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Northeastern Oman is characterized by carbonatite and kimberlite complexes,
which are the ideal samples for studying the relationship between carbonatite and
kimberlite. However, the ages of the Oman kimberlite and carbonatite complexes
are still unknown, which restricts the understanding of the relationship between
carbonatite and kimberlite in Oman. In this study, we use in situ laser ablation
inductively coupled plasma mass spectrometry (LA-ICPMS) to analyze the apatite
from Oman carbonatite, kimberlite, and spessartite. The U–Pb apatite ages are
141.6 ± 6.0 Ma, 137.4 ± 5.2 Ma, and 141.2 ± 6.2 Ma for carbonatite, spessartite (a
kind of calc-alkaline lamprophyre), and kimberlite, respectively. These results
suggest that the carbonatite and kimberlite were emplaced contemporaneously,
followed by calc-alkaline carbonatite (spessartite) emplaced in the Early
Cretaceous. The occurrence of carbonatite, kimberlite, and spessartite
magmatism of Oman was contemporaneous with the time of the Gondwana
breakup during the opening of the Indian Ocean. It is seen that 140 Ma–130 Ma
is one of the strongest global kimberlite abundance peaks of the 250 Ma–50 Ma
kimberlite bloom, which corresponds with the period of the Pangea
supercontinent breakup. The Oman kimberlites and carbonatites are related
to a distal effect of the breakup of the Gondwana portion of the Pangea
supercontinent, which provided a cool, volatile-fluxed decompression-
related circumstance for the formation.
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1 Introduction

Kimberlite and carbonatite magmatism occurred on continental shields worldwide
(Donnelly et al., 2012). Carbonatites are enriched in rare elements, such as niobium and
rare earth elements, and may host deposits of these elements. Kimberlite, however, is a
unique ultramafic rock derived from the deep mantle and a host of diamonds (Mitchell,
1986; Mitchell, 1995; Woolley et al., 1996). Carbonatites and kimberlites are all
volumetrically minor components of continental magmatism, but they are fundamentally
significant for our understanding of the carbon cycle, mantle evolution, and deep melting
events. Studies have demonstrated that both kimberlite and carbonatite are among the
deepest probes in the geochemical cycle (Bizimis et al., 2003; Nowell et al., 2004; Tappe et al.,
2007; Ernst and Bell, 2010; Tappe et al., 2017), and it is imminent that recycling volatile-rich
components from the Earth’s surface into the mantle is required to create the source regions
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for these two magma types (Bell and Simonetti, 2010; Tappe et al.,
2013; Tappe et al., 2017). Kimberlite and carbonatite are commonly
observed at the same place on ancient cratons, which raises the
questions regarding their temporal distribution and origins.
Regarding the view that kimberlite, carbonatite, and lamproite
are genetically related, there are strong opinions both in support
(Gaspar andWyllie, 1984; Haggerty, 1989; Haggerty and Fung, 2006;
Tappe et al., 2008; Smith et al., 2013; Tappe et al., 2013) and against
it (Mitchell, 1979). One school of thought argues that primary
carbonatite melts transform into hybrid carbonated silicate
magmas akin to kimberlites by assimilation of cratonic mantle
material (Tappe et al., 2020), whereas others suggest that
kimberlites are not associated with major carbonatite complexes
(Smith et al., 2013). The primary task in understanding the
relationship between carbonatite and kimberlite is to identify
their emplacement times. Additionally, the ages of carbonatite
and kimberlite also play a significant role in discovering the
linkage between mantle-sourced volatile-rich ultramafic magmas
and tectonic processes (Tappe et al., 2020).

