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Reliable lithology spatial distribution directly reflects the geological situation of the
reservoir, which is the basis of stratigraphic correlation, sedimentary modeling,
and other geological research. Under the condition of limited reservoir data, it is a
challenging task to accurately depict the lithology spatial distribution and provide a
quantitative reliability analysis of the results. In this study, we propose a flexible
spatial distribution prediction and model reliability analysis method. Firstly, the
method develops a spatially dependent deep Kriging technology to fit the
heterogeneous characteristics of the reservoir lithology, and adopts the
extracted spatial key information and related reservoir attributes to invert
lithology spatial distribution intelligently. Then, it focuses on the real-time
assimilation of non-Gaussian data in the reliability modeling and quantitatively
analyzes the reliability of the prediction system under the non-Gaussian
hypothesis. Finally, the method is applied to the actual heterogeneous
reservoir, good results are achieved in the prediction accuracy, model fitting
degree, model reliability, and time performance compared with other methods.
The method is conducive to finding future mineral deposits locations and
reducing exploration costs.
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1 Introduction

Kriging technology provides an optimal linear unbiased estimation of spatial
interpolation and has an excellent performance in spatial information extraction
(Zimmerman and Holland, 2005; Emery, 2008; Guo-Shun et al., 2010). The technology
has already achieved notable results across geological science, biological science, and other
fields (Gerstmann and Doktor, 2016; Erten et al., 2022), especially in spatial distribution
prediction based on dense sample conditions (Du, 2020), which provides basic data for
stratum model visualization.

Walvoort and Gruijter (2001) took the composition data as the research object, and fitted
the spatial structure and non-negative constraints of the composition data well based on the
combined Kriging technology. Korjani et al. (2006) combined fuzzy Kriging and deep
learning to estimate reservoir lithology at any point in the field, which qualitatively captured
the uncertainties associated with reservoir characteristics. Based on the Kriging technology
and neural networks, Hansen et al. (2008) inverted the lithology distribution by using layer

OPEN ACCESS

EDITED BY

Zhihao Xu,
Guangdong University of Technology,
China

REVIEWED BY

Tao Ye,
Chengdu University of Technology,
China
Siyu Yu,
Yangtze University, China

*CORRESPONDENCE

Weijian Ren,
renwj@126.com

RECEIVED 01 July 2023
ACCEPTED 26 October 2023
PUBLISHED 27 December 2023

CITATION

Zeng L, Ren W, Shan L, Niu Y and Liu X
(2023), Prediction and reliability analysis
of reservoir lithology spatial distribution.
Front. Earth Sci. 11:1251218.
doi: 10.3389/feart.2023.1251218

COPYRIGHT

© 2023 Zeng, Ren, Shan, Niu and Liu. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 27 December 2023
DOI 10.3389/feart.2023.1251218

https://www.frontiersin.org/articles/10.3389/feart.2023.1251218/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1251218/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1251218/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1251218&domain=pdf&date_stamp=2023-12-27
mailto:renwj@126.com
mailto:renwj@126.com
https://doi.org/10.3389/feart.2023.1251218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1251218


velocity, reflected layer roughness, and rock properties, with an
accuracy close to that of actual exploration results.

Reservoir lithology is a typical component data (Zuo et al., 2013)
with non-Gaussian and non-stationary characteristics. The
distribution area is limited by certain geological conditions and
constraints. The modeling of spatial distribution under Gaussian
conditions is contrary to the actual geological idea. Furthermore, the
maximum likelihood estimation under the multivariate Gaussian
hypothesis involves the inverse operation of the positive definite
covariance matrix (Heaton et al., 2018). The operation is usually
Cholesky decomposition. The time complexity is O(N3), and
memory complexity is O(N2). Even for Gaussian processes,
Kriging space estimation technology still has high computational
cost (Nowak and Litvinenko, 2013; Liu et al., 2022), and is not
suitable for massive data sets.

Deep learning has the ability to reveal nonlinear and non-
stationary characteristics of complex structures (Airaudo et al.,
2015; Zoltowska et al., 2021), which makes it extremely
successful in spatiotemporal modeling tasks (Hauptmann et al.,
2018; Suresha et al., 2020). Among them, models based on
convolutional neural networks (CNN) have become a research
hotspot. CNN captures the spatiotemporal features in the process
of image processing through filters, and applies them to the image
field, environmental field, and transportation field of massive data
(Robert et al., 2018; Pak et al., 2020; Zhang et al., 2020). These
methods are limited to images with regular grid cells and pay less
attention to reservoir lithology distributions with irregular locations.

