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The southeastern Eurasian plate, where the South China Sea (SCS) is located, lies in
a complex tectonic setting between the Pacific and Tethys tectonic belts. It is
widely accepted that the tectonics of the SCS area were influenced by subduction
in the lateMesozoic, but there is still controversy over whether it was paleo-Pacific
subduction or Tethyan subduction. Volcanic activity in the south of Hainan Island
was intense during the Cretaceous, and geochemical analysis of the collected
basaltic andesite, andesite and rhyolite samples in this study indicate those
intermediate-acid series igneous rocks are high-K calc-alkaline or calc-
alkaline. Some andesites have high MgO contents and Mg# values
(2.04–5.34 wt% and 36.83–55.29; Mg# = 100× Mg2+/(Mg2+ + TFe2+). Light rare
earth elements (LREEs) and large ion lithophile elements (LILEs) are enriched in all
the samples, but high field strength elements (HFSEs) are depleted. The negative
Eu anomalies are more obvious in the rhyolites than andesites. The geochemical
characteristics of the volcanic arc igneous rocks show that the mid-Cretaceous
tectonic setting of Hainan Island can be classified as an Andean active continental
margin. During the mid-Cretaceous, intermediate volcanism occurred in Hainan
Island and its adjacent areas. The zircon-saturation temperatures of the acid
volcanic rocks in study area exhibit relatively low values (ranging from
746°C–790°C). Unlike igneous rocks forming in the coastal area east of the
South China Block at the same time, no A-type granitoids with alkaline dark
minerals appear in Hainan Island. During the late Mesozoic, the western SCS,
where Hainan Island was located, may not have been affected by the subduction
of the paleo-Pacific Plate, but rather Neotethyan subductionwhich dominated the
Cretaceousmagmatic and tectonic activities along the westernmargin of the SCS.
This finding helps to understand the late Mesozoic tectonic evolution of the
southeastern edge of the Eurasian plate.
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1 Introduction

The southeastern Eurasian Plate lies among the Pacific Plate,
Philippine Sea Plate and the India-Australia Plate (Figure 1A), and
between the circum-Pacific belt and the Tethys belt, which implies a

complicated tectonic evolution. The Cenozoic opening and growth
of the South China Sea (SCS) is a remarkable tectonic event in this
region. However, there are many disputes regarding the tectonics of
this area before the opening of the SCS and the extension of the
continental margin of the South China Block (SCB). In the late

FIGURE 1
(A) The location of the South China Sea relative to surrounding tectonic plates (modified from Yin, 2010); (B) sketched structural map of Southeast
Asia showing the location of Hainan Island and its tectonic subdivision in the South China Sea (modified from Li et al., 2016); and (C) geological map of
southern Hainan Island (modified from Zhou et al., 2015a; Cai and Fu, 1997). Annotations: The South China Block is surrounded by North China Block, the
western Tibet Plateau, the southwest Sibumasu-Indochina Block, and the Philippine Sea Plate. The black arrows show the directions of the Pacific
and India Plate drift. The Jiusuo-Lingshui Fault is a southward dipping thrust fault located in southern Hainan Island (Figure 1C). SCS, South China Sea; PSP,
Philippine Sea Plate; PP, Pacific Plate.
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Mesozoic, this region is often regarded as the southwestern
extension of the magmatic belt of the eastern SCB, followed by a
transition from the Tethys orogenic regime to the paleo-Pacific
tectonic regime (Zhou and Li, 2000;Wang et al., 2001; Xia and Zhao,
2014; Zhou et al., 2015a; Zahirovic et al., 2016). Because of the
subduction and rollback of the paleo-Pacific Plate, the western
margin of the SCS experienced a regional lithospheric extension,
and large-scale magmatism occurred in this region (Li et al., 1999;
Thuy et al., 2004; Geng et al., 2006; Yan et al., 2010; Wang et al.,
2012;Wang et al., 2019; Tang et al., 2014; Zhou et al., 2015a; Xu et al.,
2016; Sun et al., 2017; Yan et al., 2017; Nong et al., 2021; Yang et al.,
2022). On the other hand, some studies suggest that tectonic and
magmatic activities with related ore deposits were still affected by the
Tethys orogenic regime during the Cretaceous (Fang, 2016; Sun,
2016; Zhang et al., 2017; Zhu et al., 2017; Sun et al., 2018; Huang
et al., 2019; Yuan et al., 2019; Liu et al., 2020; 2021). The debates over
which subduction affected the SCS have led to differences in the
identification of geological features on the southeastern Eurasian
Plate during the late Mesozoic, such as magmatic activities and
mineralization.

Cretaceous granitoids were extensively studied to explore
tectonic evolution during the Mesozoic period because of their
numerous outcrop areas (Li et al., 1999; Thuy et al., 2004; Yan
et al., 2010; Wang et al., 2012; 2019; Tang et al., 2014; Xu et al., 2016;
Sun et al., 2017; Yan et al., 2017; Zhang et al., 2017; Zhu et al., 2017;
Sun et al., 2018; Huang et al., 2019; Yuan et al., 2019; Nong et al.,
2021), which implies these studies give less consideration of other
magmatic rocks, such as andesites, from this period. Considering the
region where the SCS lies was an active continental margin, the
volcanic rocks need to be studied comprehensively, especially
intermediate rocks, which will help to better understand the state
of the lithosphere and deep mantle, and the tectonic setting of this
region.

Located in the northwestern SCS, Hainan Island has a large
outcrop of Cretaceous volcanic rocks and is one of the most
important exposed areas of Cretaceous andesite on the SCB.
Therefore, a detailed study of the Cretaceous volcanic rocks in
Hainan Island will help to characterize the type of volcanic
activity along the margin of the SCS during the Cretaceous
period, and improve our understanding of the tectonic
evolution of the southeast edge of the Eurasian plate during
the late Mesozoic.

