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The bedrock beneath the Tengger Desert is covered by Quaternary deposits,
making it difficult to directly observe the underlying geological information using
traditional geological methods. In areas with limited prior geological information,
employing geophysical methods to obtain deep-seated information, constructing
a multi-source geophysical dataset, and performing three-dimensional modeling
can significantly enhance our understanding of the underground geological
structures. Cluster analysis is a fundamental unsupervised machine learning
technique employed in data mining to investigate the data structure within the
feature space. This paper proposes an iterative weighted distance-based
extension to the k-means clustering algorithm, referred to as the Iterative
Weighted Distance K-means (IW k-means++) algorithm. It incorporates the
farthest distance method to select the initial centroid, performs iterative
centroid updates based on weighted distance, and dynamically adjusts feature
weights during training. The Davies-Bouldin index shows that the performance of
IW k-means ++ clustering algorithm is better than the traditional K-Meme ++
clustering algorithm in 3D pseudo-lithology modeling.
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1 Introduction

The term “overlying area” refers to a region where the bedrock is extensively and
continuously covered by quaternary materials (such as aeolian sediments, alluvial
sediments, swamps, etc.) over a prolonged period. With the progressive discovery and
exploitation of mineral resources in exposed areas, mineral resources that are easy to find
near the surface are gradually depleted. Geologists have started to emphasize the
exploration of covered and semi-covered regions, which promotes the development of
underground mineral potential mapping (Zhang et al., 2021), leading to the development
of various exploration techniques suitable for these specific areas (Lowe et al., 1998; Wang
et al., 2015). In the investigation of geological structures in covered areas, direct
observation of the underlying geological information is hindered by limited bedrock
outcrops and the presence of overlying layers (Cheng, 2003; Carneiro et al., 2012; Wu et al.,
2021). To extract the subsurface information and unveil the characteristics of the bedrock,
advanced exploration techniques are necessary. Among these techniques, geophysical
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methods have demonstrated notable effectiveness and have
emerged as a widely adopted approach in recent years for
studying covered areas in geology-related scientific survey (Shi
et al., 2003; Lai et al., 2014; Perrouty S et al., 2014). In numerous
globally significant mineralized belts, the utilization of geophysical
techniques to acquire essential geological and mineralization
information beneath cover has been instrumental in achieving
breakthroughs in mineral exploration. Notable examples include
the Spence, Gabriela Mistral, and Coyávasi Porphyry Copper
Deposits in Chile. Moreover, investigations into the deep-seated
geological structures in covered areas hold substantial importance
in diverse domains, including geological hazard forecasting and
prediction.

In comparison to conventional geological methods,
geophysical techniques present a range of advantages,
including non-invasiveness, non-contact nature, the ability to
acquire macroscopic information, high precision, as well as low
cost and time saving. In the past, the interpretation of geophysical
data relied on manual analysis, demanding extensive time and
experience, and potentially introducing subjectivity. Driven by
the advancements in machine learning and artificial intelligence
technologies, mathematical geology is undergoing a significant
transformation towards the realm of digital geology (Li et al.,
2013). Decision trees have been employed for auxiliary
prediction and mapping of mineral resources (Rodriguez-
Galiano et al., 2015), support vector machines have been
utilized for geological modeling (Wang et al., 2015), clustering
methods have been employed for the identification of
homogeneous domains in geological statistics (Kapageridis
et al., 2014), deep learning algorithm is used to solve the
problem of unbalanced training data in metallogenic prospect
mapping (Zhang et al., 2021). Intelligent interpretation of
geophysical data is becoming feasible in the field of earth
science (Shalev E et al., 2010; Ryan et al., 2013).

