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Computational aspects of the
equivalent-layer technique:
review

Vanderlei C. Oliveira Junior1, Diego Takahashi1, André L. A. Reis2

and Valéria C. F. Barbosa1*
1Observatório Nacional, Department of Geophysics, Rio de Janeiro, Brazil, 2Department of Applied
Geology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Equivalent-layer technique is a powerful tool for processing potential-field
data in the space domain. However, the greatest hindrance for using the
equivalent-layer technique is its high computational cost for processing massive
data sets. The large amount of computer memory usage to store the full
sensitivity matrix combined with the computational time required for matrix-
vector multiplications and to solve the resulting linear system, are the main
drawbacks that made unfeasible the use of the equivalent-layer technique for
a long time. More recently, the advances in computational power propelled the
development of methods to overcome the heavy computational cost associated
with the equivalent-layer technique. We present a comprehensive review of the
computation aspects concerning the equivalent-layer technique addressing how
previous works have been dealt with the computational cost of this technique.
Historically, the high computational cost of the equivalent-layer technique
has been overcome by using a variety of strategies such as: moving data-
window scheme, column- and row-action updates of the sensitivity matrix,
reparametrization, sparsity induction of the sensitivity matrix, iterative methods
using the full sensitivity matrix, iterative deconvolution by using the concept
of block-Toeplitz Toeplitz-block (BTTB) matrices and direct deconvolution. We
compute the number of floating-point operations of some of these strategies
adopted in the equivalent-layer technique to show their effectiveness in reducing
the computational demand. Numerically, we also address the stability of some
of these strategies used in the equivalent-layer technique by comparing with
the stability via the classic equivalent-layer technique with the zeroth-order
Tikhonov regularization. We show that even for the most computationally
efficient methods, which can save up to 109 flops, the stability of the linear
system is maintained. The two most efficient strategies, iterative and direct
deconvolutions, can process large datasets quickly and yield good results.
However, direct deconvolution has some drawbacks. Real data from Carajás
Mineral Province, Brazil, is also used to validate the results showing a potential
field transformation.
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1 Introduction

The equivalent-layer technique has been used by exploration
geophysicists for processing potential-field data since the late
1960s (Dampney, 1969). This technique is based on a widely
accepted principle, which states that a discrete set of observed
potential-field data due to 3D sources can be approximated
by that due to a discrete discrete set of virtual sources (such
as point masses, dipoles, prisms, doublets). From a theoretical
point of view, the equivalent-layer technique is grounded on
potential theory (Kellogg, 1967) and consists in considering that the
potential field data can be approximated by a linear combination
of harmonic functions describing the potential field due to the
virtual sources. These sources, commonly called equivalent sources,
are arranged on a layer with finite horizontal dimensions and
located below the observations. In the classical approach, a linear
inverse problem is solved to estimate the physical property of
each equivalent source subject to fit the observations. Then, the
estimated physical-property distribution on the equivalent layer is
used to accomplish the desired potential-field transformation (e.g.,
interpolation, upward/downward continuation, reduction to the
pole). The later step is done by multiplying the estimated physical-
property distribution by the matrix of Green’s functions associated
with the desired potential-field transformation.

Because the linear inverse problem to be solved in the
equivalent-layer technique is set up with a full sensitivity matrix, its
computational cost strongly depends on the number of potential-
field observations and can be very inefficient for dealing with
massive data sets. To overcome this problem, computationally
efficient methods based on equivalent-layer technique have arose
in the late 1980s. This comprehensive review discusses specific
strategies aimed at reducing the computational cost of the
equivalent-layer technique. These strategies are addressed in the
following articles: Leão and Silva (1989); Cordell (1992); Xia et al.
(1993); Mendonça and Silva (1994); Guspí and Novara (2009);
Li and Oldenburg (2010); Oliveira Jr. et al. (2013); Siqueira et al.
(2017); Jirigalatu and Ebbing (2019); Takahashi et al. (2020, 2022)
Mendonça (2020); and Soler and Uieda (2021);

