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Incorporating anisotropy is crucial for accurately modeling seismic wave
propagation. However, numerical solutions are susceptible to dispersion
artifacts, and they often require considerable computational resources.
Moreover, their accuracy is dependent on the size of discretization, which is a
function of the operating frequency. Physics informed neural networks (PINNs)
have demonstrated the potential to tackle long-standing challenges in seismic
modeling and inversion, addressing the associated computational bottleneck
and numerical dispersion artifacts. Despite progress, PINNs exhibit spectral
bias, resulting in a stronger capability to learn low-frequency features over
high-frequency ones. This paper proposes the use of a simple fully-connected
PINN model, and evaluates its potential to interpolate and extrapolate scattered
wavefields that correspond to the acoustic VTl wave equation across multiple
frequencies. The issue of spectral bias is tackled by incorporating the Kronecker
neural network architecture with composite activation function formed using
the inverse tangent (atan), exponential linear unit (elu), locally adaptive sine
(l-sin), and locally adaptive cosine (l-cos) activation functions. This allows the
construction of an effectively wider neural network with a minimal increase in
the number of trainable parameters. The proposed scheme keeps the network
size fixed for multiple frequencies and does not require repeated training at each
frequency. Numerical results demonstrate the efficacy of the proposed approach
in fast and accurate, anisotropic multi-frequency wavefield modeling.

KEYWORDS

Helmholtz equation, physics informed neural networks (PINNs), wavefield modeling,
seismic anisotropy, wave propagation

1 Introduction

Although solving the wave equation in time-domain is often computationally efficient
and intuitive to our understanding of the wave phenomena, there has been a growing
interest in frequency-domain solutions, particularly for applications like migration and
full waveform inversion (Pratt, 1999). Frequency-domain wavefield solvers offer reduced
dimensionality, but they face computational challenges when inverting the stiffness matrix
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of the Helmholtz wave equation, especially for large 3-D
models or when modeling high-frequency or complex wave
physics.

Incorporating anisotropy is crucial for accurately modeling
seismic wavefields since a simplistic isotropic assumption of
the Earth can yield unsatisfactory outcomes (Brossier etal,
2009), which further exacerbates the imaging challenges. Seismic
anisotropy’s influence on wave propagation has been recognized
for over 50 years (Postma, 1955; Vander Stoep, 1966). However,
it was only in the past 2decades that it was considered in
seismic imaging and inversion due to advancements in computing
and data quality. While these improvements make seismic
anisotropy more visible, fully accounting for it in the elastic
wave equation remains computationally challenging for large
models. The transversely isotropic model, introduced byTsvankin
(2012), is widely employed to depict the layered structure
of the Earth. It assumes that anisotropy is predominantly
induced by the gravity-dependent sedimentation process,
thereby suggesting a higher likelihood of a vertical axis of
symmetry.

To improve the computational efficiency, Alkhalifah (2000)
formulated an acoustic wave equation for transversely isotropic
media with a vertical symmetry axis (VTI) by utilizing an
acoustic dispersion relation that assumes a vertical shear wave
velocity of zero (Alkhalifah, 1998). Later, (Zhouetal., 2006),
introduced an auxiliary wavefield function and proposed a set
of second-order wave equations to simplify the original fourth-
order differential equation for VTT media. This new acoustic VTI
wave equation (Song and Alkhalifah, 2020), offers enhanced ease
of solving and applying waveform inversions compared to the
original fourth-order formula. It was noted that solving this equation
using the finite-difference method (FD) in the frequency domain
is eight times more computationally expensive compared to the
isotropic case, placing a significant strain on computing resources
(Alkhalifah, 1998).

Accurate and efficient numerical solutions are continuously
2020; Dorn and Wu, 2021;
Conventional numerical methods have

being sought (Moseley etal,
2021).
matured over the years, but the progress has been relatively

Sandhu et al.,

slow. There exists a range of numerical methods, each with its
own advantages and suitability for a given problem; however,
efforts are continuously in progress to address a multitude of
challenges, including but not limited to integrating multi-physics
phenomenon, for instance, enhancing the computational efficiency,
and/or deriving equivalent simplified mathematical formulations
for ease of implementation. Despite their ease of implementation,
commonly used conventional methods such as the FD based solvers
exhibit reduced accuracy when modeling complex topography.
Moreover, FD solvers are susceptible to numerical dispersion
artifacts, which result from a slower traveling wave inherent in
the solution of the acoustic anisotropic wave equation (Alkhalifah,
2000; Song and Alkhalifah, 2013). While finite-element and
spectral-element methods are advantageous over finite-difference
schemes, particularly when modeling complex topography, they
often require considerable computational resources, and their
accuracy is dependent on the quality of meshing (Virieux et al.,
2011). Therefore, it is crucial to search for alternative approaches
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to obtaining wavefield solutions, especially for anisotropic
media.