Cluster analysis is an important unsupervised machine learning
method used to study classification problems (Steinhaus, 1956; Ball
and Hall, 1965; Bosch, 1999; Bedrosian et al., 2007). By measuring
the similarity between attributes in the feature space, it enables
automatic, objective, and quantitative analysis of multi-source
geophysical data sets (Fraser et al., 2012; Di Giuseppe et al.,
2018; Melo and Li, 2019; Basant et al., 2021; Ali et al., 2021).
Partition-based clustering methods, in particular, are widely used
in the field of Earth sciences due to their advantages of simplicity,
efficiency, ability to handle large-scale datasets, and interpretability
of results (Ali et al., 2021). K-means clustering is used to group
multiple conventional logging curves from the target reservoir,
creating a meta-object for lithology identificatio (Cao et al., 2022).

This study proposes an iterative weighted k-means (IW
k-means) algorithm, which uses the farthest distance method to
set the initial centroid and automatically updates the weight of each
feature during training (Li and Man, 2013; Yu et al., 2019; Li et al.,
2019). Multi-source geophysical data sets were used for 3D pseudo-
lithology modeling in the lower depth of the Tengger Desert cover
area (Li andMan, 2013; Yu et al., 2019; Li et al., 2019). By comparing
the modeling results of IW k-means algorithm with those of
traditional K-means algorithm, the results show that IW k-means
algorithm has more advantages in the clustering of multi-source
geophysical data sets.

2 Methodology

Clustering is the process of grouping samples with high
similarity into clusters (Jain, 2010). Unlike supervised learning
algorithm, clustering methods do not require prior knowledge or
the creation of labeled datasets (Wang et al., 2015). As well as,
clustering excel in exploring the intrinsic characteristics of the data.
To address the issue of pseudo-3D lithology modeling in covered
areas where sample labels are scarce, clustering methods offer
distinct advantages.

2.1 K-means and k-means++ algorithms

Traditional k-means algorithm clustering requires pre-
specifying the number of clusters in advance. The algorithm
iteratively assigns data points to clusters and updates the cluster
centers to minimize the within-cluster sum of squares. Finally
reach the goal of “points within clusters are close enough and
points between clusters are far enough" (Li and Man, 2013).

K-means clustering algorithm is an optimization process. For a
multidimensional dataset X = {x1, x2, ., xn}, the goal is to partition the
data set into k clusters such that the similarity between data points
within the same cluster is maximized, while the similarity between
data points in different clusters is minimized, aiming to minimize
the objective function Eq. 1:

minE � ∑k
i�1∑x∈Ci

x − ui‖ ‖ 2
2 (1)

Where ui is the x ∈ Ci class cluster center
The multi-source geophysical data set composed of density data

and resistivity data can be regarded as numerical data set, which is
very suitable for clustering by k-means algorithm.

The traditional K-means algorithm workflow is as follows:

(1) Randomly select k data points as initial centroids.
(2) Compute the Euclidean distance between each data point and

the k centroids, and assign the data point to the cluster
associated with the nearest centroid. (Eq. 2).

D xnp,Ck( ) � �������������∑q
p�1 xnp − Ck( )√

, p � 1, 2, . . . q (2)

(3) For each cluster, the centroid position is recalculated as the
average of all data points in the cluster.

(4) Continue iterating through steps (2) and (3) until either the
cluster assignments no longer change or the maximum number
of iterations is reached.

The advantage of the k-means algorithm lies in its simplicity and
ease of implementation. However, the random selection of initial
centroids can result in unstable clustering outcomes, where the same
dataset may yield different clustering results. The k-means++
algorithm provides an optimization by employing the farthest
distance method for selecting initial centroids. The objective is to
maximize the initial separation between cluster centers. This
approach avoids the issue of weaker clustering that can
sometimes occur in the standard k-means algorithm. However, it
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does introduce the problem of including noise points or outliers in
the cluster centers. In certain scenarios, it is necessary to assign
higher weights to certain features. The traditional k-means
algorithm and its optimized version k-means++ algorithm treat

all data features equally during training, which limits their
effectiveness in analyzing multi-source geophysical data sets.

