains to the north and west. As a result, hot air is inhibited
from rising, leading to sinking and resulting in warmer temperatures
in the plain area. Moreover, in areas with higher elevations in the
study area, a large number of vegetation trees are planted, and the
increase in vegetation can effectively reduce the LST (Wang and
Akbari, 2016). Among the landscape pattern factors, ED, PD, and
SHDI are negatively correlated with LST, while only LPI has a

positive correlation with LST, which indicates that most landscape
pattern factors can reduce LST. Wind speed and humidity have a
positive correlation with LST, indicating that wind speed and
humidity can increase LST (Zhou et al., 2016). The location of
the Chengdu metropolitan area, situated within a basin
characterized by low wind speed and high humidity, is a
determining factor. Corroborating the positive correlation
between wind speed and LST, higher LST values are observed
when wind speed is low. In the plain areas within the basin, the
prevailing winds often come from inland regions. According to
previous research (Al-Obaidi et al., 2021), when the winds originate
from inland areas, they tend to generate a strong urban heat island
effect. The presence of water in the atmosphere is known to exert a

FIGURE 9
The Spearman’s rank correlation coefficient was utilized to analyze the influence of various potential factors on LST across diverse seasons.

TABLE 4 Size of heat island area in Chengdu metropolitan area in different seasons.

Season Low-temperature
area

Medium-low
temperature zone

Medium
temperature zone

Medium-high
temperature zone

High temperature
zone

Summer Area
(km2)

2228.07 1649.42 24,048.09 2611.91 2555.81

Ratio
(%)

6.73% 4.98% 72.67% 7.89% 7.72%

Transition Area
(km2)

3413.73 2195.63 20,845.96 3909.79 2728.19

Ratio
(%)

10.32% 6.63% 62.99% 11.81% 8.24%

Winter Area
(km2)

1560.97 3911.65 24,901.44 0.00 2719.25

Ratio
(%)

4.72% 11.82% 75.25% 0.00% 8.22%
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warming effect during periods of falling temperatures and a cooling
effect during periods of rising temperatures, which are referred to as
the “constant temperature effect,” ultimately leading to the
maintenance of the surrounding temperature. However, the
perpetual low wind speed in the Chengdu area impedes the
cooling effect, thereby causing the land surface temperature
(LST) to remain persistently high (Zong et al., 2019; Wu et al.,
2021). Furthermore, the positive correlation identified between
human-influenced factors and LST indicates that anthropogenic

activities have a notable enhancing impact on the urban heat island
phenomenon. Human construction activities will significantly affect
the changes in urban climate (Ren et al., 2022), and the continuous
expansion of cities and human energy consumption will generate a
large amount of heat, resulting in an increase in LST.

In addition to the overall impact of indicators related to human
activities leading to an increase in surface temperature, our further
research has revealed that human activities are influenced by
seasonal variations, showing varying degrees of impact on

TABLE 5 Total variance explained by principal components of potential influences.

Component Initial eigenvalues Extracted square sum of loads

Total Percentage of variance % Cumulative% Total Percentage of variance % Cumulative%

1 3.870 32.246 32.246 3.870 32.246 32.246

2 2.832 23.597 55.843 2.832 23.597 55.843

3 2.001 16.678 72.521 2.001 16.678 72.521

4 0.908 7.567 80.088

5 0.804 6.699 86.787

6 0.539 4.491 91.278

7 0.427 3.559 94.837

8 0.274 2.280 97.117

9 0.141 1.175 98.292

10 0.114 0.948 99.239

11 0.061 0.511 99.750

12 0.030 0.250 100.000

The higher the coefficients of the principal components, the more original variables are included in the components. Dimensionality reduction through filtering of principal component

coefficients enables the examination of principal component composition under varying circumstances. The first major component reflected the influence of landscape pattern index on LST,

including ED, LPI, PD, and SHDI., The second major component reflected the influence of natural geographical factors on LST, including WIND, HUM, DEM, and SLOPE., The third major

component reflected the influence of human factors on LST, including ROAD, NDVI, POP, and LIGHT. NDVI, was easily influenced by human activities and could be reasonably explained as

belonging to human factors along with POP, LIGHT, and ROAD (Liu et al., 2021b).