2 Geological setting and sample
information

Hainan Island, located at the intersection of the Eurasian, Indian-
Australian, Philippine Sea and Pacific plates, is separated from the
Chinese mainland by the Qiongzhou Strait (Figure 1B). Hainan Island
has experienced multi-stage tectonic movements, and an E-W trending
tectonic system is themain structural system. The BaobanGroup, about
1.43 Ga (Li et al., 2008), is the oldest known basement exposed on the
island. The strata outcrop on Hainan Island is very limited, accounting
for only 18.6% of the island area, and the remaining area generally has
magmatic rocks (Figure 1C), especially granitoid rocks covering ca. 40%
area of the island (Zhou et al., 2015b).

Extensive Cretaceous volcanism resulted in a >5200 m thick
volcanic sequence, which is divided, from the base to the top, into
the Liuluocun, Tangtadaling and Lingkecun formations (Guangdong
BGMR, 1988). The rocks consist predominantly of intermediate-felsic
compositions, with minor occurrences of mafic volcanic rocks, and are
primarily distributed along the Jiusuo-Lingshui Fault, a southward
dipping thrust fault located in southern Hainan Island (Figure 1C).
The Liuluocun Formation consists of rhyolitic tuff lava, flow-banded
rhyolite on the top, rhyolitic ignimbrite, eruptive breccia with stratified
basalt, and andesite in the lower part and purplish red siliciclastic rock at
the bottom. The Liuluocun Formation is unconformably overlain by the
Tangtadaling Formation, which is mainly composed of dacitic tuff. The
Lingkecun Formation, on the top of this volcanic sequence, is mainly
composed of rhyolitic lava and pyroclastic rocks, with several layers of
dacites. According to zircon geochronology, rhyolitic and andesitic
rocks of the Liuluocun Formation formed in 107–101.5 Ma, and the age
of the Lingkecun Formation was about 98Ma (Cai and Fu, 1997; Zhou
et al., 2015a). TheCretaceousmagmatic activities in the south ofHainan
Island occurred about the mid-Cretaceous (110–90Ma) (Tang et al.,
2010; Sun et al., 2018; Yuan et al., 2019).

The samples were collected from Beiling, Liuluo and Lingke,
respectively. The Liuluocun Formation was sampled in Beiling and
Liuluo, while the Lingke samples were from the Lingkecun Formation
(Figures 2A, B). Based on hand specimens, these samples are andesite or
rhyolite. Andesite samples are dark gray in color, massive, and
porphyritic (Figures 2C, E, G). Andesites from Beiling and Liuluo
contain 10%–30% phenocrysts, of which are mostly plagioclase with
minor amounts of dark minerals. The dark minerals are mainly
hornblende with a small amount of pyroxene (Figures 2C, E). But
phenocrysts of andesites from Lingke are much less common (~10%),
and they are all pyroxene (Figure 2G). Dark minerals have been altered
to chlorite. The matrix of andesites consists of microcrysts of
plagioclase, dark minerals, Fe-Ti oxides, zircon and apatite.

Rhyolite samples are light purple or gray in color, massive, and
porphyritic (Figures 2D, F, H). The phenocrysts include quartz
(10–15 vol%), plagioclase (3-8 vol%), alkali feldspar (5–10 vol%) and
biotite (~3%). Those phenocrysts are slightly altered. Chalcedony
can be seen in some rhyolites (Figure 2F). The matrix consists of
microcrysts and opaque minerals.

3 Methods

The samples were ground to 74-μm using an agate mortar and
pestle. To determine the oxides of major elements, samples were
analyzed according to the Chinese National Standard GB/
T14506.28-2010 (National Standard of P.R. China, 2011b). About
0.7 g of powder and 7 g of latent solvent (Li2B4O7 + LiF + NH4NO3)
were weighed out and stirred together in a Pt-(Au) crucible. Then,
1 mL BrLi was added in the crucible at 1200°C for 20 min. The liquid
melt was used to make a matrix for analysis. About 1 g sample was
added in a crucible (W1) and weighed (W2). The crucible was placed
in a muffle furnace at 1000°C for 2 h and then dried and weighed
(W3). The loss on ignition (LOI) was determined using the following
equation:

LOI � W2 −W3( ) / W2 −W1( )
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Major element oxides except FeO were analyzed on fused glass discs
using a Rikagu RIX 2100 X-ray fluorescence spectrometer (XRF). FeO
contents were analyzed by wet chemical analysis based on the National
Standard of P.R. China (2011a). The Chinese national reference material

GBW07104 was used for quality control. The method detection limit
(MDL) for each element was calculated as three times the standard
deviation of the average from the blank samples (n = 10). The
uncertainties of major element analyses were better than ±5%.

FIGURE 2
Field photograph (A, B) and photomicrographs (C–H) of Cretaceous volcanic rocks from southern Hainan Island. Annotations: (A, C, D) from Beiling;
(E, F) from Liuluo; (B, G, H) from Lingke. (C–F) from Liuluo Formation; (G, H) from Lingkecun Formation. (C, E, G) andesitic samples; (D, F, H) rhyolitic
samples. Abbreviations: Pl, plagioclase; Hbl, hornblende; Px, pyroxene; Qtz, quartz; Afs, alkali feldspar; Bt, biotite; Cln, Chalcedony.
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TABLE 1 Major element (wt%) and trace element (ppm) compositions of the Cretaceous volcanic rocks of southern Hainan Island.