2.2 Iterative weighting k-means++
algorithm

This study proposes a iterative weighted k-means++ (IW
k-means++) algorithm based on the traditional k-means
algorithm. By introducing weighting factors, it aims to reduce the
impact of noise and outliers on the clustering results.

Compared to the traditional k-means algorithm and IW
k-means++ algorithm, the IW k-means++ algorithm can better
handle noise and outliers. It incorporates different weights for
each feature of the same data point during the training process,
resulting in improved clustering accuracy (Li and Man, 2013; Yu
et al., 2019). The details of the IW k-means++ algorithm are shown
in Figure 1.

The initial weight for each feature is set as 1/q, q is the default
initial cluster number. During the iteration process of the algorithm,
the feature weights are continuously updated to reflect the impact of
different features on the clustering results. Calculate the weighted
Euclidean distance (Eq. 3) and assign each sample to the center of
mass that is closest in terms of this distance measure. weighted
Euclidean distance is defined as:

WD xnp, Ck( ) � ���������������∑q
p�1wp xnp − Ck( )√

, p � 1, 2, . . . q (3)

The characterization factor (wo) is calculated based on Eq. 4,
where nk represents the number of samples in cluster k,Mp denotes
the mean of feature attribute p, and Mkp represents the mean of
feature attribute p in cluster k. ∑K

k�1(Mkp −Mp)2 represents the
sum of Euclidean distances between all K centroids on feature
attribute p, while ∑K

K�1∑nk
i�1(xip −Mkp)2 is the sum of Euclidean

distances between all samples and their respective centroids on
feature attribute p. It provides a measure of the overall dispersion or
compactness of the data distribution, capturing the spatial
relationships and variations among the samples in relation to
their centroids.

wo �
∑K

k�1 Mkp −Mp( )2
∑K

K�1∑nk
i�1 xip −Mkp( )2, p � 1, 2, 3...q (4)

Where wp is the weight factor (Eq. 5) that assists the IW
k-means++ algorithm in selecting accurate cluster centers,
reflecting the differentiation level of each feature in the selection
of cluster centers. For each feature attribute p, the algorithm
calculates the weighted Euclidean distance between the samples
and all centroids, and the value of wp is updated. Then, the updated
wp is used to calculate the weighted Euclidean distance and reassign
the samples to the nearest centroid.

wp � wo∑q
p�1wo

, p � 1, 2, 3...q (5)

The IW k-means++ algorithm uses the furthest distance method
to determine the initial centroids, which helps to address the issue of
clustering result uncertainty. Additionally, the use of wp in IW
k-means algorithm assists in selecting accurate cluster centers and

FIGURE 1
Workflow of the lW k-means++ algorithm.
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reflects the differentiation level of each feature in choosing cluster
centers.

3 Performance evaluation of clustering
algorithm

The number of clusters is the most critical parameter that affects
the effect of k-means algorithm. The Davies-Bouldin index (DBI) is
used to evaluate clustering performance based on the compactness
within clusters and separation between clusters (Eq. 6). It can be
utilized for determining the optimal number of clusters and
evaluating the performance of unsupervised clustering algorithms
on unlabeled samples. (Brahmana et al., 2020; Wu et al., 2021).

DBI � 1
K
∑K
p�1

max
p≠i

Sq + Sp
Dpq

( ) (6)

Where K is the number of clusters, Sq and Sp represent the
Euclidean distance between each sample and their respective
centroids q and p, while Dpq signifies the Euclidean distance
between centroids q and p.

As previously mentioned, the initial centroids in the traditional
k-means algorithm are randomly determined, and the clustering
results may vary depending on the initial centroids. In this study, we
used the test data, took 4 as the clustering number, and used the
traditional k-means algorithm for 10 times of clustering. The DBI
for the clustering results range from 1.13 (K9) to 0.87 (K3).
(Figure 2). In contrast to that the DBI for IW k-means++
algorithm clustering was found to be 0.76. These results
demonstrate that the IW k-means++ algorithm outperforms the
traditional k-means algorithm on the test data.