In particular, deep neural network (DNN) has the black-box
characteristics (Montavon et al., 2016; Natekar et al., 2020; Qiao
et al., 2021) during the training process of feature extraction by
simulating human brain mechanisms, increasing model uncertainty.
The uncertainty reduces the engineering applicability of the model
(Janssen, 2013). Therefore, capturing uncertainty to achieve model
reliability evaluation is a key step in prediction systems engineering
applications. Under the condition of Gaussian distribution, some
researchers obtained model reliability by capturing the uncertainty
of the weights of the neural network (Pearl, 1990; MacKay, 1992; Gal
and Ghahramani, 2015). However, in the training process of DNN,
the weights changes with time and have the characteristics of
random, dynamic, and non-Gaussian (Choi et al., 2018). Zeng
(2021) et al. modeled the uncertainty of deep neural networks
and quantitatively captured the uncertainty of logging data
prediction results, effectively improving the engineering
applicability of the model. The reliability analysis under the
Gauss hypothesis will degrade the model performance, and even
lead to the model not being able to work normally.

Aiming at the problems in reservoir prediction and reliability
analysis modeling, this paper proposed a novel method for reservoir
lithology spatial distribution prediction and reliability evaluation.
Firstly, a spatial-dependent deep Kriging technology is developed to
approximate the Kriging spatial correlation process and obtain
spatial key information. Combined with the spatial key
information and related reservoir attributes, the spatial
distribution of heterogeneous reservoir lithology can be
accurately and intelligently predicted based on deep learning.
Secondly, the reliability of the prediction system is quantitatively
evaluated under a non-Gaussian hypothesis by assimilating the non-
Gaussian data in real-time. Finally, the method is applied to the

laterite nickel ore heterogeneous reservoir, and evaluated from the
prediction accuracy, model reliability, and time performance.

2 Methodology

2.1 Model design

Considering the Gaussian hypothesis problem existing in spatial
distribution prediction and uncertainty analysis modeling, this
section proposes a reservoir lithology spatial distribution
prediction method based on deep learning technology (NG_
GRU_Kriging). Its network architecture is shown in Figure 1.
The NG_GRU_Kriging model is mainly composed of a feature
extraction network and a reliability analysis network. The feature
extraction network extracts the reservoir spatial feature by Spatial
dependent deep Kriging technology and realizes the prediction of
reservoir lithology spatial distribution. The reliability analysis
network focuses on the non-Gaussian distribution characteristics
of the weight parameters of the DNN_Bayes network, and adopts the
GS_IENKFmethod to assimilate the non-Gaussian data in real time.
It constructs the reliability evaluation system of the reservoir
prediction system under the non-Gaussian hypothesis.

In addition, the Kriging model and GRU_Kriging model are also
constructed. The Kriging model directly takes the feature
information extracted by the Kriging technology and reservoir
depth features as the input of the reliability analysis network.
Compared with the NG_GRU_Kriging model, the Kriging model
and GRU_Kriging model are constructed under the Gaussian
hypothesis.

2.2 Spatial-dependent deep kriging
technology

2.2.1 Spatial key information extraction
Considering the spatial process S � [s1, s2,/,sN]T, the inverted

value of the corresponding lithology spatial distribution position is
Y � [y1, y2,/,yk]T. In the actual approximation problem, for an
unknown reservoir lithology distribution location si, the Kriging
spatial information extraction model can be determined by Eq. 1.

ŷ si( ) �∑N
i�1
βif si( ) + ξ si( ) (1)

where ŷ(si) represents the predicted target, f(si) is a regression
polynomial related to the lithology location to be predicted, ξ(si)
and is a spatially related process of the non-stationary covariance
function. The spatial correlation of reservoir lithology is concerned
with the covariance vector under the Gaussian hypothesis, and the
calculation cost is high.

Aiming at the non-Gaussian characteristics of reservoir
lithology, a log-ratio conversion module is constructed to make it
approximately obey the Gaussian distribution. Eq. 2 is the
conversion formula for lithology data (Odeh et al., 2013).

sij � ln
sij′ + γj

∐k
j�1 sij′ + γj( )1/k( ) (2)
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where sij is the symmetric log ratio conversion value, sij′ is the
membership of the relevant attributes of the ith spatial point to the
jth lithology category, and γ is half of the minimum membership in
the study area (γ≠ 0).

We seek several orthogonal radial basis functions to
approximate the spatial correlation processes based on Karhunen
Loeve theorem (Ogawa and Oja, 1986). The decomposition of the
lithology spatial correlation process is determined by Eq. 3.

ξ si( ) �∑M
k�1

ϖkφ xk, yk( ) (3)

where, ϖk is a pairwise nonlinear variable of spatial correlation
process ξ(si). φ(xk, yk) is the orthogonal radial basis function
(Schaback, 1995) converted from the spatial coordinates of
reservoir lithology, which is determined by Eq. 4.