Oman is one of the key regions where the carbonatite and
kimberlite association occurs and offers a good opportunity to study
the kimberlite–carbonatite association. The key to solving these
issues is high-precision emplacement ages. However, unlike
granulite, carbonatite and kimberlite are all SiO2-undersaturated
rocks containing very rare zircon. Although some studies have
reported the U–Pb ages of zircon in carbonatite from Oman, the

origin of these zircon grains is still unknown. Although U–Pb
studies of baddeleyite, perovskite, and apatite from carbonatites
and kimberlites have been reported in other places (e.g., Sun et al.,
2014; Sun et al., 2022 and references therein), such accessory
minerals have not been found and studied in Oman kimberlite
and carbonatite so far. In this study, we use apatite from the Oman
carbonatite, spessartite [one type of calc-alkaline lamprophyre based
on the classification of Rock (1986); Tappe et al. (2005)], and
kimberlite to date their emplacement times, which would be

FIGURE 1
Geologic map of the northeastern Oman margin showing the
location of carbonatite, spessartite, and kimberlite. Modified from Ries
and Shackleton, (1990). The red star represents where the sample is
collected.

FIGURE 2
Photomicrograph of Oman carbonatite (A), spessartite (B), and
kimberlite (C) in this study. Amp, amphibole; phl, phlogopite; pl,
plagioclase; cc, carbonate; apt, apatite; ilm, ilmenite.
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important in understanding the relationship between kimberlite and
carbonatite in Oman in further studies, and the associated tectonic
processes would also be discussed.

2 Geological background

Samples in this study were collected from Batain Nappes in the
eastern OmanMountains (Figure 1). The Batain Basin was situated
at the junction of Arabia, India, Eurasia/Iran, and northeastern
Oman until the opening of the Neotethys in the Early Permian
(Figure 1A). The geology of the Batain Basin (part of the early
Indian Ocean) in eastern Oman is dominated by the Batain
Nappes, which comprise an allochthonous sequence of Permian
to uppermost Cretaceous marine sedimentary and volcanic rocks
(Nasir et al., 2011). The creation of the Batain Basin was led by the
separation of Gondwana in the latest Carboniferous/Early Permian
(Schreuer and Immenhauser, 1999; Hauser et al., 2001; Nasir et al.,
2011), and it is dominated by the Batain Nappes (Nasir et al.,
2011), which show two thrust sheets composed of the latest
Jurassic (~150 Ma) ophiolite and a mid-Cretaceous alkali
basaltic sequence (115 Ma–125 Ma) (Meyer et al., 1996; Peters
and Mercolli, 1998). The Batain Nappes are built by the lower
Permian Qarari Formation, the upper Permian Mathbat
Formation, the Middle Jurassic to Lowermost Cretaceous
Ruwayda Formation, the Oxfordian to Santonian Wahra
Formation, and the Santonian to uppermost Maastrichtian
Fayah Formation (Gnos et al., 1997). Alkaline volcanic rocks
abound within the Wahra and Ruwayda formations, which
reflect an active alkaline sea-floor magmatism that produced
seamount structures and many dispersed extrusive and intrusive
rocks in the Wahra Formation. The UML and carbonatite are
found only within the Wahra Formation, with outcrops spanning
across the entire Batain Plain.

Samples in this study, including carbonatite, kimberlite, and
spessartite, are from Batain Nappes, eastern Oman (Figure 1B).
Carbonatite is associated with alkaline rocks and basalt, and their
wall rock is composed of Triassic limestone. Spessartite is the dyke
cutting through aillikite. Carbonatite (19OMS-83, Figure 2A) is
composed of approximately 70% calcite and dolomite. Accessory
minerals include ilmenite, phlogopite, barite, and apatite. Spessartite
(19OMS-94, Figure 2B) has a porphyroclastic texture with
amphibole and minor phlogopite in the phenocryst. The
groundmass in this sample has calcite flow texture, which has
carbonated plagioclase and minor amphibole, phlogopite,
ilmenite, and barite. Based on the classification of Rock (1986)
and Tappe et al. (2005), spessartite belongs to the calc-alkaline
lamprophyre. Kimberlite (19OMS-97, Figure 2C) contains
megacrysts of serpentinized olivine, garnet, diopside, carbonate
minerals (Fe-rich dolomite and calcite), chromite, ilmenite, and
apatite.