4 Multi-source geophysical datasets

4.1 Study area

The Tengger Desert is the fourth largest desert in China, located
at approximately 37°–40°N and 102°-106°E. It covers an area of about

30,000 km2 and belongs to the typical inland arid climate (Wang
et al., 1997). The desert has an average elevation of around
1,200–1,400 m. The study area is located in its southwest
(Figure 6; Figure 7A).

China places great emphasis on desertification control, sand
fixation, and environmental protection. There has been significant
research on vegetation and biodiversity in the Tengger Desert (Chen
and Pan, 2001; Ma et al., 2020). However, deep geological research in
the area is relatively limited. Challenges such as deep water table,
hole collapse during drilling, and high costs have restricted the
application of geological drilling in deep geological investigations of
the Tengger Desert. Geological research in the Alxa block, where the
Tengger Desert is located, primarily focuses on rock outcrops and
utilizes techniques such as rock dating, structural inference, route
surveys, geophysical exploration, and remote sensing interpretation
(Gong et al., 2011; Liu et al., 2019).

The geological structure in desert areas is complex and diverse.
The study area is located at the junction of multiple tectonic plates
and has experienced multiple phases of complex tectonic changes
and crustal evolution (Figure 6A), resulting in distinct and
prominent signatures in the geophysical field (Zhang and Liu,
2013). Gravity data is used to infer the distribution and density
variations of subsurface materials by measuring changes in the
gravity field on the Earth’s surface. The geoelectrical method is
capable of detecting variations in the electrical conductivity of
underground rock layers, thereby providing information about
rock types, distribution, thickness, and structural changes.
Additionally, compared to seismic exploration, gravity
exploration and geoelectrical method have the advantages of not
requiring a seismic source, being non-destructive, having lower
costs, and being applicable in various contexts.

4.2 Geophysical data acquisition

The original data were collected by the Geophysical Survey
Center of the China Geological Survey from the study area during
the years 2020–2022. These data include 1:250,000 regional gravity
survey data, 1:1,000,000 regional magneto telluric (MT) survey data,
as well as rock and mineral specimen collection and physical

FIGURE 2
Davies-Bouldin index (DBI) for the traditional k-means and IW k-means++.
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property test data. The gravity data collection included
460 measurement points, following a regular grid pattern with a
spacing of 2.8 km * 2.8 km (Figure 3A). For the magneto telluric
(MT) survey, 80 measurement points were collected in the study
area (MacQueen, 1967; Vozoff, 1987). The points were evenly
distributed using a grid pattern with a spacing of 20 km * 20 km
(Figure 3B).

4.3 Integration and processing of gravity and
geoelectrical data

Generating synthetic datasets that resemble real-world multi-
rock physics datasets is a challenging task due to the nonlinearity of
geological processes (Bosch et al., 2002). The sources of noise in
different geophysical data and their sensitivity to noise vary. The
integration of multiple data sources has yielded favorable results in
providing a comprehensive interpretation of the same geological
body (Gao et al., 2004; Jiang et al., 2012; Li et al., 2013), the joint
inversion of observed data from multiple physical fields can provide
more accurate and reliable information about subsurface media
structure. The internationally popular approach for joint inversion is
the model structure-coupled method (Lindsey and Newman, 2015).
An exemplary instance is the cross-gradient constraint-based
coupling method introduced by Gallardo and Meju. (2011). This
method addresses the uncertainties and limitations faced by single-
field inversions (Gallardo and Meju, 2003; Gallardo and Meju, 2004;
Gallardo and Meju, 2007; Fraser et al., 2012). For instance,
electromagnetic field inversion is affected by complexities in
subsurface structures and seawater effects (Peng, 2012), while
gravity inversion is influenced by the coupling effects of density

and pressure (Yan et al., 2020). The study employed a three-
dimensional joint inversion method for gravity and
electromagnetic data to process the measured data, resulting in a
dataset composed of resistivity and residual density.