Samples Beiling Liuluo Lingke

BLRR1 BLRR501 16SY05-
3R

16SY06-
1

BLRR201 16SY01-
2

16SY03-
2

16SY06-
5

16SY10-
6-1

16SY10-
5-1

16SY10-
2

16SY08-
3-1

16SY08-
2

16SY08-
1

16SY08-
5-1

SiO2 52.90 56.73 55.31 59.64 68.20 76.04 78.14 71.52 57.56 55.65 77.38 53.84 53.35 75.41 72.41

Al2O3 16.63 18.17 19.00 17.52 15.92 12.78 11.95 14.12 17.65 19.40 12.37 17.22 17.01 12.41 14.30

TiO2 1.13 0.88 1.06 0.81 0.45 0.16 0.07 0.32 0.71 0.92 0.10 0.97 0.99 0.15 0.30

Fe2O3 2.74 5.81 4.74 5.00 2.52 0.48 0.71 1.19 3.25 3.13 0.53 1.86 1.89 0.63 1.32

FeO 4.65 1.99 3.35 1.73 0.57 0.76 0.39 1.22 2.75 2.92 0.18 6.02 6.08 0.91 1.02

CaO 7.47 5.80 7.54 5.47 2.03 1.02 0.80 2.06 8.65 7.52 0.70 8.04 8.33 0.93 0.23

MgO 4.88 3.04 2.81 2.04 0.71 0.28 0.27 0.74 3.25 2.66 0.09 5.34 5.24 0.49 1.63

K2O 2.73 1.38 0.94 2.49 4.35 4.64 2.69 5.06 1.96 2.77 5.43 1.70 1.88 5.12 4.41

Na2O 2.48 3.01 3.14 3.02 3.05 3.40 4.05 2.61 2.14 3.00 2.70 2.85 2.87 3.06 2.19

MnO 0.16 0.13 0.16 0.10 0.05 0.06 0.07 0.11 0.15 0.16 0.02 0.15 0.13 0.05 0.11

P2O5 0.54 0.29 0.26 0.25 0.12 0.03 0.04 0.09 0.32 0.36 0.01 0.27 0.27 0.03 0.02

LOI 3.45 2.61 1.52 1.77 1.86 0.31 0.73 0.85 1.41 1.28 0.42 1.59 1.78 0.75 1.98

Total 99.73 99.84 99.82 99.84 99.84 99.96 99.91 99.86 99.81 99.78 99.94 99.85 99.84 99.94 99.92

A/CNK 0.60 0.99 1.61 1.43 1.50 8.48 4.81 2.49 1.14 1.66 5.99 1.42 1.31 3.70 1.04

FeO* 7.11 7.22 7.61 6.24 2.84 1.19 1.03 2.29 5.68 5.74 0.65 7.69 7.79 1.48 2.21

Mg# 55.01 42.85 39.65 36.83 30.65 29.65 31.94 36.46 50.54 45.21 20.45 55.29 54.56 37.12 56.69

La 46.13 30.45 26.1 32.0 55.04 30.6 39.9 54.9 28.0 24.7 28.1 24.3 30.5 42.1 20.2

Ce 91.44 56.98 55.8 56.0 88.14 60.1 65.9 88.7 48.1 54.2 48.5 43.5 48.9 83.1 31.1

Pr 12.06 7.28 6.76 6.76 11.46 6.59 7.38 10.9 5.98 6.70 5.66 5.55 6.14 9.82 3.74

Nd 48.18 28.56 27.5 26.8 40.56 23.6 25.4 40.8 24.3 28.1 19.3 23.2 26.2 37.3 14.2

Sm 9.12 5.64 5.32 5.11 6.98 4.71 4.04 7.59 4.17 5.46 3.37 4.63 5.29 7.08 2.73

Eu 2.50 1.71 1.51 1.30 1.51 0.37 0.76 1.52 1.24 1.68 0.43 1.27 1.43 0.49 0.52

Gd 7.75 5.16 4.61 4.50 6.02 4.48 3.94 7.19 3.57 4.62 3.29 4.14 4.67 6.12 2.62

Tb 1.11 0.82 0.70 0.71 0.88 0.76 0.52 1.11 0.53 0.69 0.48 0.68 0.74 0.90 0.47

Dy 5.89 4.86 3.82 3.96 5.04 4.81 2.73 6.27 2.88 3.62 2.81 4.02 4.06 4.96 3.13

(Continued on following page)
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TABLE 1 (Continued) Major element (wt%) and trace element (ppm) compositions of the Cretaceous volcanic rocks of southern Hainan Island.

Samples Beiling Liuluo Lingke

BLRR1 BLRR501 16SY05-
3R

16SY06-
1

BLRR201 16SY01-
2

16SY03-
2

16SY06-
5

16SY10-
6-1

16SY10-
5-1

16SY10-
2

16SY08-
3-1

16SY08-
2

16SY08-
1

16SY08-
5-1

Ho 1.08 0.94 0.67 0.72 0.95 0.95 0.50 1.13 0.53 0.64 0.53 0.73 0.71 0.92 0.63

Er 2.89 2.43 1.87 2.04 2.60 2.93 1.52 3.18 1.48 1.76 1.65 1.93 1.99 2.80 1.89

Tm 0.45 0.41 0.32 0.34 0.46 0.51 0.24 0.48 0.23 0.30 0.28 0.29 0.33 0.43 0.30

Yb 2.51 2.39 1.99 2.12 2.83 3.36 1.60 2.99 1.41 1.87 1.83 1.79 2.07 2.76 1.87

Lu 0.57 0.50 0.28 0.30 0.55 0.57 0.27 0.49 0.23 0.27 0.31 0.28 0.30 0.47 0.31

Y 33.53 27.08 24.6 26.9 25.30 27.0 15.6 31.4 15.1 22.2 16.9 19.7 23.8 25.0 20.6

Ba 879.3 792.8 523 559 1062 159 411 666 671 844 275 347 402 232 346

Rb 57.2 52.0 39.0 89.8 162.2 256 83.1 157 54.0 81.0 196 57.8 57.6 192 251

Th 6.99 5.28 4.43 3.99 19.64 29.2 16.4 20.2 2.73 2.48 20.8 4.37 3.68 21.0 11.2

Nb 14.46 12.81 12.7 12.8 11.00 22.4 14.1 12.9 13.3 14.4 16.0 12.2 10.3 16.5 11.4

U 1.84 1.55 0.87 1.74 5.28 11.2 5.36 4.59 0.83 1.23 4.63 1.07 1.16 4.42 2.33

Ta 0.85 0.86 0.59 0.77 1.29 2.23 1.22 0.99 0.48 0.92 1.70 0.48 1.22 1.36 1.04

Sr 924.6 652.5 700 581 411.7 76.5 151 318 788 790 77.8 690 576 103 49.6

Pb 18.1 17.0 12.51 15.97 24.0 25.4 25.1 24.7 7.84 16.21 23.8 13.3 14.67 12.5 12.9