3 Analytical methods

Separated mineral grains of apatite were handpicked, mounted
in epoxy resin, and polished until the centers of the grains were
exposed. Before isotopic analysis, back-scattered electron (BSE)

images were obtained using a JEOL JXA8100 electron
microprobe in order to assess internal compositional variation
and textures and identify potential target sites for U–Pb analyses.

U–Pb isotopic analyses of apatite from three samples (19OMS-
83, 19OMS-94, and 19OMS-97) were performed on an Agilent
7900 ICP-MS instrument (Agilent Technology, Tokyo, Japan)
combined with a 193-nm ArF excimer laser (Geolas HD,
MicroLas Göttingen, Germany) at the State Key Laboratory of
Geological Processes and Mineral Resources, China University of
Geosciences, Wuhan. The laser spot size is 44 μm with a fluence of
8 J/cm2 in this study. Then, the ablated material was transported to
ICP using high-purity argon (makeup gas) and helium (carrier gas)
(Luo et al., 2018a). To enhance accuracy and precision, a trace
amount of water vapor was added before the ablation cell (Luo et al.,
2018b; Luo et al., 2020), and a data processing device, serving as a
fully interactive mercury signal reductant (Hu et al., 2014) and
facilitating signal smoothing and mercury removal, was used in this
laser ablation system to obtain ICP data. The counting times were
20 s for background signal acquisition and 50 s after ablation for
each single-spot analysis. MAD apatite was used as the external
standard to correct the Pb/U fractionation and instrumental mass
discrimination. All initial common Pb were corrected using
VizualAge in Iolite software. Uncertainties on individual analyses
and pooled ages are reported at the 2s level. During the analytical
sessions, the Otter Lake apatite has been repeatedly analyzed as
unknown, and it yielded a lower intercept age of 916 ± 19 Ma
(MSWD=23, n=30), which is consistent with its reference age (913 ±
7, Barfod et al., 2005).

4 U–Pb ages of apatite

The U–Pb isotope data on apatite grains from Oman kimberlite,
carbonatite, and spessartite are listed in Table 1 and shown in
Figure 3. As shown by LA-ICPMS data, the apatite grains have high
U (3.1–47.8 ppm) and Th (16.3–366 ppm) contents that are
favorable for U–Pb age determinations. Apatite grains from all
three samples show a large Pb isotopic variation and less Pb loss.
On the Tera–Wasserburg diagram, data points define a discordia
line with a lower intercept age of 141.6 ± 6.0 Ma (MSWD = 0.71, n =
20) for carbonatite, 137.4 ± 5.2 Ma (MSWD = 1.5, n = 20) for
spessartite, and 141.2 ± 6.2 Ma (MSWD=1.15, n = 20) for kimberlite.
Therefore, these data indicate that three samples of apatite from the
Oman carbonatite, spessartite, and kimberlite yield almost the same
U-Pb ages of ~140 Ma.

5 Discussion

Previous studies used zircon and phlogopite grains to date
carbonatite (Peters et al., 2001), ultramafic lamprophyric sills,
and glimmerite xenoliths within the aillikite (Nasir et al., 2008)
within the Batain Nappes, northeastern Oman. Ar-Ar ages of
phlogopite in ultramafic lamprophyric sills and glimmerite
xenoliths within the aillikite are 154 Ma–162 Ma (Nasir et al.,
2008) and 150 ± 2 Ma, respectively (Peters et al., 2001). Zircon
from carbonatites produced a weighted average 206Pb/238U age of
137 ± 1 Ma (Nasir et al., 2011). However, the analyzed mineral,
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TABLE 1 U-Pb isotopic compositions of apatites from Oman rocks.

Sample
No.