The combination of recent advancements in deep learning
theory, substantial improvements in computational power, and
the efficient implementation of graph-based algorithms with
automatic differentiation (Baydin et al., 2018) has sparked a renewed
interest in utilizing neural networks for approximating solutions
to partial differential equations (PDEs) (Ovcharenko etal., 2019;
Siahkoohi et al., 2019; Moseley et al.,, 2020). Early contributions
exploited supervised learning governed models (Yang and Ma,
2019; Dongetal.,, 2022; Wangetal., 2023), which often require
a large amount of training data, and their reliability is observed
to be very dependent on the training set. The recent advent of
physics-informed neural network (PINN) (Raissi et al., 2019) has
paved new directions in efficiently solving partial differential
equations. PINNs offer a meshless framework and restricts the
space of admissible solutions by enforcing the physical laws in the
loss function instead of pure data-mapping objectives. Integrating
structured information into a learning algorithm magnifies
the data’s information content, which empowers the algorithm
to swiftly converge towards the correct solution and exhibit
strong generalization abilities, even when the training dataset is
small.

PINNs have demonstrated the potential to tackle long-standing
challenges in seismic modeling and inversion (Alkhalifah et al.,
2021a; Song and Alkhalifah, 2021; Waheed et al., 2021; Rasht-
Behesht et al., 2022). These networks learn to map input spatial
locations to corresponding wavefield values that adhere to the
Helmholtz equation within an isotropic propagation medium. To
overcome the computational bottleneck and numerical dispersion
artifacts that arise while modeling wave propagation in an
anisotropic medium, an intelligent PINN framework (Song et al.,
2021), operating at a single frequency is trained to predict the
scattered pressure wavefield instead of the total pressure wavefield.
This is because the latter poses convergence issues due to the
presence of a point-source singularity. Recently, Wu et al. (2023)
also incorporated the scattered field formulation of the acoustic
and visco-acoustic wave equation for the treatment of point-
source singularity, and identified the challenges posed by non-
smooth velocity models in producing accurate wavefields when
no boundary conditions are implemented in the loss function.
The authors addressed this problem by i) integrating the perfectly
matched layers into the loss function, and ii) replacing the
affine functions in the argument of the activation function with
quadratic functions to improve the estimation of the complex
scattered wavefield. It is also demonstrated that pretraining can
significantly mitigate the computational cost of PINNs after model
alteration.

It is well known that PINN models do well in representing
low-frequency features in the wavefield solution while they struggle
to approximate high-frequency wavefields. This is due to the well-
known “spectral bias” issue (Rahaman et al., 2019). Alkhalifah et al.
(2021b) show that by adding frequency as an additional input to the
neural network (NN), the same approach could be used to model
multi-frequency wavefields simultaneously. This is a significant
advantage over conventional numerical solvers, which necessitate
the inversion of a separate impedance matrix for each frequency.
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Although the idea served as a pivotal point, it was noticed that the
shallow depths with more energy were predicted better than the
deeper parts.

Song and Wang (2023) proposed to use Fourier features in
PINN training (Tancik et al., 2020) to simulate multi-frequency
wavefields in an isotropic layered model. They demonstrated that
Fourier feature PINN could achieve training convergence faster in
comparison to the vanilla PINN (which could not resolve multi-
frequency wavefields at all); however, its accuracy is shown to be
sensitive to the sampling of wavenumbers in the Fourier basis.
It is further shown that if the wavenumbers are sampled from a
narrower or wider range than the proposed theoretical range, the
resolution of the solution at higher frequencies becomes erroneous,
causing the training optimization to converge at a higher loss.
Another approach by Song and Wang (2022) divides the model
into several small pieces, building a mapping between the low and
high-frequency wavefields to train a Fourier neural operator. It
is then used to predict small pieces of high-frequency wavefields,
which are then merged together to generate wavefields for large
models. The correlation coeflicients between the predictions of
the proposed framework and the solutions of the finite difference
method yielded discrepancies with an increase in the frequency of
interest.