φ xk, yk( ) � e−Ck x−xk( )2+ y−yk( )2[ ] (4)
Ck � min αkj( k� 1, 2,/,M k ≠ j ) is the shape parameter, which
represents the influence range of sample points on the entire sample
space. αkj is the distance between two spatial points.

For the spatial coordinates of reservoir lithology, we obtain
relevant spatial key information by calculating orthogonal radial
basis functions from lithology coordinates, as shown in Eq. 5. The
approximate substitution avoids the problems of memory
complexity and time complexity caused by the Cholesky
decomposition.

Xs � ξ s1( ), ξ s2( ), ξ s3( ),/,ξ sN( ){ } (5)
In the same study area, different reservoir attributes at the same

depth have different effects on the prediction accuracy. The depth
feature of reservoir depth accumulation is extracted by adopting the
logging depth feature attention module (Zeng et al., 2021), as shown
in Eq. 66.

Xe � α1dX
1
d, α

2
dX

2
d,/,αmd X

m
d{ }Dd�1 (6)

where Xm
d represents the input attributes at depth d, amd represents

the similarity weight between the predicted target and the input
reservoir attributes.

2.2.2 Spatial distribution prediction based on deep
learning

The radial basis function is adopted to approximate the spatial
correlation process before transferring the data to the hidden layer of

DNN. Taking the joint key information ~X � α1dX
1
d,/,αmd X

m
d ,{

ξxd(s), ξyd(s), ξzd(s)}Dd�1 as the input of DNN, a spatial dependent
deep Kriging (SDDK) technology is developed to establish the direct
connection between the spatial coordinates and the deep neural
network. The technology can be applied to CNNS, RNNS, and other
deep-learning networks.

The extracted joint key information is embedded into the hidden
layer of the deep neural network. Taking the GRU network as an
example, the reset gate information is rewritten as Eq. 7. The reset
gate can control the importance of the state information at the
previous time, reducing the risk of gradient explosion and other
problems (Cho et al., 2014).

r1 � σ U r( )
1

~X +W r( )
1 h0 + b r( )

1( )
r2 � σ U r( )

2 φ r( )
1 r1 ~X( )( ) +W r( )

2 h1 + b r( )
2( )

..

.

rd � σ U r( )
d φ r( )

d−1 rd−1 ~X( )( ) +W r( )
d hd−1 + b r( )

d( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

Similarly, the new memory information ~hd can be rewritten as
Eq. 8. It is used to store the key information in previous memory.

~hd � tanh U h( )
d φd

~hd ~X( )( ) +W h( )
d hd−1•rd( ) + b h( )

d( ) (8)

The update gate zd can control the combination of current and
previous joint key information, which can be rewritten as Eq. 9.

zd � σ U z( )
d φ z( )

d−1 zd−1 ~X( )( ) +W z( )
d hd−1 + b z( )

d( ) (9)

The hidden layer state hd is determined by the depth and spatial
accumulated information retained by the current and previous
memories (Eq. 10).

hd � 1 − zd( )•~hd + zd•hd−1 (10)

In Eqs. 7–10, ω �
U r( ) U z( ) U h( )
W r( ) W z( ) W h( )
b r( ) b z( ) b h( )

⎛⎜⎜⎝ ⎞⎟⎟⎠
T

denote the weights

and the biases of the network. φd represents the related activation
function.

Compared with classical technology, SDDK technology does not
require any assumptions and can obtain more spatial key
information by calculating multiple basis functions to
approximate the spatial processes.

Finally, the fully connected neural network is adopted to linearly
transform the comprehensive feature information. For the
regression problems, Sigmoid is selected as the activation

FIGURE 1
The network architecture of the NG_GRU_Kriging model.
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function. The result is determined by Eq. 11. θ is the network
parameter of the full connection layer.

yd � fθ yd−1;hd( ) (11)
For the classification problems, Softmax is selected as the

activation function. Eq. 12 gives the probability function
(pθ(xd)) that the reservoir attribute xd belongs to each lithology
category (K is the number of categories).

pθ xd( ) �
p yd� 1 | xd; θ( )
p yd� 2 | xd; θ( )

..

.

p yd � K
∣∣∣∣xd; θ( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ∑N

n�1
eθ

D
n⎛⎝ ⎞⎠−1 eθ

D
1 xd

eθ
D
2 xd

..

.

eθ
D
n xd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

The optimization objective function of the model consists of
cross-entropy loss function and L2 regular term, as shown in Eq. 13.

O W′( )� − l

D
∑D
d�1
∑N
n�1

log
eθ

N
n xd

∑N
n�1

eθ
N
n xd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + κ∑D

d�1
∑N
n�1

ωdn
′ (13)

where κ represents weight attenuation coefficient, ωdn
′ represents

network weight, l represents the indicative function.