GPS Rock
type

206Pb/
238U

2SE 207Pb/
206Pb

2SE U
(ppm)

2SE Th
(ppm)

2SE Pb
(ppm)

2SE rho
207Pb/
206Pb
v

238U/
206Pb

rho
206Pb/
238U v
207Pb/
235U

19OMS83-1 22°29’44.34",
59°41’46.35"

Carbonatite 0.1259 0.0025 0.5347 0.0135 16.4 0.2 56.7 2.1 13.4 0.3 0.5411 0.2782

19OMS83-2 Carbonatite 0.1605 0.0025 0.5709 0.0124 15.6 0.2 53.5 0.8 16.7 0.3 0.5584 0.2161

19OMS83-3 Carbonatite 0.2621 0.0039 0.5887 0.0103 20.4 0.4 250.8 2.9 40.4 0.6 0.5530 0.3468

19OMS83-4 Carbonatite 1.2270 0.0524 0.6314 0.0057 13.1 0.7 366.0 5.0 118.4 1.9 0.1010 0.9765

19OMS83-5 Carbonatite 0.1127 0.0025 0.5313 0.0102 40.0 0.4 161.5 5.0 30.1 0.5 0.3768 0.6532

19OMS83-6 Carbonatite 0.1246 0.0019 0.5378 0.0109 28.4 0.5 72.2 1.3 22.1 0.5 0.6338 0.1908

19OMS83-7 Carbonatite 0.2007 0.0046 0.5798 0.0180 8.53 0.2 34.9 0.6 11.3 0.3 0.7160 0.0480

19OMS83-8 Carbonatite 0.1290 0.0032 0.5338 0.0159 13.7 0.4 66.7 1.8 11.5 0.3 0.3901 0.3989

19OMS83-9 Carbonatite 0.0809 0.0015 0.4800 0.0108 43.4 1.0 137.7 3.0 20.5 0.5 0.6762 0.2507

19OMS83-10 Carbonatite 0.1025 0.0015 0.5109 0.0116 35.1 0.7 127.7 2.4 22.5 0.5 0.6322 0.0055

19OMS83-11 Carbonatite 0.0873 0.0013 0.4920 0.0113 36.2 0.8 226.2 5.5 21.6 0.5 0.6888 -0.0326

19OMS83-12 Carbonatite 0.1018 0.0017 0.5129 0.0118 28.7 0.5 88.8 1.7 18.3 0.4 0.4920 0.2407

19OMS83-13 Carbonatite 0.1280 0.0023 0.5391 0.0143 24.1 0.3 71.8 1.3 19.6 0.4 0.6289 0.0748

19OMS83-14 Carbonatite 0.0898 0.0019 0.4982 0.0145 22.5 0.2 73.3 0.7 12.1 0.2 0.4840 0.2879

19OMS83-15 Carbonatite 0.1817 0.0038 0.5648 0.0119 15.6 0.5 87.0 2.8 18.7 0.6 0.5672 0.3992

19OMS83-16 Carbonatite 0.1036 0.0017 0.5162 0.0131 27.3 0.5 74.0 1.5 18.7 0.4 0.7165 -0.0629

19OMS83-17 Carbonatite 0.1224 0.0034 0.5179 0.0145 12.8 0.5 52.5 0.7 11.1 0.2 0.4577 0.5280

19OMS83-18 Carbonatite 0.2706 0.0029 0.5907 0.0080 30.3 0.6 303.4 5.4 66.7 1.2 0.4422 0.3640

19OMS83-19 Carbonatite 0.0862 0.0022 0.4844 0.0111 39.9 2.2 126.5 5.4 22.5 0.8 0.0148 0.7522

19OMS83-20 Carbonatite 0.2340 0.0041 0.5880 0.0131 14.8 0.3 145.6 3.2 28.8 0.6 0.5804 0.2277

19OMS94-01 22°10’14.36",59°38’13.94" Spessartine 0.0347 0.0016 0.3607 0.0328 14.6 0.7 99.5 5.1 1.8 0.1 0.5643 0.0407