To our knowledge, the first method towards improving the
efficiency was proposed by Leão and Silva (1989), who used an
overlapping moving-window scheme spanning the data set. The
strategy adopted in Leão and Silva (1989) involves solving several
smaller, regularized linear inverse problems instead of one large
problem. This strategy uses a small data window and distributes
equivalent sources on a small regular grid at a constant depth below
the data surface, with the sources’ window extending beyond the
boundaries of the data window. Because of the spatial layouts of
observed data and equivalent sources in Leão and Silva (1989), the
small sensitivity submatrix containing the coordinates of the data
and equivalent sourceswithin awindow remains constant for all data
windows. This holds true regardless of the specific locations of the
data and equivalent sources within each window. For each position
of the data window, this scheme consists in computing the processed
field at the center of the data window only, and the next estimates of
the processed field are obtained by shifting the data window across
the entire dataset. More recently, Soler and Uieda (2021) extended
the method introduced by Leão and Silva (1989) to accommodate
irregularly spaced data collected on a non-flat surface. Unlike Leão

and Silva (1989), in the generalization proposed by Soler and Uieda
(2021), the sensitivity submatrix that includes the coordinates of the
data and equivalent sources needs to be computed for each window.
Soler and Uieda (2021) developed a computational approach to
further enhance the efficiency of the equivalent-layer technique
by combining two strategies. The first one—the block-averaging
source locations—reduces the number of model parameters and the
second strategy—the gradient-boosted algorithm—reduces the size
of the linear system to be solved by iteratively fitting the equivalent
sourcemodel along overlapping windows. It is worth noting that the
equivalent-layer strategy of using a moving-window scheme either
in Leão and Silva (1989) or in Soler and Uieda (2021) is similar to
discrete convolution.

As another strategy to reduce the computational workload
of the equivalent-layer technique, some authors have employed
column- and row-action updates, which are commonly applied
to image reconstruction methods (e.g., Elfving et al., 2017). These
methods involve iterative calculations of a single column and a single
row of the sensitivity matrix, respectively. Following the strategy
column-action update, Cordell (1992) proposed a computational
method in which a single equivalent source positioned below
a measurement station is iteratively used to compute both the
predicted data and residual data for all stations. In Cordell’s
method, a single column of the sensitivity matrix is calculated per
iteration, meaning that a single equivalent source contributes to data
fitting in each iteration. Guspí and Novara (2009) further extended
Cordell’s method by applying it to scattered magnetic observations.
Following the strategy of column-action update, Mendonça and
Silva (1994) developed an iterative procedure where one data point
is incorporated at a time, and a single row of the sensitivity matrix
is calculated per iteration. This strategy adopted by Mendonça and
Silva (1994) is known as equivalent data concept. This concept is
based on the principle that certain data points within a dataset are
redundant and, as a result, do not contribute to the final solution
On the other hand, there is a subset of observations known as
equivalent data, which effectively contributes to the final solution
and fits the remaining redundant data. In their work,Mendonça and
Silva (1994) adopted an iterative approach to select a substantially
smaller subset of equivalent data from the original dataset.

The next strategy involves reparametrizing the equivalent layer
with the objective of solving a smaller linear inverse problem by
reducing the dimension of the model space. Oliveira Jr. et al. (2013)
reduced the model parameters by approximating the equivalent-
source layer by a piecewise-polynomial function defined on a set
of user-defined small equivalent-source windows. The estimated
parameters are the polynomial coefficients for eachwindow and they
are much smaller than the original number of equivalent sources.
By using the subspace method, Mendonça (2020) reparametrizes
the equivalent layer, which involves reducing the dimension of the
linear system from the original parameter-model space to a lower-
dimensional subspace. The subspace bases span the parameter-
model space and they are constructed by applying the singular value
decomposition to the matrix containing the gridded data.