Recently, Waheed (2022) addressed the issue of spectral bias,
and encouraged using a Kronecker neural network (KNN) formed
by combining different activation functions with sine and cosine
activation functions. KNN wuses the Kronecker product in the
construction of the weight matrices, which allows to construct
an effectively wider network than a regular feed-forward neural
network with a minor increase in the number of trainable
parameters. Numerical results demonstrated that even with a
shallow architecture, the proposed approach achieved the desired
accuracy for the PINN-based Helmholtz solver compared with using
a regular feed-forward NN with a standard activation function.
To accurately predict high-frequency wavefields, a recent approach
(Huang and Alkhalifah, 2022), called PINNup, was proposed to train
asmall NN at first to learn the wavefield at a low frequency, and then
the neurons are split (producing offspring) to train a larger model

o
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for high-frequency wavefield starting with the lower frequency
NN parameters. An empirical formula that relates the neuron
splitting to the frequency upscaling allows for better accuracy and
fast convergence was also presented. Albeit the PINNup approach
exhibited superiority compared to the commonly used PINN with
the random initialization, the approach requires i) repeated training
and utilization of trained weights to initialize the next split-up NN
in line, over a range of frequencies until the target frequency is
approached; else, a regular large network and training would be
required to predict higher frequencies, ii) the model size, as well as
the number of training samples from the spatial grid, shall roughly
increase by four times as the frequency is doubled, iii) for higher
frequencies, the sampling grid has to be much finer than before
to generate solutions free of numerical dispersion, and iv) more
complex lateral variations in the velocity model might require to
split the neurons even more, directly increasing the computational
cost.

While PINNs have their own set of challenges, the inherent
features make them an efficient and reliable alternative to the
aforementioned challenges faced by conventional solvers. Since
their introduction, PINNs have been continuously refined and
applied to a wide range of aforementioned problems. Taking the
growing literature on PINN-based wavefield solvers forward, in
this article, we develop a PINN-based algorithm to solve multi-
frequency wavefields for the acoustic VIT wave equation. We use a
KNN model as developed by Waheed (2022) and explore its ability
to interpolate and extrapolate scattered wave fields corresponding
to the acoustic VTT wave equation over multiple frequencies. This
is the first attempt known to the author at the multi-frequency
PINN training for anisotropic media that comes with its own
set of challenges. The background wavefield solution used in the
scattered acoustic VTI wave equation can be obtained analytically,
corresponding to an infinite homogeneous velocity model. The
loss function is a sum of the partial differential equation (PDE)
misfit and the data misfit (known solutions at two frequencies
used while training). The KNN architecture with a composite
activation function is incorporated to tackle the spectral bias
issue. The proposed scheme keeps the network size fixed for
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The KNN architecture employed in this work.
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FIGURE 3

Training loss for the proposed network: real and imaginary parts of the
data misfit variables, Lossg, , Lossg,, Loss, , and Loss .

multiple frequencies and does not require repeated training on each
frequency.

2 Formulation
2.1 The acoustic VTI wave equation

The anisotropic acoustic wave equation serves as a mathematical
model that describes the propagation of waves in an anisotropic
medium. The equation is widely used in seismic imaging, reverse-
time migration, and full-waveform inversion. When working in
the frequency domain and assuming a constant density that is
parametrized using the normal move-out (NMO) velocity v, and
the anisotropic parameters ¢ and 7, the acoustic VTT wavefields, in
two dimensions (2D), can be solved for using a coupled system of
second-order PDEs (Zhou et al., 2006):

> (p+q) L1 o’p

2 —_— =
bt T Y020 02
(1)
P (p+q)
*m,q+ 2 ——=— =0,
W q + 2 —
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where w is the angular frequency, m, = 1/v> denotes the NMO
squared slowness, p represents the pressure wavefield, g is the
auxiliary perturbation wavefield associated with the anisotropic
parameter perturbations, s is the source function, and a spatial point
inside the domain of interest has coordinates (x,z). Our objective is
to solve for the scattered pressure wavefield &, = p — p,, where p, is
taken to be the background wavefield satisfying the isotropic wave
equation:

2

? 0
ﬁ*_ﬁ:s’ (2)

wzm +
mPot 5 T o2

where m,op,=1/v’, represents the squared slowness in an
infinite isotropic homogeneous background medium, wherein the
anisotropic parameters 7, = &, = 0. In an isotropic acoustic medium,
the auxiliary function g = 0. Assuming a constant velocity and a line
source excitation, the isotropic acoustic wave equation admits an
analytical solution: p,(x) = iHél) (/Mg |x — x,|) where Hél) is the
Hankel function of the first kind and order 0, x = {x, z} represents the
spatial coordinates in the Euclidean space, and x is the location of
the line source. Substituting p = p, + J,, in Eq. 1, we obtain a relation
between p,d, and g which follows:

S:az(p0+5p+q) 1 82(p0+8p)

ox? " (1+28) 922 +w’m, (py+3p). (3)

Defining the squared slowness perturbation §m, = % - %, and

0
subtracting 2) from the first equation in system 3), the scattered
wavefield §, satisfies:

9 (9,
(p+q)+ 1

2 —
w"m,0p + o 1726 922

n

(< _1)%
1+20 02 @
2 2
(6p+q) 9°p,
W’m,q+ 20— = 20—
T 1o

It can be observed that the right-hand side source function
is now related to the model perturbation and the background
wavefleld, acting as a secondary source. This is the Lippmann
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Schwinger form of the acoustic VIT wave equation (Lippmann
and Schwinger, 1950), without any further approximations

introduced.

2.2 The PINNs

To solve Eq. 4 using a PINN model, a fully connected deep
NN with three inputs corresponding to the spatial coordinates
of the solution domain and the range of frequencies {x,z,w}.
There are also four target output values corresponding to the
real and imaginary parts of the complex scattered wavefield
6P (x,z,w) and auxiliary wavefield ¢ (x,z,w)
to (4).

PINN-based wavefield computation often requires deep and

corresponding

wide neural networks with standard activation functions, leading to
a large computational burden. Instead, the KNN architecture that
uses the Kronecker product in the construction of weight matrices
is employed here. This enables the creation of a wider network with
a minor increase in trainable parameters compared to a regular
feed-forward NN, without the need for explicit computation of
the Kronecker products. The KNN is instead implemented using
a standard feed-forward NN with composite activation functions
formed by a combination of inverse tangent (atan), exponential
linear unit (elu), locally adaptive sine (I-sin), and locally adaptive
cosine (l-cos) activation functions (Waheed, 2022). This allows us
to get rid of saturation regions from the output of every layer in the

10.3389/feart.2023.1227828

NN and improve the training dynamics. Training the network seeks
to minimize the following loss function:

N, ) 2 (8D (1)
SZNLZ ml 3p® + (97 +4")

ti=1

v aPomp?

) 2
2 pf;)

L1 826p<">+< 1 —1>><
1+289 9z 1+26% 02
B . - 2
N, 0 (Sp(’) +q® +p(()’))

2. () (i) (i)
w'm +2
Pt n q ’7 axz

1 N 1 N, o SN2
+EZ{EZ(6P(I)(})_£I)(I)(I)) } (5)

ti=1

A few comments about the loss function in Eq.5 are in
order: i) the first two terms represent the mean squared error in
approximating the PDE, ii) since it is difficult for PINNSs to learn
high-frequency wavefields, the KNN predicted wavefields dp are
enforced to match the FD based true wavefields &p at two frequencies
(Ny=2) included in the training process, which range between 3 Hz
and 7 Hz. These two frequencies are chosen to be 3 Hz and 4 Hz
while training the KNN to extrapolate, and 3 Hz and 7 Hz while
training the KNN to interpolate wavefields across all the frequencies.
The indices corresponding to these two frequencies from the input
data set {x,z,w} are predetermined such that only these indices
contribute to the third term in the loss function.
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FIGURE 4
Outcomes of testing the interpolation and extrapolation ability of the proposed KNN model. The images corresponds to the real components of the
anisotropic wavefields for frequencies ranging from 3Hz to 7 Hz. Firstrow: interpolated scattered wavefields 8p, using the KNN model. Secondrow:
Difference between §p, in the first row and &p, i.e., the FD computed wavefields. Thirdrow: extrapolation scattered wavefields 8p, using the KNN model,
and Fourthrow: difference between 8p, in the third row and &p, i.e., the FD computed wavefields.
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Here N, represents the number of random training samples.
The anisotropic parameters 7, 6§, the background wavefield
po» and the model information, are implicit variables and
their ordering must be consistent with the input coordinates.
The loss function 5) is initially optimized using the Adam
optimizer with a stochastic gradient descent method, and then
using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBEGS) algorithm. A full-batch gradient is utilized, with a
learning rate of 0.001. Once the KNN is trained, the scattered
wavefields are predicted on a regular grid. The PINN model
is implemented using the SciANN package (Haghighat and
Juanes, 2021)—a high level Tensorflow wrapper for scientific
computing.