Zr 254.0 164.1 172 176 152.1 102 115 149 151 196 89.9 145 173 143 131

Hf 7.25 4.56 4.82 5.29 8.39 3.81 3.74 4.08 4.22 5.77 3.61 4.13 5.29 5.19 4.11

Cr 74.3 9.4 18.9 3.05 11.8 3.60 4.98 5.02 23.4 32.7 2.67 111 101 6.69 9.41

Ni 49.8 6.8 7.10 2.15 3.9 0.55 0.99 1.97 14.9 12.6 0.41 44.8 38.8 2.68 5.65

Ga 20.29 24.00 23.9 20.9 19.44 14.9 7.95 16.2 20.9 24.0 11.5 19.6 20.8 15.3 17.9

∑REE 231.67 148.12 137.15 142.60 223.02 144.38 154.68 227.23 122.58 134.53 116.54 116.25 133.31 199.36 83.74

LREE/HREE 3.76 2.93 3.16 3.08 4.56 2.78 5.32 3.77 4.31 3.36 3.76 3.05 3.06 4.05 2.28

(La/Yb)N 13.19 9.14 9.38 10.84 13.94 6.53 17.90 13.16 14.28 9.47 11.00 9.75 10.56 10.94 7.76

δEu 0.89 0.95 0.91 0.81 0.69 0.24 0.57 0.62 0.96 0.99 0.39 0.87 0.86 0.22 0.59

Sr/Y 27.58 24.10 28.46 21.64 16.27 2.83 9.63 10.14 52.36 35.65 4.60 34.96 24.18 4.12 2.40
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The sample preparation for trace element analysis was according
to the National Standard of P.R. China GB/T14506.30-2010 (2011).
Powdered samples of about 50 mg were weighed and then dissolved
in HNO3 (0.5 mL)-HF (1 mL) in Teflon bombs at 185°C for 24 h,
dried, and then treated with HNO3 (0.5 mL). All samples underwent
acid digestion twice and were then treated with HNO3 (5 mL) at
130°C for 3 h. Dissolved samples were diluted to 50 mL in a clean
PET bottle prior to the analyses. 103Rh and 185Re were used as the
internal standard references. The trace elements were measured
using an Agilent 7500a inductively coupled plasma mass
spectrometer (ICP-MS). The precision of all trace elements was
estimated to be ±10%.

Major and trace elements of the samples were analyzed at the
Hebei Institute of Geology andMineral Resources, China Geological
Survey.

4 Results

Major and trace element data for the mid-Cretaceous volcanic
rocks in southern Hainan Island are presented in Table 1. In the
Na2O+K2O vs. SiO2 diagram (Figure 3A), volcanic samples fall
within the basaltic andesite-andesite-rhyolite field. The andesite/
basaltic andesite samples are characterized by relatively low SiO2,

FIGURE 3
Geochemical classification diagrams for Cretaceous volcanic rocks from southern Hainan Island: (A) (Na2O+ K2O) vs. SiO2 diagram (after Le Bas
et al., 1986). The green line separating alkaline and sub-alkaline igneous rocks is taken from Irvine and Baragar (1971); (B) SiO2 vs. K2O diagram (after
Peccerillo and Taylor, 1976); (C) A/NK vs. A/CNK diagram (after Maniar and Piccoli, 1989). A/NK: molar Al2O3/[K2O+ Na2O]; A/CNK: molar Al2O3/[CaO
+K2O+Na2O]; and (D)Mg# vs. SiO2 diagram. Annotations: The geochemical data of mid-Cretaceous volcanic rocks in the Lhasa Block are from Ran
et al. (2019) and Zhang et al. (2019a). The geochemical data of those in Zhejiang and Fujian are from Lapierre et al. (1997), Qiu. et al. (1999a), Yu et al.
(2008), Hong (2012), Hong et al. (2013), Yan et al. (2016), Yan et al. (2018), and Li et al. (2017). The geochemical data of volcanic rocks in the Andes Arc are
from Tormey et al. (1995), Kay et al. (2005), Mamani et al. (2008), Mamani et al. (2009), Schiano et al. (2010), Folkes et al. (2011), Garrison et al. (2011),
Pistolesi et al. (2015), Anderson et al. (2017), and Bablon et al. (2020). The geochemical data of volcanic rocks in the Mariana Arc are from Dixon and
Batiza (1979), Hole et al. (1984), Bloomer et al. (1989), Lin et al. (1989), Woodhead (1989), Elliott et al. (1997), Wade et al. (2005), Reagan et al. (2008),
Marske et al. (2010), Stern et al. (2013), Stern et al. (2019), and Klaver et al. (2020).
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Na2O and K2O contents (52.90–59.64 wt%, 2.14–3.14 wt% and
0.94–2.77 wt%). Some basaltic andesites and andesites display
elevated MgO contents as well as high Mg# values [Mg# = 100×
Mg2+/(Mg2+ + TFe2+)]. Thus, they can be classified as high-Mg
andesite according to Kelemen (1995) (54–65 wt% SiO2; >45 Mg#

values) (Figure 3D). The rhyolites posses relatively high SiO2, Na2O
and K2O contents (68.20–78.14 wt%, 2.19–4.05 wt% and
2.69–5.43 wt%). The moderate K2O content suggests that the
volcanics are calc-alkaline or high-K calc-alkaline (Figure 3B).
Relatively high Al2O3 contents (12.05–19.70 wt%) with elevated
A/NK values (1.20–3.12; A/NK = molar Al2O3/[K2O+ Na2O])
and moderate A/CNK values (0.81–1.62; A/CNK = molar Al2O3/
[CaO + K2O+ Na2O]) indicate mid-Cretaceous volcanics are
metaluminous to peraluminous (Figure 3C). These samples
exhibit a geochemical composition similar to the volcanic rocks
from the Andes Arc.