Following the strategy of sparsity induction, Li and Oldenburg
(2010) transformed the full sensitivitymatrix into a sparse one using
orthonormal compactly supported wavelets. Barnes and Lumley
(2011) proposed an alternative approach to introduce sparsity based
on the use of quadtree discretization to group equivalent sources far
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from the computation points. Those authors explore the induced
sparsity by using specific iterative methods to solve the linear
system.

The strategy named iterative methods estimates iteratively the
parameter vector that represents a distribution over an equivalent
layer. Xia and Sprowl (1991) and Xia et al. (1993) have developed
efficient iterative algorithms for updating the distribution of physical
properties within the equivalent layer in the wavenumber and
space domains, respectively. Specifically, in Xia and Sprowl’s (1991)
method the physical-property distribution is updated by using the
ratio between the squared depth to the equivalent source and
the gravitational constant multiplied by the residual between the
observed and predicted observation at the measurement station.
Siqueira et al. (2017) developed an iterative solution where the
sensitivity matrix is transformed into a diagonal matrix with
constant terms through the use of the excess mass criterion and of
the positive correlation between the observed gravity data and the
masses on the equivalent layer. The fundamentals of the Siqueira
et al.’s method is based on the Gauss’ theorem (e.g., Kellogg, 1967,
p. 43) and the total excess of mass (e.g., Blakely, 1996, p. 60). All
these iterative methods use the full and dense sensitivity matrix to
calculate the predicted data and residual data in the whole survey
data per iteration. Hence, the iterative methods proposed by Xia
and Sprowl (1991), Xia et al. (1993) and Siqueira et al. (2017) neither
compress nor reparametrize the sensitivity matrix. Jirigalatu and
Ebbing (2019) also proposed an iterative equivalent layer that uses
the full and dense sensitivity matrix. However, in their approach,
Jirigalatu and Ebbing (2019) efficiently compute the predicted
data and residual data for the entire survey per iteration in the
wavenumber domain.

Following the strategy of the iterative deconvolution,
Takahashi et al. (2020, 2022) developed fast and effective equivalent-
layer techniques for processing, respectively, gravity and magnetic
data by modifying the forward modeling to estimate the physical-
property distribution over the equivalent layer through a 2D discrete
fast convolution. These methods took advantage of the Block-
Toeplitz Toeplitz-block (BTTB) structure of the sensitivity matrices,
allowing them to be calculated by using only their first column.
In practice, the forward modeling uses a single equivalent source,
which significantly reduces the required RAMmemory.

The method introduced by Takahashi et al. (2020, 2022) can be
reformulated to eliminate the need for conjugate gradient iterations.
This reformulation involves employing a direct deconvolution
approach (e.g., Aster et al., 2019, p. 220) with Wiener filter (e.g.,
Gonzalez and Woods, 2002, p. 263).

Here, we present a comprehensive review of diverse strategies to
solve the linear system of the equivalent layer alongside an analysis
of the computational cost and stability of these strategies. To do
this analysis, we are using the floating-point operations count to
evaluate the performance of a selected set of methods (e.g., Leão and
Silva (1989); Cordell (1992); Oliveira Jr. et al. (2013); Siqueira et al.
(2017); Mendonça (2020); Takahashi et al. (2020); Soler and Uieda
(2021); and direct deconvolution). To test the stability, we are using
the linear system sensitivity to noise as a comparison parameter
for the fastest of these methods alongside the classical normal
equations. A potential-field transformation will also be used to
evaluate the quality of the equivalent sources estimation results using
both synthetic and real data from Carajás Mineral Province, Brazil.