To address the issue of grid mismatch arising from different
inversion grids for various data types, a multi-to-one grid mapping
algorithm was employed in the inversion process. The selection of
cross-gradient weighting factors took into account the prior
information of geological features, physical properties, and
borehole data within the study area. By combining the
multivariate Gaussian distribution with geophysical data, the
electrical resistivity and density attributes of the subsurface media
were obtained.

The data involved in the inversion process included Bouguer gravity
anomalies obtained from field measurements, as well as four impedance
tensor components (Zxx, Zxy, Zyx, Zyy) and tipper (Tzx, Tzy) measured
at all data points. A total of 40 frequencies were considered, ranging from
320 Hz to 0.00055 Hz. The error floor for the data was set to 10% for each
impedance tensor component and 2% for each tipper component. The
study used equal spacing grid partitioning for themeasured data coverage
area, with increasing spacing towards the outer regions. In the vertical
direction, the first layer had a thickness of 20m, while subsequent layers
increased exponentially. The initial inversion model was obtained from
separate inversions of gravity and electromagnetic data. Maximum
iteration count and data misfit threshold were set to control the
stopping criteria for the inversion. The details are shown in Figure 4.

The obtained data from the inversion were subjected to discrete
smoothing interpolation using SKUA-GOCAD software (Zhang
et al., 2017; Zhang et al., 2021), resulting in the generation of a
3D density model and a 3D resistivity model (Jessell, 2001)
(Figure 5).

FIGURE 3
(A) Residual gravity map. (B) Actual material diagram of magnetotelluric sounding.
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5 Geologic setting

The study area is situated in the northeastern part of theNorthQilian
block, which is located on the northeastern margin of the Qinghai-Tibet
Plateau (Song et al., 2013), and in the southern part of the Alxa block on

the southern margin of the North China Platform (Figure 6). It is a key
region for the production of black metal, non-ferrous metal, precious
metal, and salt minerals in China. The Jinchuan ultra-largemagmatic Ni-
Cu-PGE deposit, which has the third largest nickel metal reserves in the
world, is located in the southwest Tengger Desert (Figure 7F).

FIGURE 4
Workflow of the Three-diamensional joint inversion method for gravity and geoelectric field.

FIGURE 5
(A) 3D density model. (B) 3D resistivity model.

Frontiers in Earth Science frontiersin.org06

Dong et al. 10.3389/feart.2023.1235468

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1235468


Since its discovery in 1958, no new mineral deposits have been
found in the surrounding area of the Jinchuan deposit for nearly
70 years. The Jinchuan super large-scale deposit, as an exceptional
accumulation of mantle-derived metal elements before the
Cambrian period, is likely the result of an important geologic
event involving crust-mantle material exchange (Tang et al.,
2006). It is closely related to Paleozoic intrusive rocks, suggesting
the potential presence of similar genetically related deposits in the
surrounding area (Figure 7A). In order to overcome the limited
exposure of bedrock in the study area, sample collection will focus
on areas with well-developed and well-exposed stratigraphy
(Figure 7E).

The pre-Cambrian rock formations in the study area are mainly
composed of the Longshoushan Formation (LSS) and Alxa
Formation (Figure 7B), which consists of rock types such as
amphibolite, gneiss, schist, marble, and quartzite. These rocks
have densities ranging from 2.31 to 3.05 g/cm3 and resistivities
ranging from 655 to 9,700Ωm, indicating a medium to high density
and medium to high resistivity characteristics.