The volcanic samples have total rare earth element (ΣREE)
contents ranging from 83.70 ppm to 231.70 ppm, and obvious
fractionation between light and heavy REEs with (La/Yb)N values
of 6.53–17.90 (Table 1; Figure 4A). The chondrite-normalized REE
patterns show variable negative Eu anomalies. The δEu values
[δEu = 2×EuN/(SmN+GdN)] range from 0.99 to 0.22 as a result
of plagioclase fractionation, while the Eu anomalies of the rhyolites
are more negative (Figure 4A). The primitive mantle-normalized
multi-element diagram (Figure 4A) shows both andesite and
rhyolite samples share features similar to arc igneous rocks, such
as enrichment of LILEs (e.g., Rb, U, K and Pb) and HFSEs (e.g., Nb,
Ta, P and Ti) (Figure 4B). The variable negative Ba and Sr suggest
that there was a relict of plagioclase and hornblende in the magma
source or that these two minerals fractionated during an earlier
magmatic stage. These characteristics are more remarkable in
rhyolites on the primitive mantle-normalized diagram compared
to the andesites in Hainan Island and volcanic rocks in the Andes

Arc (Figure 4; the average geochemical data of volcanic rocks in the
Andes Arc are based on the data from Tormey et al. (1995); Kay et al.
(2005); Mamani et al., 2008; Mamani et al., 2009; Schiano et al.
(2010); Folkes et al. (2011); Garrison et al. (2011); Pistolesi et al.
(2015); Anderson et al. (2017); Bablon et al. (2020)).

5 Discussion

5.1 Magmatic evolution and source of the
mid-Cretaceous volcanic rocks in southern
Hainan Island

The FeO*, MgO, TiO2, Al2O3, P2O5 and CaO contents of
volcanics in southern Hainan Island decrease with increasing
SiO2 contents (Figure 5), but K2O contents increase, similar to
the relationships found in volcanic rocks from the Andes Arc
(Tormey et al., 1995; Kay et al., 2005; Mamani et al., 2008;
Mamani et al., 2009; Schiano et al., 2010; Folkes et al., 2011;
Garrison et al., 2011; Pistolesi et al., 2015; Anderson et al., 2017;
Bablon et al., 2020). The significant linear relationships between
concentrations of the major elements in all samples of the study area
imply that the magmatic sources of basic-intermediate-acid volcanic
rocks are relatively consistent, and the volcanic magmas underwent
similar magmatic evolution processes. The fractionation of dark
minerals, plagioclases and apatites contributed to the decrease in
most of major element contents, such as FeO*, CaO and P2O5. In
addition, Zhou et al. (2015) determined that the 87Sr/86Sr(t) ratios of
volcanics in the Liuluocun Formation range from 0.707532 to
0.7089651, and εNd(t) values range from −4.09 to −2.35. These
narrow isotopic ranges indicate that the mid-Cretaceous magmatic
sources in southern Hainan Island were relatively uniform and close
to an EM-II type source.

FIGURE 4
(A) Chondrite-normalized REE patterns and (B) primitive mantle-normalized trace element spider diagrams for Cretaceous volcanic rocks from
southern Hainan Island. Normalizing values are taken from Sun and McDonough (1989). The REE and trace element data of the Lhasa Block, Zhejiang-
Fujian, the Andes Arc and the Mariana Arc are shown as average values.
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The high La/Yb and Th/La ratios of the volcanic rocks indicate
an arc-typemagmatic source during the mid-Cretaceous in southern
Hainan Island (Figure 6A). The narrow ranges of La/Yb and U/Th
ratios, combined with the significantly elevated Th/Ta and Th/Nb

ratios (Figures 6A, B), suggest that the magmas originated from the
EM-II type source with inputs of continental crust material, as in the
Andes Arc. Liu et al. (2020, 2021) showed that the andesites in
Guangdong and Guangxi, north of Hainan Island, also had similar

FIGURE 5
Selected major element oxides versus SiO2 plots for Cretaceous volcanic rocks from southern Hainan Island. The geochemical data of volcanic
rocks of Liuluo* are from Zhou et al. (2015a).
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geochemical characteristics, and the mid-Cretaceous magmatic
sources were altered by the melt of continental sediments. In
addition, zircon εHf(t) data range from −9.73 to +0.47 (Zhou
et al., 2015a), which is the result of the addition of continental
crust materials to the magmatic source.