2.3 Real-time assimilation of non-gaussian
data

Combined with deep learning and Bayesian theory, the weights
of DNN are modeled to obtain the reliability of the prediction
system from the perspective of probability (Denker and Lecun,
1991). Given the reservoir data set ( X′, Y{ }), the related inverted
results are obtained by approximating the posterior distribution of
the deep neural network, and the probability is defined by Eq. 14.

p y′
d

∣∣∣∣xd, X′, Y( ): � ∫p y′
d

∣∣∣∣xd,ωd( )p ωd

∣∣∣∣X′, Y( )dωd (14)

where xd, y′
d represent the new input data and related output data,

respectively. The analysis of p(ωd|X′, Y) in Eq. 14 is usually difficult
or expensive. Assuming that the weight parameters obey Gaussian
distribution, the researchers seek the parameter optimization of
simple distribution based on variational inference technology
(Salakhutdinov and Hinton, 2012), and analyze the reliability of
the prediction system.

An effective reservoir prediction system should be able to provide
a reliability analysis of the results without being limited by Gaussian
distribution and other hypotheses. In order to solve the problem of the
Gaussian hypothesis in the reliability modeling, a Gaussian transform
iterative Kalman filter (GS_IENKF) method is proposed based on the
Kalman filtering principle (Gu and Oliver, 2007; Zhou et al., 2011).
The data assimilation process of the GS_IENKF method is shown in
Figure 2, the specific description is as follows.

(1) In the initial stage of the GS_IENKF method, the vector set Y is
composed of a model vector and a state vector. The definition of
an augmented matrix is shown in Eq. 15.

Y � GT, UT,WT[ ]T (15)

G represents the model static variable (geological constraints) that
does not change with time. The constraint condition can be obtained
from reservoir data based on Kriging technology.U andW represent
dynamic variables that vary with the network training time. U is the
weight parameter from the input layer to the hidden layer, andW is
the weight parameter from the hidden layer to the input layer.

(2) Gaussian transform. Gaussian transform includes the
transformation of the model vector and state vector. Firstly,
the local cumulative probability distribution function is
constructed (Ou et al., 1997). The extreme value of each state
is defined in advance to prevent the updated vector from
exceeding the probability distribution range. Then, the
Gaussian transform equation is used to ensure the vector
conforms to the univariate edge Gaussian distribution (Eq. 16).

~Gd−1� Φ Gd−1( )
~Ud−1� Φ Ud−1( )
~Wd−1� Φ Wd−1( )

⎧⎪⎨⎪⎩ (16)

~Gd−1, ~Ud−1, and ~Wd−1 represent the Gaussian transformed geological
constraint conditions and the deep neural network weights. Φ(·)
represents the Gaussian transform function.

The augmented matrix of the transformed model vector and
state vector can be rewritten as Eq. 17.

Yd �
~G1, ~G2,/, ~GD( )T
~U1, ~U2,/, ~UD( )T
~W1, ~W2,/, ~WD( )T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d

� ~G
fd

~G( )[ ]
d

(17)

where ~G � [( ~G1, ~G2,/, ~GD)T] represents a static model vector, and

fd
~G( ) � ~U1, ~U2,/, ~UD( )T

~W1, ~W2,/, ~WD( )T⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ represents a dynamic state vector.

The GS_IENKF method mainly completes the real-time
assimilation of non-Gaussian data by updating the model vector
and predicting the state vector. yd( ~G) represents the result of the
model update, Eq. 17 can be written as Eq. 18.

Yd �
~G

fd
~G( )

yd
~G( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

(3) Model vector update. For the nonlinear reservoir lithology
spatial distribution prediction system, a series of linear
functions ~G

j
are used to approximate the nonlinear function

to realize the linearized static model vector (Eq. 19).

f ~G( ) ≈ f ~G
j( ) + flinear

~G − ~G
j( )

y ~G( ) ≈ y ~G
j( ) + ylinear

~G − ~G
j( )

⎧⎪⎪⎨⎪⎪⎩ (19)

The model vector and state vector satisfy a linear relationship
approximately. The vector augmented matrix Eq. 18 can be written
as Eq. 20.

Yd �
~G

Flinear
~G

Ylinear
~G

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � I
Flinear

Ylinear

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ~G (20)
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Flinear and Ylinear represent the approximate linear operators, which
are related to the weight parameters ~W and ~U. The linear
approximation operator Ylinear does not change during the
iteration process (Borup et al., 1992).

The linear approximate covariance CY of the augmented state
vector is expressed as Eq. 21. C ~G represents the prior model
covariance of all assimilated data at this time and the previous time.