TABLE 6 Contribution of potential driving force affecting the magnitude of LST in Chengdu metropolitan area.

Potential driving force Principal component 1 Principal component 2 Principal component 3

ED 0.975 −0.057 −0.021

LPI −0.968 0.041 −0.016

PD 0.958 −0.059 −0.023

SHDI 0.986 −0.057 0.008

WIND 0.080 −0.522 −0.037

HUM 0.050 −0.841 −0.016

ROAD −0.011 −0.149 0.846

NDVI −0.004 0.094 −0.618

POP −0.022 0.017 0.709

LIGHT 0.015 0.008 0.867

DEM −0.065 0.935 −0.124

SLOPE 0.048 0.768 −0.222
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surface temperature. The effects of potential influencing factors on
surface temperature also vary across different seasons. Specifically,
during the summer season, social-economic factors such as
population (POP) and nighttime light (LIGHT) exert a strong
influence on surface temperature, which is more significant than
during the transitional and winter seasons. On the other hand,
road density (ROAD) shows a lower impact during the transitional
season compared to the winter season. Additionally, there is a
positive correlation between road density, nighttime light,
population, and surface temperature, indicating that human
activities have a more pronounced effect on surface temperature
during the summer, leading to an increase in surface temperature.
In the transitional season, natural geographical factors (WIND,
HUM, DEM, SLOPE) have a greater impact on surface
temperature compared to the summer and winter seasons,

suggesting that natural geographical factors have a more
significant influence on surface temperature during the
transitional season. Moreover, the normalized difference
vegetation index (NDVI) exhibits a more pronounced impact
on surface temperature during the transitional season.

At the same time, besides human activities and natural factors,
this study also considers other potential factors that may influence
surface temperature, including landscape pattern indices. On one
hand, changes in surface temperature can be influenced by the
combined effects of multiple potential driving factors. On the other
hand, the study of the aforementioned factors reveals that
landscape pattern factors have a greater impact on surface
temperature during the winter season compared to the
transitional and summer seasons, indicating that landscape
pattern factors have a more pronounced effect on surface
temperature during the winter season. In summary, different
categories of potential influencing factors have significant
differences in their effects on surface temperature. Social-
economic factors have the most significant impact during the
summer season, natural geographical factors have the most
significant impact during the transitional season, and landscape
pattern factors have the most significant impact during the winter
season.

5.3 Seasonal guidance strategies to mitigate
urban heat island phenomenon in Chengdu
metropolitan area

By examining the determinants of UHI, it becomes evident that
both human activities and natural geographical characteristics
exhibit seasonally-specific influences on UHI intensity in built
environments. In light of these findings, several potential
strategies may be recommended to mitigate the adverse
consequences of UHI phenomena: 1) During the summer season,
a key focus is placed on the significant impact of socio-economic
factors, particularly in the urban development process. Adjusting
urban land-use patterns is emphasized to alleviate population

TABLE 7 Results of regression analysis of potential driving force.