The input of continental materials into a magmatic source can
occur during subduction. A large number of mid-Cretaceous
andesites indicate that a subduction tectonic environment
impacted Hainan Island during the Cretaceous. These andesites
exhibit geochemical characteristics like Andean andesites, including
remarkably high La/Yb ratios, high Th/Yb ratios and low Sc/Ni
ratios (Figures 7A, B). These geochemical features also imply that
the western margin of the SCS represented an Andes-type active
continental margin during the Cretaceous period. Additionally, the
presence of negative Eu anomalies, relatively flat chondrite
normalized HREE patterns, low Y contents and low Sr/Y ratios
observed in high-Mg andesites bear resemblance to sanukitic high-
Mg andesites (Kamei et al., 2004; Tatsumi, 2006; Tang and Wang,
2010). These high-Mg andesites are believed to originate from the
mantle peridotite that has undergone metasomatism by melts
derived from subducted slab and sediments (Tatsumi, 2001;
2006). Moreover, the formation of these andesites can be
attributed to ridge subduction tectonics (Tatsumi, 2001; 2006;
Tang and Wang, 2010). At the same time, rhyolites in the study
area have low (Zr + Nb +Ce + Y) values and FeO*/MgO ratios
(Figure 7C), which are similar to I-type or S-type granites that
mainly form under a compressional tectonic setting (Lu and Sang,
2004). The lower Y+Nb values and Rb contents of magmatic rocks
also imply that the rhyolites were formed in the volcanic arc tectonic
environment (Figure 7D; Pearce et al., 1984).

In summary, the geochemical characteristics of the andesites and
rhyolites of southern Hainan Island indicate that the volcanic rocks

were formed in a volcanic arc tectonic setting. The high but relatively
similar Zr contents, combined with the low Ti contents which
exhibited a wide range in values (Figure 8A), not only show that
these volcanic magmas are of the arc type, but also indicate a
magmatic evolution similar to those in Mexico, Ecuador, Chile
and other regions (Pearce and Norry, 1979). Furthermore,
Hainan Island experienced an active continental margin tectonic
setting during the mid-Cretaceous that was an Andes-type active
continental margin. Because of the fluids or melts in subduction
zones, the Th/Yb ratio increases (Figure 8B), leading to enrichment
of the geochemical characteristics due to subduction of volcanic
rocks in the northwestern SCS during the mid-Cretaceous.

5.2 Tectonic setting of the western SCS
margin during the mid-Cretaceous

The Cretaceous tectonics of Hainan Island and its surrounding
areas are often regarded as the southwestern part of the magmatic
belt in the eastern SCB, which resulted from the westward
subduction of the paleo-Pacific Plate (Li et al., 1999; Thuy et al.,
2004; Geng et al., 2006; Yan et al., 2010;Wang et al., 2012; Tang et al.,
2014; Zhou et al., 2015a; Xu et al., 2016; Sun et al., 2017; Yan et al.,
2017; Nong et al., 2021). However, many differences were found by
analyzing the late Mesozoic magmatic activities on Hainan Island
and the eastern SCB as detailed below.

First, the mid-Cretaceous (c.a. 100 Ma) volcanic rocks in the
Zhejiang-Fujian area are characterized as rhyolite-dominated
bimodal volcanic suits, with few records of andesite (Chen et al.,
2008; Li et al., 2014; Liu et al., 2016). In contrast, intermediate acid
volcanic rocks dominate in southern Hainan Island, and andesites
have also been reported in southeastern Guangxi, western

FIGURE 6
(A) Th/Ta vs. La/Yb diagram (after Ernst and Buchan, 2003) and (B) U/Th vs. Th/Nb diagram (after Kohut et al., 2006) for Cretaceous volcanic rocks
from southern Hainan Island. Abbreviations: MORB,mid-ocean ridge basalt; OIB, ocean island basalt; CFB, continental flood basalt; OPB, oceanic plateau
basalt; ARC, subduction zone basalt; Principle mantle reservoirs are: EM I (enriched mantle I), EM II (enriched mantle II), HIMU(“High μ”, μ= 238U/204Pb),
DMM (depleted MORB mantle) and FOZO (focal zone). Additional components are PM (primitive mantle), PSCL (post-Archean subcontinental
lithosphere), and UCC (upper continental crust).
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Guangdong and southern Vietnam, surrounding Hainan Island
(Jiang et al., 2015; Liu et al., 2020; Liu et al., 2021). Besides, there
are contemporaneous diorites reported in Hainan Island (Dilek and
Tang, 2020). Intermediate magmatic activities were strong on the
western margin of the SCS during the mid-Cretaceous. In addition,
rhyolites in Hainan Island contain a small amount of K2O and
(Zr+Nb+Ce+Y) (Figure 3B; Figure 7C), showing volcanic arc
settings (Figure 7D). While some mid-Cretaceous rhyolites in
Zhejiang and Fujian are more alkaline and indicate extensional
settings (Figures 3A, B; Figure 7D), namely, back-arc extensional
environment (Yan et al., 2018; Guo et al., 2021).

Secondly, the rhyolites from Zhejiang and Fujian exhibit higher
temperatures (determined using the method described in Watson
and Harrison, 1983), such as those from Yandangshan
(786°C–864°C, Yan et al., 2016) and Yunshan (861°C–930°C, Yan
et al., 2018). The Paleo-Pacific plate subduction changed from a low-
angle subduction during the Jurassic period to a high-angle

subduction during the Cretaceous (Zhou and Li, 2000; Zhou
et al., 2006). Rhyolites had high zircon-saturation temperatures
in the mantle-upwelling tectonic setting due to the back-arc
extension in Zhejiang and Fujian (Yan et al., 2016; Yan et al.,
2018). However, saturation temperatures of acid volcanic rocks in
southern Hainan Island are much lower, primarily ranging from
746°C–790°C with a temperature outside of this range (808°C) in
only one sample. Thus, the magmatic activities in the southwestern
SCB did not produce rocks with the characteristics of those
experiencing lithospheric extension and high magmatic
temperatures as the result of mantle upwelling, like in the eastern
coastal area of the SCB.