19OMS94-02 Spessartine 0.0379 0.0019 0.3684 0.0277 16.2 0.3 110.9 2.3 2.2 0.1 0.3322 0.3430

19OMS94-03 Spessartine 0.0381 0.0018 0.4007 0.0315 13.5 0.4 86.7 2.2 1.8 0.1 0.5713 0.1287

19OMS94-04 Spessartine 0.0341 0.0014 0.3209 0.0218 22.0 0.4 141.3 1.6 2.5 0.1 -0.0497 0.6631

19OMS94-05 Spessartine 0.0315 0.0015 0.2730 0.0225 20.9 0.8 135.1 6.5 2.3 0.1 0.4291 0.2317

19OMS94-06 Spessartine 0.0427 0.0024 0.4643 0.0393 13.6 1.1 96.7 8.6 2.1 0.2 0.2727 0.4630

19OMS94-07 Spessartine 0.0450 0.0039 0.4425 0.0629 20.6 1.9 140.2 13.2 3.4 0.1 -0.2568 0.5623

19OMS94-08 Spessartine 0.0375 0.0022 0.3742 0.0333 12.8 0.7 89.9 6.2 1.7 0.1 0.3938 0.3632

19OMS94-09 Spessartine 0.0474 0.0053 0.4733 0.0880 22.2 0.5 153.8 2.6 3.8 0.4 -0.0689 0.5210

19OMS94-10 Spessartine 0.1157 0.0143 0.6444 0.0375 11.6 0.3 64.3 1.7 4.2 0.5 -0.2379 0.9490

19OMS94-11 Spessartine 0.0684 0.0086 0.4936 0.0409 17.8 0.7 112.2 5.3 3.8 0.4 -0.6286 0.9367

19OMS94-12 Spessartine 0.0315 0.0011 0.2664 0.0178 27.3 0.7 183.1 3.8 3.1 0.1 0.1808 0.2997

19OMS94-13 Spessartine 0.0340 0.0014 0.3228 0.0214 18.3 0.9 123.9 5.3 2.1 0.1 0.3962 0.2854

19OMS94-14 Spessartine 0.0339 0.0016 0.3256 0.0272 17.3 0.5 107.6 5.1 2.0 0.1 0.2389 0.2461

19OMS94-15 Spessartine 0.0312 0.0013 0.2946 0.0238 22.8 0.7 151.3 4.9 2.4 0.1 0.5590 -0.1484

19OMS94-16 Spessartine 0.0428 0.0040 0.3866 0.0410 17.8 1.8 119.5 12.7 2.3 0.2 -0.3766 0.8181

19OMS94-17 Spessartine 0.0480 0.0028 0.4337 0.0256 19.0 1.4 130.0 10.7 3.1 0.2 -0.0075 0.7189

(Continued on following page)
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phlogopite, is not a suitable mineral for Ar-Ar geochronology due to
the existence of excess Ar. As for the zircons, studies suggested that
some zircons in mantle-sourced rocks, such as kimberlite, may be of
crustal origin extracted by host magma, which would yield a crustal
age rather than an emplaced age (Sun, 2022). Moreover, the age of
the kimberlite from Oman has not been studied so far.

Apatite crystallizes directly from the magmas and contains enough
U for precise Pb isotopic analyses, which provides an excellent
opportunity to remove the uncertainties in the determination of the
age of the Oman kimberlite and carbonatite, thus making the U–Pb age
determination reliable (Wu et al., 2013). The apatite U–Pb ages indicate
that carbonatite and kimberlite were contemporaneous with a weighted
average of 141Ma, which is relatively earlier than the calc-alkaline
lamprophyre (spessartite; 137Ma).We consider the ages in this study to
be the best estimate of the emplacement time of kimberlite, carbonatite,
and calc-alkaline lamprophyre in BatainNappes fromOman.Hence, the
kimberlite and carbonatite fromOman emplaced at 141Ma, followed by
calc-alkaline carbonatite (spessartite) emplaced at 137Ma, suggesting a

complexmagmatic plumbing system existed beneath the Batain Basin of
the Oman field. The results of this study are significant in understanding
the relationship between kimberlite and carbonatite associations in
Oman, which can extend to a global scale in further studies.