CY �
I

Flinear

Glinear

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦C ~G IT FT
linear YT

linear[ ]
�

C ~G C ~GF
T
linear C ~GY

T
linear

FlinearC ~G FlinearC ~GF
T
linear FlinearC ~GY

T
linear

GlinearC ~G GlinearC ~GF
T
linear GlinearC ~GY

T
linear

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
(21)

The minimization objective function of the model vector is
determined by Eq. 22.

O ~G( ) � 1
2

y ~G( ) − yobs( )TC−1
D y ~G( ) − yobs( )

+ 1
2

~G − ~Gpr( )TC−1
M

~G − ~Gpr( ) (22)

~Gpr represents the estimated value before assimilation. Adopting
Gauss-Newton iterative method (Gratton et al., 2007), the model
vector of the objective function is recorded as Eq. 23.

~G
j+1 � ~Gpr − YT

linearC
−1
D Ylinear + C−1

M( )−1YT
linearC

−1
D

× g ~G
j( ) − yobs − Ylinear

~G
j − ~Gpr( )[ ] (23)

In order to improve the adaptive ability of the deep learning
model, automatic matching of iterative steps is realized through β

fine-tuning (Dennis, 1996) on the basis of Eq. 23. Themodel variable
~G
j
d−1,i is updated to obtain ~G

j+1
d−1,i (Eq. 24).

~G
j+1
d−1,i � β ~G

j

d−1,i − 1 − β( ) YT
linearC

−1
D Ylinear + C ~G

−1( )−1YT
linearC

−1
D

× Y ~G
j( ) − Yobs − Ylinear

~G
j − ~G

j

d−1,i( )[ ]
(24)

where ~G
j+1
d−1,i �

~G
j+1
d−1,i ~W( )
~G
j+1
d−1,i ~U( )⎛⎝ ⎞⎠. ~Gj+1

d−1,i( ~W) and ~G
j+1
d−1,i( ~U) represent

the updated neural network weight parameters. The subscript i
represents the number of iterations.

FIGURE 2
The flow chart of non-Gaussian data real-time assimilation (GS_IENKF).

TABLE 1 The description of the test set.

Description Attributes

mrrtf mrvb twi Slope Rdis

Count 12,247 12,247 12,247 12,247 12,247

Mean 2.254658 111.654 112.379 1.35392 156.971

Std 0.132118 15.8312 36.0432 0.51171 17.5524

Min 1.730187 69.0351 16.6974 0.64895 137.072

25% 2.157898 100.945 76.4991 0.99611 145.909

50% 2.207597 111.171 120.394 1.15441 149.194

75% 2.385175 125.759 142.335 1.685216 165.894

Max 2.546343 155.691 192.968 3.76002 192.213
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(4) State vector prediction. Using the updated model parameters,
the network weight parameter state of the state vector set is
updated from state d−1 to state d (Eq. 25).

~Wd,i � R ~G
j

d−1,i ~W( ), ~Wd−1, ~Gd−1[ ]( )
~Ud,i � R ~G

j

d−1,i ~U( ), ~Ud−1, ~Gd−1[ ]( )
⎧⎪⎪⎨⎪⎪⎩ (25)

where, R(·) is the function of the nonlinear reservoir prediction
model. ~Wd,i and ~Ud,i represent the predicted network weight after
the ith iteration.

(5) IfMAX| ~Gl+1
d−1,j − ~G

l
d−1,j|< ε1 the preset number of iterations has

been reached, the model converges. ε1 is determined by the
actual network training situation. Exit the assimilation step and
start data assimilation at the next moment. The assimilated
network weight parameters are used as the input data for
reservoir prediction and reliability modeling. Meanwhile, the
updated state vector is transformed by Gaussian inverse
transform (Eq. 26) and used as the initial data of the next
data assimilation. It can ensure the network weights are
consistent with the original spatial distribution, which is
helpful in describing the connectivity between extreme

values. Otherwise, go to step 3) and iterate the process again
until the convergence criteria are met.

Ud,i � Φ−1 ~Ud,i( )
Wd,i � Φ−1 ~Wd,i( )
⎧⎨⎩ (26)

(6) Return to step 2) to assimilate all the weight parameters of the
deep neural network in real-time.

In the prediction process of heterogeneous reservoir data, the
GS_IENKF method assimilates the output weights of the DNN
network in real-time. Under the non-Gaussian hypothesis, the
quantitative evaluation of the prediction system reliability is
realized by combining with Bayesian theory, which can reduce
the error cumulative effect caused by the non-Gaussian
characteristics of the original distribution changed in the
iteration process.