Thirdly, from the central to the coastal areas of the SCB, the age
of magmatic rocks gradually decreases, indicating the magmatic arc
migrated south-eastward during the Yanshanian period (around the
Jurassic-Cretaceous) (Zhou and Li, 2000; Zhou et al., 2006; Li et al.,
2007; Liu et al., 2012; Zhou et al., 2015a). As a result, Cretaceous

FIGURE 7
(A) La/Yb vs. Sc/Ni diagram (after Bailey, 1981) and (B) La/Yb vs. Th/Yb diagram (after Condie, 1986) for Cretaceous andesitic rocks from southern
Hainan Island; (C) FeO*/MgO vs. (Zr+Nb+Ce+Y) diagram (afterWhalen et al., 1987) and (D) Rb vs. (Y+Nb) diagram (after Pearce et al., 1984) for Cretaceous
rhyolitic rocks from southern Hainan Island and its adjacent areas. Annotations: The geochemical data of mid-Cretaceous volcanic rocks in Guangxi and
Guangdong are from Liu et al. (2021) and Jiang et al. (2015). The geochemical data of those in the Lhasa Block are from Ran et al. (2019) and Zhang
et al. (2019a). The geochemical data of those in Zhejiang and Fujian are from Lapierre et al. (1997), Yu et al. (2008), Yan et al., 2016, Yan et al., 2018, Hong
(2012), Hong et al. (2013), Li et al. (2017), and Qiu. et al. (1999a). Abbreviations: FG, fractionated felsic granites, OGT, unfractionated M-, I- and S-type
granites; VAG, volcanic arc granites; syn-COLG, syn-collision granites; WPG, within plate granites; ORG, ocean ridge granites; GG, Guangxi and
Guangdong; LB, Lhasa Block; ZF, Zhejiang and Fujian.
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magmatic activity was concentrated in the eastern coastal area of
Zhejiang and Fujian (Zhou and Li, 2000; Zhou et al., 2006).
According to the retreat model of paleo-Pacific subduction (Zhou
and Li, 2000; Zhou et al., 2006), the magmatic activity of Hainan
Island in the mid-Cretaceous should be significantly weaker than
during the Jurassic, due to its southwestern location in the SCB.
However, the Jurassic strata in Hainan Island are not developed, and
there were no Jurassic volcanic rock records. The exposed area of
Jurassic granitoids is about 572.2 km2, while the Cretaceous
granitoids, mainly concentrated around the ages of 110–90 Ma,
have an exposed area of more than 2900 km2 (Hainan Geological
Survey, 2004; Yichang IGMR and Hainan GS, 2004; Hainan
Geological Survey, 2007). Therefore, the magmatic activities in
the mid-Cretaceous were much stronger than during the Jurassic.

Finally, mid-Cretaceous alkaline granites, containing alkaline
dark minerals, have been found in coastal areas of Zhejiang and
Fujian (Qiu et al., 1996; Qiu et al., 1999b; Qiu et al., 2000; Xiao et al.,
2007; Zhao et al., 2018) (Figure 1B), and have very high Ga/Al values
and (Zr + Ce + Nb + Y) contents. They are typical A-type granites
and provide powerful evidence of an extensional environment in the
eastern part of the SCB, which resulted from the rollback of the
paleo-Pacific Plate or the oblique subduction (Zhou and Li, 2000;
Zhou et al., 2006; Li et al., 2007; Li and Li, 2007; Wong et al., 2009).
In contrast, on Hainan Island and its adjacent areas on the western
margin of the SCS, I- and S-type granitoids are reported widely,
without reports of typical A-type granitoids from the mid-
Cretaceous.

In summary, the western margin of the SCS, where Hainan
Island is located, was not influenced by the paleo-Pacific subduction,
which controlled the tectonic and magmatic evolution of the eastern
SCB in areas such as Zhejiang and Fujian. Previous work has shown
that the subduction of the paleo-Pacific to East Asia in the

Cretaceous mainly affected the area east of Wuyi Mountain
(Figure 1B; Chen et al., 2005; Zhang et al., 2017). Previous
studies (Yan et al., 2014; Hennig et al., 2017; Ye et al., 2018; Guo
et al., 2021) have reported that contemporaneous magmatic records
in the eastern and southern microblocks around Hainan Island,
emphasizing the more western interior of Hainan Island that was
unlikely to be within the subduction range of the paleo-Pacific plate.
At that time, the paleo-Pacific subduction could not have
contributed to the arc-type magmatic activities on Hainan Island
and its adjacent areas, and the western margin of the SCS was not
within the affected range of the paleo-Pacific subduction. In the view
of the fact that the southeastern edge of the Eurasian plate, where
Hainan Island is located, is adjacent to the Tethys tectonic belts to
the west, more attention should be paid to the impact of the Tethys
on the western SCS.

At ca. 100 Ma, the Neotethyan ridge subducted northward, and
upwelling of the hot asthenosphere along the slab window caused
the partial melting of the subducted oceanic slab and mantle wedge,
resulting in strong magmatism (Zhang et al., 2019a; Zhang et al.,
2019b). As a result, adakitic rocks and the high-Mg andesites of this
period were exposed in southeastern Lhasa Terrane (Zhang et al.,
2019a; Zhang et al., 2019b). At similar times on Hainan Island, the
granitoids from Qianjia and Tunchang also show the geochemical
characteristics of adakites, such as high Sr/Y ratios with low Y and
Yb contents (Wang et al., 2012; Sun et al., 2018). Kelemen (1995)
limited the Mg# value of high-Mg andesite to 45, which means that
some andesites of the Liuluocun and Lingkecun Formations are
high-Mg andesite. There were high-Mg andesites-adakitic rocks in
the mid-Cretaceous assemblage on Hainan Island. This mid-
Cretaceous assemblage is also found in Guangxi and Guangdong,
to the north of Hainan Island (Sun et al., 2017; Zhang et al., 2017; Liu
et al., 2020; Liu et al., 2021). In the modern subduction zones, this