The global kimberlite record suggests that approximately 80% of
known occurrences are linked to breakup stages of supercontinents,
and the others are collision-induced (Jelsma et al., 2009; Tappe et al.,
2018; Zhang et al., 2019). The Indian Ocean was a stepwise breakup
of east and west Gondwana at 157 Ma, and a breakup of east
Gondwana at 130 Ma (Gnos and Perrin, 1996), which is
registered only in the Batain Basin of Oman (Hauser et al.,
2001). Paleomagnetic data from a previous study also showed
that the eastern Oman oceanic lithosphere was formed at
latitudes 38° ± 12°S around 150 Ma during the active breakup of
Gondwana (Gnos and Perrin, 1996). So it appears that the
emplacement of the Early Cretaceous kimberlite and carbonatite
magmatism (~140 Ma) in Oman is related to the breakup of
Gondwana, and kimberlite and carbonatite occurred during the

TABLE 1 (Continued) U-Pb isotopic compositions of apatites from Oman rocks.

Sample
No.

GPS Rock
type

206Pb/
238U

2SE 207Pb/
206Pb

2SE U
(ppm)

2SE Th
(ppm)

2SE Pb
(ppm)

2SE rho
207Pb/
206Pb
v

238U/
206Pb

rho
206Pb/
238U v
207Pb/
235U

19OMS94-18 Spessartine 0.0341 0.0022 0.2986 0.0327 19.9 0.4 131.0 2.1 2.4 0.1 0.3018 0.3571

19OMS94-19 Spessartine 0.0309 0.0012 0.2504 0.0157 27.3 0.3 179.3 1.9 2.8 0.1 0.5313 0.1185

19OMS94-20 Spessartine 0.0430 0.0034 0.3977 0.0380 14.7 1.1 94.4 7.3 2.0 0.2 -0.1359 0.7582

19OMS97-1 22°8’57.56",59°37’48.29" Kimberlite 0.0424 0.0027 0.3444 0.0380 4.61 0.1 43.0 1.3 1.25 0.1 0.5867 0.1443

19OMS97-2 Kimberlite 0.0648 0.0025 0.4302 0.0235 10.7 0.4 16.3 0.4 3.03 0.1 0.6054 0.1823

19OMS97-3 Kimberlite 0.0429 0.0028 0.3390 0.0416 4.54 0.2 41.4 1.6 1.23 0.1 0.5136 -0.0081

19OMS97-4 Kimberlite 0.0552 0.0010 0.3822 0.0098 47.8 0.9 239.3 4.6 14.3 0.3 0.6845 0.0935

19OMS97-5 Kimberlite 0.0414 0.0028 0.3285 0.0333 4.64 0.1 43.1 0.9 1.31 0.1 0.6017 0.0678

19OMS97-6 Kimberlite 0.0863 0.0019 0.4678 0.0148 15.2 0.3 41.6 2.0 8.05 0.2 0.5956 0.0685

19OMS97-7 Kimberlite 0.4154 0.0393 0.5913 0.0213 3.80 0.3 106.0 10.4 11.6 0.3 0.0541 0.9154

19OMS97-8 Kimberlite 0.0453 0.0027 0.3258 0.0300 3.78 0.1 42.6 0.4 1.14 0.1 0.6512 0.0843

19OMS97-9 Kimberlite 0.0483 0.0034 0.3603 0.0370 3.65 0.1 39.2 0.5 1.13 0.1 0.3637 0.4123

19OMS97-10 Kimberlite 0.0408 0.0027 0.3188 0.0408 4.54 0.1 47.6 1.6 1.15 0.1 0.3246 -0.1179