3 Case study in the actual work area

Combined with the heterogeneous reservoir of Australian
laterite nickel ore, the spatial distribution prediction and
reliability analysis of reservoir lithology are realized under the
non-Gaussian hypothesis. The main contents of this section
include the following. 1) The introduction of experimental
parameters. 2) The data set description of the research area. 3)
The prediction of reservoir lithology spatial distribution. 4) The
evaluation of Model reliability. 5) Time analysis of the prediction
model.

3.1 Experimental environment and operation
settings

The experimental operating system is Windows 10, equipped
with CPU version 12th Gen Intel R) Core (TM) i9-12900H, GPU
NVIDIA GeForce RTX 3090, and deep learning framework
Tenorflow2.4.0+cu110. The training dataset (80%) is used to
train the prediction model, and the testing dataset (20%) is used

TABLE 2 R2 of single lithology spatial distribution in the different models (%).

Lithology Model

Kriging GRU_Kriging NG_GRU_Kriging

Longitude Latitude Longitude Latitude Longitude Latitude

CLAY 89.67 91.68 91.84 93.86 97.47 98.49

SAND 91.81 87.65 93.26 92.78 97.39 95.36

GRVL 87.30 86.51 92.13 92.09 98.49 97.57

SHLE 88.66 90.84 91.79 90.50 94.65 94.99

SDSN 85.47 89.22 89.42 89.48 92.31 92.23

BALT 86.73 89.52 90.16 89.58 94.90 93.51

Comprehensive 87.84 90.72 94.25

FIGURE 3
Comprehensive mean absolute percentage error in the models.
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FIGURE 4
Actual lithology spatial distribution.

FIGURE 5
Lithology spatial distribution in the Kriging model.
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FIGURE 6
Lithology spatial distribution in the GRU_Kriging model.

FIGURE 7
Lithology spatial distribution in the NG_GRU_Kriging model.
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to verify and evaluate the model performance. When the
experimental training cycle is 40, the batches are 16, and the
learning rate is 0.0001, the model performance reaches its
optimal level. Meanwhile, Dropout technology and Adam
optimizer are adopted to avoid model overfitting.

3.2 Data set

The laterite nickel ore data studied in this paper is collected from
New SouthWales, Australia, which belongs to the New England fold
belt, extending in a north-south direction (Brand et al., 1998). The
fold belt is dominated by marine facies, magmatic rocks, and
metamorphic hydrothermal deposits. Nickel laterite is developed
in the spherical profile of weathered lithology, and the rocks are
enriched in the oxidation zone of the weathered layer. The spatial

distribution of lithology is controlled by primary shear, resulting in
discrete and steep cuttings along strike faults (Xu et al., 2013). The
study area is dominated by mudstone and mud sandstone, mainly
composed of chlorite, nontronite, and goethite. Nickel occurs in the
latter two minerals with a content of about 1.5%–1.8%. It is also
known as the transitional laterite nickel ore.

A total of 32,575 data samples from 1,200 wells in the study area
were selected, including and 80% training set and a 20% test set.
Table 1 shows the description of the test set. The related reservoir
information longitude coordinate (long), latit coordinate (latit),
multi-scale ridge flatness index (mrrtf), multi-scale valley flatness
index (mrvb), topographic humidity index (twi), slope gradient
(slope), and river channel distance (rdis) were utilized to achieve
the prediction of lithology spatial distribution. The studied reservoir
lithology mainly consists of clay (CLAY), sand (SAND), gravel
(GRVL), shale (SHLE), sandstone (SDSN), and basalt (BALT).

TABLE 3 Reliability range of inverted single lithology in the different models (%).

Model Lithology

CLAY SAND GRVL SHLE SDSN BALT

Kriging 72.51–87.52 77.54–92.47 76.87–92.05 82.02–94.27 78.10–94.03 77.54–92.53

GRU_Kriging 77.50–92.51 82.00–93.12 77.56–92.35 77.20–92.51 78.00–86.02 82.12–86.23

NG_GRU_Kriging 79.01–99.98 88.33–97.86 92.36–96.07 92.07–96.76 86.79–98.99 88.01–96.99

FIGURE 8
Reliability distribution of the Kriging model.
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Spearman correlation coefficient (SPCC) is applied to evaluate
the relationship between the comprehensive lithology and related
attributes. The lithology is weakly correlated with long, latit, mrrtf,
and mrvb, with SPCCs of −0.39, 0.35, 0.29, 0.33, and 0.35,
respectively. There is an extremely weak correlation between
lithology and twi, slope, rdis, with SPCCs being 0.043, −0.1,
and −0.0046, respectively.The weak relation creates some
challenges for prediction.