FIGURE 8
(A) Ti vs. Zr diagram (after Pearce and Norry, 1979; Pearce et al., 1981) and (B) Th/Yb vs. Nb/Yb diagram (after Pearce and Peate, 1995) for Cretaceous
volcanic rocks from southern Hainan Island and its adjacent areas. Annotations: (A) the blue and red lines represent the Ti-depletion trends of magmatic
rocks fromMexico-Ecuador and Chile, respectively, for amphibole and biotite fractionation. (B) The light green area represents oceanic arcs, and the pink
area represents continental arcs. The legend for (A, B) is consistent with Figure 7. The geochemical data of mid-Cretaceous volcanic rocks from the
Lhasa Block are from Ran et al. (2019) and Zhang et al. (2019a). The geochemical data representing Zhejiang and Fujian are from Lapierre et al. (1997), Qiu
et al. (1999a), Yu et al. (2008), Hong (2012), Hong et al. (2013), Yan et al. (2016), Yan et al. (2018), Li et al. (2017), Guo et al. (2012), and Guo et al. (2021).
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type of assemblage is often related to the subduction of the ocean
ridge (Sajona et al., 2000; Bourdon et al., 2003; Castillo, 2008). The
same assemblage occurs both in the western margin of the SCS and
the eastern Lhasa Terrane and is the same age, which indicates that
the two areas were in the special tectonic setting of the subducting
Neotethyan ridge (Figure 9). Moreover, the basalts in southern
Hainan Island exhibit Nb contents ranging from 9.20–10.79 ppm
(Zhou et al., 2015a), while the Nanxiong basalts (96 Ma) in

Guangdong Province, north of Hainan Island display Nb
contents between 22.61-24.28 ppm (Shu et al., 2004), indicating
their enriched-Nb characteristics. Additionally, the Cretaceous
mafic dikes (101–93 Ma) on Hainan Island contains Nb
concentrations of 12.36–20.22 ppm (Tang et al., 2010), further
supporting the exitence of Nb-enriched basaltic magma in this
region and its surrounding during this time as well as ridge
subduction processes (Wang et al., 2020). During the mid-
Cretaceous period, Neotethyan ridge began to subduct northward
into southern Asia. Consequently, young oceanic slab and
terrigenous sediments melted upon subduction and
metasomatized the mantle wedge (Tatsumi, 2001; Tatsumi, 2006).
As a result of these geological processes occurring simultaneously
across different regions within Southeastern Lhasa Terrane and
Hainan Island high-Mg andesites-adakitic rocks were formed.

Due to the opening of the SCS and subsequent extrusion tectonic
movement in Asia (Tapponnier et al., 1982), Hainan Island is
geographically distant from the Neotethys suture zone located
southwest of Sumatra Island and Borneo Island (Zahirovic et al.,
2016). According to a paleomagnetic study of the Khorat Basin on
the Indochina Block, the collision between India and Asia caused the
Khorat Basin to move 950 ± 150 km southward and rotate clockwise by
16°–17° relative to the SCB (Charusiri et al., 2006). Another study by
Singsoupho et al. (2014) suggests the southern transport was
750–1700 km. Thus, the paleolatitude of the southern margin of the
Indochina Block and the northern margin of the SCS were roughly the
same in the late Mesozoic, leading to the formation of a nearly E-W
trending magmatic belt from Hainan Island to the Lhasa Block.
Cretaceous granitoids are found in many places in the south of this
belt, such as the Xisha Islands, Mekong Basin, South Con Son Basin,
Natuna Islands, Malay Peninsula, and Singapore (Areshev et al., 1992;
Li et al., 1999; Yan et al., 2010; Yan et al., 2014; Oliver et al., 2011; Ng
et al., 2015; Zhu et al., 2017; Gillespie et al., 2019), which also resulted
from the northward subduction of the Neotethys. Considering different
generations of the Tethys Ocean may be characterized as land (islands)
alternating with seas (just as Indonesian Archipelago; Fang, 2002), the
possibility cannot be ruled out that the area of sea affecting the
northwestern part of the SCS was a branch of the Neotethys. This
does not conflict with the tectonic framework of the western margin of
SCS, which was affected by the subduction structure of the Neotethys in
the Cretaceous.

6 Conclusion

(1) The volcanic rocks of southern Hainan Island are an assemblage
of basaltic andesite-andesite-rhyolite, belonging to high-K calc-
alkaline series or calc-alkaline series, with metaluminous-
peraluminous characteristics. The andesites and rhyolites are
enriched in LREEs with positively skewed REE distribution
curves, and negative Eu anomalies of the rhyolites are
obvious. Additionally, they are enriched in LILEs and
depleted in HFSEs.

(2) There are a large number of mid-Cretaceous andesites on
Hainan Island, and acid volcanic rocks formed at low
temperatures. No A-type granite of the same age was found,
indicating the tectonics of Hainan Island were not influenced by
the subduction of the paleo-Pacific Plate in the mid-Cretaceous.

FIGURE 9
Sketched maps of (A) tectonic plate reconstruction at ~100 Ma
and (B) magmatic activities in the study area at ~100 Ma (based on
Royden et al., 2008; Zhang et al., 2017; Zhang et al., 2023).
Annotations: (A) Grey areas show the present location of blocks.
Red lines are estimated positions of subduction zones. Blue lines show
the boundary lines between the paleo-Pacific and the Tethys. (B) The
magma in Zhejiang and Fujian is shown in dark red to show its higher
temperature compared to that in Hainan Island The paleo-Pacific
oceanic plate subducted northwestward (Li et al., 2020), while the
Neothethys subducted northward (Zhang et al., 2023).
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(3) The geochemical characteristics of the mid-Cretaceous
andesites and rhyolites indicate an active continental margin
tectonic setting on Hainan Island. The high-Mg andesites and
adakitic rocks of Hainan Island and its adjacent area can also be
found in the Lhasa Block. During the mid-Cretaceous, the
western margin of the SCS was mainly affected by the
subduction of the Neotethys.
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