19OMS97-11 Kimberlite 0.0572 0.0014 0.4149 0.0167 22.7 0.6 61.5 5.4 7.59 0.2 0.5914 0.0153

19OMS97-12 Kimberlite 0.0405 0.0028 0.2771 0.0351 4.48 0.2 44.7 1.2 1.16 0.1 0.7688 0.0307

19OMS97-13 Kimberlite 0.0390 0.0024 0.2711 0.0271 4.51 0.1 48.7 0.5 1.28 0.1 0.7087 -0.0512

19OMS97-14 Kimberlite 0.0676 0.0021 0.4236 0.0192 9.72 0.2 22.8 0.4 3.16 0.1 0.6419 -0.0230

19OMS97-15 Kimberlite 0.0388 0.0026 0.2850 0.0312 5.11 0.1 53.7 0.6 1.31 0.1 0.5461 0.0548

19OMS97-16 Kimberlite 0.0395 0.0022 0.2987 0.0305 5.13 0.1 54.3 0.6 1.12 0.1 0.5808 -0.0279

19OMS97-17 Kimberlite 0.0415 0.0025 0.3439 0.0360 3.83 0.1 41.2 1.1 0.92 0.1 0.4180 0.0863

19OMS97-18 Kimberlite 0.0849 0.0063 0.4458 0.0191 24.0 3.3 105.6 9.3 9.78 0.2 -0.6462 0.9318

19OMS97-19 Kimberlite 0.1719 0.0044 0.5393 0.0170 8.81 0.2 49.3 0.7 9.72 0.2 0.4769 0.3060

19OMS97-20 Kimberlite 0.0541 0.0043 0.3706 0.0465 3.06 0.2 31.2 1.8 0.75 0.1 0.4751 0.3121
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opening of the Indian Ocean (Peters and Mercolli, 1998). The most
critical petrological variables enabling the formation of kimberlite
and CO2-rich ultramafic magmatism are the availability of oxidized
CHO volatile species such as CO2 and H2O (Yaxley et al., 2017), as
well as the lower temperatures of Earth’s upper mantle (Green and
Falloon, 1998; Tappe et al., 2018). Thus, the breaking up of

Gondwana, which releases pressure, provided a relatively cool
and volatile-fluxed circumstance for the formation of Oman
kimberlite and carbonatite melts.

Mesozoic–Cenozoic kimberlite between 250 Ma and 50Ma is the
most remarkable kimberlite bloom globally, andmore than 60% of the
world’s known kimberlite clusters on every continent were emplaced
during this bloom. It was observed that 140 Ma–130 Ma is one of the
strongest global kimberlite abundance peaks of this bloom (Figure 8 in
Tappe et al., 2018), which corresponds to the period of the Pangea
supercontinent breakup (Jelsma et al., 2009). By that time, the Indian
Ocean had opened widely and the Gondwana portion of Pangea was
separated into West and East Gondwanaland. The Early Cretaceous
(~140 Ma) Oman kimberlite, carbonatite, and spessartite were just
formed under the tectonic background of the Pangea breakup.

6 Conclusion

Apatite U–Pb age dating implies that the Oman carbonatite,
kimberlite, and spessartite are broadly coeval in the Early Cretaceous
(137 Ma–140 Ma). The occurrence of carbonatite, kimberlite, and
spessartite magmatism in Oman was contemporaneous with the
time of the Gondwana breakup during the opening of the Indian
Ocean. It was observed that 140 Ma–130 Ma is one of the strongest
global kimberlite abundance peaks of the 250 Ma–50 Ma kimberlite
bloom, which corresponds to the period of the Pangea
supercontinent breakup. The breaking up of the Gondwana
portion of the Pangea supercontinent provided a cool, volatile-
fluxed decompression-related circumstance for the formation of
Oman kimberlite and carbonatite melts.
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