The Jurassic strata are mainly represented by the Qingtujing
Formation (QTJ), composed of conglomerates and sandstones, with
densities ranging from 2.49 to 2.56 g/cm3 and resistivities ranging
from 203 to 932Ωm. The Cretaceous strata, specifically the
Miaogou Formation (MG) (Figures 7C, E), are primarily
distributed in the northwestern part of the study area, with
scattered occurrences in various tectonic units. The MG is
composed of conglomerates, conglomeratic sandstones, and
mudstones, with densities ranging from 2.45 to 2.53 g/cm3 and
resistivities ranging from 30 to 261Ωm. Overall, these formations

exhibit medium to low densities and relatively low resistivity
properties.

The exposed rocks in the study area during the Middle Paleozoic
are primarily acidic intrusive rocks, including granite, granodiorite,
quartz monzonite, and quartz diorite (Figure 7F). They have
densities ranging from 2.61 to 2.69 g/cm3 and resistivities
ranging from 428 to 1,295Ωm, displaying characteristics of
moderate density and moderate resistivity. The Late Paleozoic
intrusive rocks mainly consist of potassium feldspar granite and
syenogranite, with densities ranging from 2.57 to 2.75 g/cm3 and
resistivities ranging from 197 to 3,672Ωm, exhibiting medium to
high density and medium to high resistivity characteristics.

6 Results validation and discussion

The k-means algorithm was applied to the synthetic dataset of
the study area in this study, and it was run randomly 30 times. The
DBI for the traditional k-means clustering model ranged from 0.84
(K22) to 0.98 (K6) (Figure 8). Therefore, the clustering results from
K22, which consisted of 3 clusters, were chosen as the final clustering
output for the k-means algorithm. The IW k-means++ algorithm
achieved a minimum DBI value of 0.74. This indicates that the IW
k-means++ algorithm outperforms the traditional k-means
algorithm in terms of performance in the study area. indicated
that the optimal number of clusters was 3.

The k-means algorithms (K22) and IW k-means++ algorithm
clustering outcomes are depicted in Figure 9. In the IW k-means++
clustering, the weight values assigned to the density and resistivity

FIGURE 6
(A) Simplified tectonic geological map of the study area. (B) Simplified geological map of southern Alxa block (modified from 1: 1000000 geological
map) Names of ore districts in (B) are Jinchuan district.
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features are 0.61 and 0.39, respectively. Assign different lithologic
units to each cluster based on their dominant characteristics.
Interpret the resulting pseudo-lithologic model to gain insights
into the subsurface lithology of the Tengger Desert. The first two
clusters exhibit similar clustering patterns in both methods. Cluster
1 is characterized by medium-low density and low resistivity, while

Cluster 2 is characterized by medium density and medium
resistivity.

Based on Table 1 and the clustering results, Cluster 1 is likely to
correspond to the Cretaceous MG, and Cluster 2 may correspond to
the Early Paleozoic acidic intrusive rocks and some Late Paleozoic
intrusive rocks (Figure 10). Cluster 3 is characterized by high

FIGURE 7
(A) Tengger Desert covering area. (B) Alxa Group of Pre-cambrian system. (C) Cretaceous Miaogou Formation Depositional clastic rock. (D) Early
Paleozoic Granodiorite. (E) Physical property sample, The lithology from left to right is sandstone, granite, and gneiss. (F) Jinchuan Ni-Cu-PGE deposit.
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FIGURE 8
Davies-Bouldin index (DBI) for random run of traditional k-means clustering and IW k-means++ clustering.

FIGURE 9
3D pseudo-lithology models obtained via (A) traditional k-means clustering and (B) IW k-means++ clustering. Top view of 3D pseudo-lithology
models obtained via (C) traditional k-means clustering and (D) IW k-means++ clustering.
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resistivity, which matches with the granite and quartz diorite in
some pre-Cambrian rock formations and Early Paleozoic acidic
intrusive rocks. However, this is not well reflected in the k-means
clustering algorithm results. The petrophysical properties of rocks
within the same geological layer exhibit a significant variation range
in the study area. Due to the influence of the Qilian orogenic belt, the
study area exhibits complex tectonic features, including numerous
faults and folds. As a result, there may be significant deviations
between the lithology exposed at the surface and the lithology at
greater depths (Zhang et al., 2019a; Zhang et al., 2019b). Grid size
may be much larger than the exposed rock bodies shown in some
geological maps. It is challenging to differentiate different geological
units in three-dimensional space by combining the inverted models
with known petrophysical properties (Zhang et al., 2017).