The selected data were preprocessed to improve the accuracy of
reservoir lithology prediction, including data cleaning, data outlier
processing, and data normalization. Firstly, box graph theory was
used for outlier detection and median substitution of the selected
data to eliminate the influence of anomalous data on the
prediction. Then, the least square polynomial fitting method
was adopted to correct the replacement values according to the
overall distribution trend of each attribute to ensure data stability.
Finally, all the data in the study area were normalized to reduce the
influence of errors caused by data calibration standards, data
dimension, and maximum value on modeling accuracy of deep
neural network.

3.3 The prediction of lithology spatial
distribution

Table 2 presents the coefficient of determination (R2) of the single
lithology distribution along the longitude and latitude directions.

Compared with the classical Kriging model, the GRU_Kriging
model establishes the direct relation between spatial coordinates
and DNN under the Gaussian hypothesis and obtains more joint
key information with less calculation cost. It is especially suitable for
the nonlinear relationship between the inverted target and other
related input attributes. The spatial distribution of single lithology
obtains a higher fitting degree in both directions.

Under a non-Gaussian hypothesis, the NG_GRU_Kriging
method adopts SDDK technology to extract more spatial key
information, which is more in line with the actual geological
conditions. This method accurately captures the spatial
correlation reflecting the real reservoir lithology and effectively
improves the prediction accuracy of single lithology spatial
distribution. The accuracy of comprehensive lithology inverted
results is 94.25%, which is 6.41% and 3.53% higher than the
Kriging model and GRU_Kriging model, respectively.

Figure 3 shows the mean absolute percentage error (Mape) of
the three models. Taking the average of the five experimental results,
the Mape of Kriging, GRU_Kriging, and NG_GRU_Kriging models
are 5.283%, 4.613%, and 3.505%, respectively. Thus, the
performance of the proposed method is more stable.

Figure 4 shows the actual lithology spatial distribution, and
Figures 5–7 show the predicted results of the three models. Pearson
correlation coefficient (PCC) is used to measure the linear fitting
degree between the predicted and actual lithology distribution from
the longitude and latitude directions. The linear fitting degree of
lithology spatial distribution obtained by the Kriging method

FIGURE 9
Reliability distribution of the GRU_Kriging model.
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(Figure 4) is 92.7%. The situation is improved by 1.84% in the GRU_
Kriging method (Figure 5). The RNN model can predict the
approximate changed trend of reservoir lithology.

The proposed NG_GRU_Kriging method can fully extract the
spatial features (Figure 6), and all the predicted single lithology

information has a higher fitting degree (PCC>97.5%). PCC of the
comprehensive lithology prediction is 98.12%, which is 5.85% and
2.01% higher than the Kriging model and GRU_Kriging model,
respectively. It can better capture the spatial information between
well positions and reproduce the borehole location.

FIGURE 10
Reliability distribution of NG_GRU_Kriging model.

FIGURE 11
Comprehensive reliability distribution in the different models.
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3.4 Reliability analysis under the non-
Gaussian hypothesis

The reliability of the DNN model is analyzed based on Bayesian
theory. In terms of the Gaussian hypothesis modeling problem, the
GS_INEK method is utilized to assimilate the non-Gaussian weight
parameters in real-time.

Figures 5–7 track the reliability of the single lithology prediction
dynamically. The color bar graph represents the reliability probability
values. Table 3 details the extreme range. Compared with Kriging
model, the reliability of NG_GRU_Kriging model improved by
6.50%–12.46%, 10.79%–5.39%, 15.48%–4.02%, 10.05%–2.49%,
8.69%–4.96%, and 10.47%–4.46%, respectively. Compared with
GRU_Kriging model, the reliability of NG_GRU_Kriging model
improved by 1.51%–7.47%, 6.33%–4.74%, 14.8%–3.72%, 14.87%–
4.25%, 8.79%–12.97%, and 5.89%–10.76%, respectively.

Figures 8–10 show the histograms of the model reliability of each
lithology. The Kriging model has a wide range of single lithology
reliability distribution. The central points are located at 0.790, 0.840,
0.8420, 0.825, 0.842, and 0.815, respectively. Although the reliability
extremes of lithology SHLE, SDSN, and BALT of the GRU_Kriging
method are slightly larger than those of the Kriging method, the
reliability distribution range is more concentrated, with the center
points located around 0.846, 0.853, 0.848, 0.852, 0.893, and 0.867,
respectively. The reliability of all the results in the NG_GRU_
Kriging model is over 0.900, except for CLAY lithology
(0.800–0.998). The centers are located around 0.900, 0.923, 0.956,
0.913, 0.908 and 0.932, respectively.