Unstandardized
coefficients

Standardization
coefficients

t Significance Relevance Collinearity statistics

B Standard
error

Beta Tolerances VIF

Principal
component 1

Summer −0.0032 0.0006 −0.0717 −5.2733 0.0000 0.1669 0.1027 9.7408

Transition −0.0068 0.0007 −0.1096 −9.8496 0.0000 0.2758 0.1027 9.7408

Winter −0.1245 0.0007 −0.1096 −9.8496 0.0000 0.2758 0.1027 9.7408

Principal
component 2

Summer −0.0051 0.0001 −0.7782 −93.5535 0.0000 −0.7468 0.2742 3.6464

Transition −0.0083 0.0001 −0.8987 −131.9637 0.0000 −0.8456 0.2742 3.6464

Winter −0.7510 0.0001 −0.8987 −131.9637 0.0000 −0.8456 0.2742 3.6464

Principal
component 3

Summer 0.0003 0.0000 0.1922 16.3434 0.0000 0.2674 0.1372 7.2896

Transition 0.0002 0.0000 0.0832 8.6406 0.0000 0.1913 0.1372 7.2896

Winter 0.0410 0.0000 0.0832 8.6406 0.0000 0.1913 0.1372 7.2896

TABLE 8 Regression coefficients of potential influencing factors.

Potential
driving
force

Principal
component 1

Principal
component 2

Principal
component 3

ED 0.975 −0.057 −0.021

LPI −0.968 0.041 −0.016

PD 0.958 −0.059 −0.023

SHDI 0.986 −0.057 0.008

WIND 0.080 −0.522 −0.037

HUM 0.050 −0.841 −0.016

ROAD −0.011 −0.149 0.846

NDVI −0.004 0.094 −0.618

POP −0.022 0.017 0.709

LIGHT 0.015 0.008 0.867

DEM −0.065 0.935 −0.124

SLOPE 0.048 0.768 −0.222
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concentration. This entails optimizing and enhancing Chengdu’s
role as the central urban area, leading to the development of
surrounding small towns. It also involves extending the reach of
public service facilities to the periphery, and rational control of
development intensity and population density within the
metropolitan area. These measures aim to mitigate the rise in
surface temperature caused by population agglomeration.
Furthermore, aligning with the direction of urban wind corridors,
adjustments are made to the arrangement of buildings and road
networks. This aims to prevent blockages in the urban wind
corridors due to issues with urban road and building layouts.
The goal is to ensure the ventilation pathways in the city are
unobstructed, effectively mitigating the urban heat island effect
during the summer season (Gedzelman et al., 2003; Ngarambe
et al., 2021). 2) During the transitional season, a focus is placed
on the critical influence of natural geographical factors. This
involves establishing an urban ecological engineering network
and an urban park green space system to enhance the city’s
green environment. The primary framework of this ecological
network is centered around the Chengdu Tianfu Greenway,
creating an ecological network system. Additionally, the Chengdu
Urban Ecological Zone is developed, accompanied by the
optimization of the city’s landscape spatial structure. This
optimization aims to interconnect the city’s lake water systems
and vegetation green spaces, thereby enhancing the overall
continuity of the urban landscape. Emphasis is placed on the
ecological protection and restoration of rivers, lakes, and water
systems, as well as mountainous vegetation within the
metropolitan area. This effort extends to promoting ecological
conservation and restoration in river basins like the Min River
Basin, as well as strengthening ecological development in regions
such as the Min Mountains and Qionglai Mountains. Through these
initiatives, adjustments are made to the internal ecological and
climatic features of the metropolitan area, aiming to optimize the
Humidity (HUM) and Wind (WIND) patterns within the
metropolitan area. This strategy contributes to alleviating the rise
in urban surface temperature (Das et al., 2020; Hu et al., 2022a; Ren
et al., 2022). 3) During the winter season, a key emphasis should be
placed on the influence of landscape pattern factors. On one hand, it
involves establishing comprehensive landscape elements to ensure
the integrity of the urban ecological spaces. This includes advancing
the ecological protection and restoration of Longquan Mountain,
located at the central position of the metropolitan area, and
increasing the edge density of landscapes within the urban spatial
scope. This is to prevent human-induced disruptions to urban
landscape spaces. Simultaneously, attention should be given to
the arrangement of various types of landscape elements,
enhancing the preservation of ecological diversity within the
metropolitan area, diversifying landscape patches, and increasing
the Spatial Heterogeneity Diversity Index (SHDI) value. These
efforts aim to alleviate urban surface temperatures (Yu et al.,
2019; Han et al., 2022). On the other hand, it involves
constructing a network of urban ecological corridors, with
mountain formations like Longquan Mountain, Longmen
Mountain, and Qionglai Mountain serving as ecological barriers,
and river systems such as the Minjiang River and Tuojiang River
serving as green ecological corridors. This aims to establish an
interconnected ecological system pattern. Through ecosystem