3 Numerical results

In this section, the proposed idea is tested on a layered
velocity model extracted from the left side of the anisotropic
Marmousi model and slightly smoothed and shown along
with § and 7 profiles in Figure 1. A shallow, isotropic water
layer is set up on the top of the model, and the source is
placed at the surface at 1.25 km. The model is discretized using
101 x 101 cells of length 25m in both the vertical and horizontal
directions.

The background wavefield is computed analytically, considering
a homogeneous velocity of 1.5kms™'. The PINNs are trained
for a range of frequencies, with a step size of 1 Hz between
3 Hz and 7 Hz. The proposed PINN comprises four layers
with 100 neurons each, where the output of each layer is
subject to a composite activation function, wherein atan, elu,
l-sin, and l-cos functions are incorporated, Figure2, with a
learnable scaling parameter to avoid the need for problem-specific
selection. The network is initially trained for 100,000 epochs
using the Adam optimizer, with a learning rate of 0.001,
followed by 15,000 epochs of the LBFGS optimizer. This is to
break the stagnant training region or when the optimizer gets
stuck in local minima. The training loss curve is shown in
Figure 3.

Figure 4 plots the resulting wavefield for interpolation and
extrapolation tests. In the first case, 3 Hz and 7 Hz wavefield
solutions are provided as training data, while the (4-6) Hz
scattered wavefields are learned through the PDE training in
the loss function. We observe that the residuals are generally
small and we are able to recover the scattered wavefield
to a good approximation except for some mild scattering
details.

However, more importantly, we also show the results in which
3 Hz and 4 Hz wavefields are used as training data while (4-7) Hz
wavefields are learned through the PDE term in PINN training. We
observe similar accuracy for the extrapolation case as before. This is
important because the cost of computing high-frequency wavefields
using conventional methods is higher than the lower frequencies.
Therefore, one can generate low-frequency solutions using
conventional methods and then use PINNGs for higher frequencies.
This hybrid approach can result in a better accuracy-speed
tradeoff.
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4 Discussion and conclusion

We addressed the multi-frequency wavefield modeling of
the anisotropic acoustic wave equation using a feed-forward
NN, where the spectral bias is tackled by incorporating the
KNN framework, which allows for constructing an effectively
wider NN with a minimal increase in the number of trainable
parameters. Numerical tests demonstrate that the proposed
approach can successfully interpolate and extrapolate wavefields
within a specified frequency range. To solve for even higher
frequencies in a computationally tractable manner, the proposed
approach can be combined with the frequency scaling and
and Alkhalifah, 2022).
Furthermore, the network can be trained for rapid wavefield

neuron splitting method (Huang
computation for any source-receiver pair in the computational
domain.

Through extrapolation tests, we show that by feeding
wavefield solutions from low frequencies, the high-frequency
wavefields can be accurately predicted, harnessing the PDE in
the loss function. Based on our experience and the existing
PINN literature, relying solely on the PDE for the training
of wavefield can be computationally intractable. Therefore, we
condition the PINN model to converge faster to the correct
solution by providing wavefield solutions for low frequencies.
These ideas are also validated in a very recent contribution by
Wuetal. (2023). Such an approach is likely to yield the best
accuracy-speed tradeoff for PINN-based modeling schemes that
are often criticized for their lack of computational efficiency.
To further enhance the accuracy of our approach, we envision
integrating ideas from the work of Wu et al. (2023). This integration
would provide an exciting avenue for future research and
development.

In the context of our investigation, an often cited challenge
for PINNs based solvers is their potential convergence to a
trivial solution. This could render the solution inaccurate even
though the loss curve may show convergence. However, our
approach mitigates this issue by incorporating the solution
for low frequencies as data in the training of the PINN. This
inclusion of low-frequency data supplies the network with
additional, rich contextual information, which averts the risk of
the solver gravitating towards a trivial solution. Therefore, our
method not only enhances the robustness of the PINN model
but also ensures its viability in dealing with complex problem
landscapes.
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