The distribution of the comprehensive reliability is shown in
Figure 11. The distribution range of the Kriging model is wide
(0.700–0.950), with a maximum value of around 0.825. There are
325 lithology data with a reliability of over 0.900, the reliability of
3,553 lithology data ranges from 0.800 to 0.900, and 1,770 lithology
data with have a reliability of between 0.700 and 0.800. The
reliability range of the GRU_Kriging model is 0.720–0.950, and
the center point is around 0.850. There are 638 lithology data with a
reliability over 0.900, the reliability of 4,549 lithology data is between
0.813 and 0.900, and 1,770 lithology data with a reliability is between

0.700 and 0.800. The reliability distribution range of the NG_GRU_
Kriging model is relatively concentrated (0.880–0.960). Of particular
note, the reliability of the inverted results is all over 0.880, among
which 4,183 lithology data have a reliability of more than 0.900.

The method is applied to the shale reservoir in the North Sea
basin, and the spatial distribution of heterogeneous reservoir
lithology is predicted by using the existing spatial coordinate
information, density, natural gamma ray, deep lateral resistivity,
and acoustic. The fitting degree of the comprehensive lithology
model is 95.072%, the average absolute percentage error is 1.5113%,
and the reliability of single lithology identification results is higher
than 90.61%. The experimental results indicate that the proposed
method can be applied to the spatial distribution of lithology in
other related fields and has a certain universality.

3.5 Training time analysis

The training time of the models is tested under the same running
environment. Figure 12 shows the training time for different data
samples in the Kriging, GRU_Kriging, and NG_GRU_Kriging models.

The Kriging method has a shorter training time when the data
samples are less than 1,000. As the sample size increases, the time
cost of training increases exponentially. The small graph in the lower
right corner of Figure 12 shows the time-multiple relationship with
the other two models. GRU_Kriging model has a certain advantage
in time performance. NG_GRU_Kriging method is modeled under
the non-Gaussian hypothesis, and the real-time update process of
non-Gaussian data requires a certain time cost. High-reliable and
high-accuracy results are obtained with smaller time defects, which
is beneficial to improve the universality of reservoir prediction
systems based on deep learning in specific engineering problems.

4 Discussion

Combined with Kriging and deep learning technology, the NG_
GRU_Kriging method can realize the prediction of heterogeneous
reservoir lithology spatial distribution and model reliability
evaluation according to the relevant reservoir attributes and
spatial features. The method is applied to the laterite nickel ore
heterogeneous reservoir, and the lateral distribution of reservoir
lithology is finely depicted in both longitude and latitude directions.

The NG_GRU_Kriging method can model the spatial
dependence and fully extract the key feature information from
the nonlinear relationship of the reservoir data, which can
accurately describe the horizontal spatial geological trend of
reservoir lithology. Especially, it has good spatial tracking ability
in the lateral direction of the reservoir. The method can provide
basic data support and a decision-making basis for improving
drilling and completion strategies.

The NG_GRU_Kriging method effectively gives the blind area
of the model for different input data without assuming any data
distribution. Combining the model reliability evaluation with the
actual data distribution, the reliability of the prediction is higher
than that of the other two models. Analyze the results with low
reliability in the practical application, which improves the
universality of the model in the practical engineering field.

FIGURE 12
Training time in the different models.
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Compared with the Kriging method, the NG_GRU_Kriging
method has obvious advantages in the training speed. It reduces
computational cost and has stronger scalability for large data
samples. The training time of the NG_GRU_Kriging method is
slightly higher than that of the GRU_Kriging method. However, it
has obtained more reliable and accurate predicted results of
lithology distribution. The deep learning model constructed in a
non-Gaussian environment has stronger engineering applicability.

5 Conclusion

This study focuses on the problem of the Gaussian hypothesis in
reservoir prediction and reliability analysis modeling. The proposed
NG_GRU_Kriging method plays an important role in this research,
which realizes reservoir lithology spatial distribution prediction and
reliability analysis under a non-Gaussian hypothesis. It explores the
distribution of lithology spatial distribution in lateral space, and
further research will focus on the distribution in depth direction.
The case study of heterogeneous reservoirs and experimental
analysis reveals the following conclusions.

(1) The NG_GRU_Kriging method can realize intelligent
prediction of heterogeneous reservoir lithology spatial
distribution. It is conducive to finding future drilling
positions and improving the production of oil and gas and
solid energy, which can reduce the logging cost and improve the
drilling and completion strategy.

(2) The SDDK technology can obtain more spatial key information
with less time cost compared with deep learning and Kriging
technology. The technology is scalable to massive datasets,
which can reduce computational costs, and improve model
accuracy and engineering applicability.

(3) The GS_IENKF method assimilates the non-Gaussian data in
real time. It ensures the quantitative reliability evaluation of the
prediction system under the non-Gaussian hypothesis, and can
effectively reduce the economic loss or social impact caused by
the unpredictability of neural networks. The model reliability
analysis can achieve system risk assessment and assist it in
making better decisions.
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