restoration and optimization of various branch nodes, the goal is
to link landscape nodes into a network, integrate fragmented
landscape spaces, and form extensive ecological landscape
patches. This approach also aims to reduce the Maximum Patch
Area Index of landscapes within the urban spatial scope.
Furthermore, it involves proposing corresponding network
structure optimization strategies based on evaluating the potential
ecological benefits of nodes and corridors within the network
structure (Hu et al., 2022a; 2022c).

It is worth noting that the diverse guiding strategies mentioned
above are based on an analysis of seasonal driving relationships.
They inherently allow for the simultaneous implementation of
various measures. However, emphasizing phased measures can
accurately and effectively reduce urban surface temperatures, thus
establishing a scientific and feasible theoretical basis for the
formulation of relevant phased policies.

5.4 The limitations of the study

The limitations of this study are as follows: Firstly, the division of
seasons in this study was based onmonthly average temperature and
precipitation, which may not accurately reflect the seasonal
variations. Using alternative data sources for season delineation
could improve the accuracy of seasonal changes. Secondly, the study
employed multiple linear regression analysis to identify the impact
of different factors on surface temperature, but incorporating other
methods such as geographic detectors, random forests, and
geographically weighted regression models could enhance the
model construction and analysis process. Additionally, the study
only collected data on 12 influencing factors on surface temperature.
Collecting data on additional factors such as floor area ratio,
building density, building height, haze pollution, and coastal
wind circulation would contribute to a more comprehensive and
scientifically grounded study. Lastly, the research primarily focused
on the seasonal and spatial variations of surface temperature in the
study area in 2020 due to the feasibility of obtaining corresponding
data on influencing factors for that specific year. However, for
studying the cross-year seasonal and spatial variations of surface
temperature, acquiring data on influencing factors for different years
poses challenges. Therefore, future research should explore the
characteristics of cross-year variations in surface temperature and
differences in driving factors, taking into consideration the
feasibility of data acquisition.

6 Conclusion

Since the Industrial Revolution, human society has
undergone rapid development, and the rate of urbanization
has also increased significantly. However, as a result, there has
been a significant increase in global LST. This rise in temperature
has already had a huge impact on human production and life.
Therefore, how to mitigate the increase in LST has become an
important topic that urgently needs to be explored across various
disciplines. The investigation of the Chengdu metropolitan area
revealed a distinct spatial pattern of LST, characterized by a
concentration of high temperatures in the central regions and
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lower temperatures in the western regions. Both natural
geographical factors and human activities factors play a
greater role in the size of LST. Among these variables, DEM
and SLOPE exhibit an inverse relationship with LST, whereas
WIND and HUM demonstrate a positive association with LST. In
terms of human activities factors, POP, LIGHT, and ROAD are
positively correlated with LST, while the impact of landscape
pattern factors on LST is relatively small. Simultaneously, the
influence of potential driving force on LST shows marked
seasonal variation. In summer, the impact of POP, ROAD,
and LIGHT on LST is significantly higher than in other
seasons, while in the transitional season, the impact of WIND,
HUM, DEM, SLOPE, and NDVI on LST is significantly higher
than in other seasons. In winter, the impact of landscape pattern
factors on LST is relatively large. Therefore, seasonal guidance
strategies need to be adopted to effectively alleviate the rise in
urban LST, including the rational use of terrain and topography,
the increase of green vegetation within the city, and the
regulation of human activities. It is hoped that this study can
provide valuable reference and guidance for the future urban
planning, design, and operational management of the research
area, and lay a research basis for guiding other regions to develop
phased measures to alleviate UHI.
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