The petrophysical properties of the Jurassic QTJ are similar to
those of the granite in the Early Paleozoic acid intrusive rocks,
making them difficult to distinguish. The complex lithology of the
pre-Cambrian rock formations, along with a wide range of density
and resistivity values, makes it challenging to differentiate from

TABLE 1 Density and resistivity of the main lithologic units in the study area.

Lithology Density (g/cm³) Resistivity (Ω·m)

Early Paleozoic Intrusive rock Granite, potassium feldspar, plagiogranite 2.57–2.75 428–1,295

Late Paleozoic Intrusive rock Granite, granodiorite 2.54–2.69 197–3,672

Pre—Cambrian Longshoushan formation, Alashan formation 2.65–3.05 655–9,700

Jurassic Qingtujing formation 2.49–2.56 203–932

Cretaceous Miaogou formation 2.45–2.53 30–261

FIGURE 10
Deep 3D granite model obtained by IW k-means++ clustering.

FIGURE 11
Normalized confusion matrices for results obtained by traditional k-means clustering (K22) and IW k-means++ clustering. C1 correspond to
Cretaceous Miaogou formation, C2 correspond to intrusive rocks and C3 correspond to Pre-Cambrian rock formations.
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other rock formations. The comprehensive performance of IW
k-means++ algorithm is better than that of traditional k-means
algorithm (Figure 11). In the IW k-means++ clustering results, the
boundaries of different lithologies can be distinguished well,
showing better correlation with the lithologies exposed on the
surface and demonstrating the spatial distribution of Paleozoic
intrusive rocks closely related to mineralization (Figure 10).
According to Figure 3A; Figure 6; Figure 9D, it is evident that
the distribution of intrusive rocks aligns noticeably with the medium
to high residual density zones. This provides strong evidence for the
accuracy of the IW k-means++ algorithm. The cluster 3 in IW
k-means++ also effectively identifies certain stratigraphic units of
the pre-Cambrian rock formations. In general, the IW k-means++
clustering algorithm serves as a key tool for deep lithology research
and provides insights into the trends of deep lithology.

7 Conclusion

The utilization of k-means and IW k-means++ algorithms for
lithology identification in the Tengger Desert coverage area highlights
the promising capabilities of clustering methods in pseudo lithology
modeling using diverse geophysical datasets, and provides a solution for
deep lithology analysis and overburden mapping. By taking into
account the importance of each feature during the training
procedure, the IW k-means++ algorithm constructs pseudo lithology
models that exhibit improved alignment with the published geological
maps in the study area and offer enhanced boundary delineation.
Nevertheless, it is worth noting that both k-means and IW k-means++
algorithms have certain limitations when it comes to accurately
identifying small-scale near-surface Jurassic rock layers, and the
optimal number of clusters may differ from the number of rock
types in existing geological data.

By collecting a greater variety and larger-scale geophysical data,
and using more refined inversion grids, the ability to identify small-
scale lithological units can be improved. However, this requires
more advanced equipment and a longer time frame to complete.
Additionally, when conducting deep pseudo-rock modeling, It is
crucial to give careful consideration to the uncertainties associated
with geophysical data acquisition and inversion processes (Zhang
et al., 2020). Therefore, future research can explore the use of
multiple machine learning algorithms of different types and
weight their results to leverage the strengths of different
algorithms, mitigating the uncertainties associated with a single
algorithm, and constructing lithological probability models.
Additionally, coupling machine learning methods with geological
statistical methods can be attempted to complement each other’s
limitations (Hristopulos et al., 2015).
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