In the following sections, we will address the theoretical
bases of the equivalent-layer technique, including aspects such
as the sensitivity matrix, layer depth and spatial distribution
and the total number of equivalent sources. Then, we will
explore the general formulation and solution of the linear inverse
problem for the equivalent-layer technique, including discussions
on linear system solvers. Additionally, we will quantify the
required arithmetic operations for a given equivalent-layer method,
assessing the number of floating-point operations involved. Next,
we will evaluate the stability of the estimated solutions obtained
from applying specific equivalent-layer methods. Finally, we
will delve into the computational strategies adopted in the
equivalent-layer technique for reducing computational costs. These
strategies encompass various approaches, such as the moving data-
window scheme, column-and row-action updates of the sensitivity
matrix, reparametrization, sparsity induction of the sensitivity
matrix, iterative methods using the full sensitivity matrix, iterative
deconvolution using the concept of block-Toeplitz Toeplitz-block
(BTTB) matrices, and direct deconvolution.

2 Fundamentals

Let d be a D× 1 vector, whose ith element di is the observed
potential field at the position (xi,yi,zi), i ∈ {1:D}, of a topocentric
Cartesian system with x, y and z-axes pointing to north, east
and down, respectively. Consider that di can be satisfactorily
approximated by a harmonic function

fi =
P

∑
j=1

gij pj , i ∈ {1:D} , (1)

where, pj represents the scalar physical property of a virtual source
(i.e., monopole, dipole, prism) located at (xj,yj,zj), j ∈ {1:P} and

gij ≡ g(xi − xj,yi − yj,zi − zj) , zi <min{zj} , ∀i ∈ {1:D} , (2)

is a harmonic function, where min{zj} denotes the minimum zj,
or the vertical coordinate of the shallowest virtual source. These
virtual sources are called equivalent sources and they form an
equivalent layer. In matrix notation, the potential field produced by
all equivalent sources at all points (xi,yi,zi), i ∈ {1:D}, is given by:

f = Gp, (3)

where p is a P× 1 vector with jth element pj representing the scalar
physical property of the jth equivalent source andG is aD× Pmatrix
with element gij given by Eq. 2.

The equivalent-layer technique consists in solving a linear
inverse problem to determine a parameter vector p leading to a
predicted data vector f (Eq. 3) sufficiently close to the observed data
vector d, whose ith element di is the observed potential field at
(xi,yi,zi).Thenotion of closeness is intrinsically related to the concept
of vector norm (e.g., Golub and Van Loan, 2013, p. 68) or measure
of length (e.g., Menke, 2018, p. 41). Because of that, almost all
methods for determining p actually estimate a parameter vector p̃
minimizing a length measure of the difference between f and d (see
Subsection 3.1). Given an estimate p̃, it is then possible to compute
a potential field transformation

t = Ap̃, (4)
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where t is a T× 1 vector with kth element tk representing the
transformed potential field at the position (xk,yy,zk), k ∈ {1:T}, and

akj ≡ a(xk − xj,yk − yj,zk − zj) , zk <min{zj} , ∀k ∈ {1:T} , (5)

is a harmonic function representing the kj-th element of the T× P
matrix A.

2.1 Spatial distribution and total number of
equivalent sources

There is no well-established criteria to define the optimum
number P or the spatial distribution of the equivalent sources.
We know that setting an equivalent layer with more (less) sources
than potential-field data usually leads to an underdetermined
(overdetermined) inverse problem (e.g., Menke, 2018, p. 52–53).
Concerning the spatial distribution of the equivalent sources, the
only condition is that theymust rely on a surface that is located below
and does not cross that containing the potential field data Soler and
Uieda (2021) present a practical discussion about this topic.

From a theoretical point of view, the equivalent layer
reproducing a given potential field data set cannot cross the true
gravity or magnetic sources. This condition is a consequence of
recognizing that the equivalent layer is essentially an indirect
solution of a boundary value problem of potential theory (e.g.,
Roy, 1962; Zidarov, 1965; Dampney, 1969; Li et al., 2014; Reis et al.,
2020). In practical applications, however, there is no guarantee
that this condition is satisfied. Actually, its is widely known from
practical experience (e.g., Gonzalez et al., 2022) that the equivalent-
layer technique works even for the case in which the layer cross the
true sources.

Regarding the depth of the equivalent layer, Dampney (1969)
proposed a criterion based on horizontal data sampling, suggesting
that the equivalent-layer depth should be between two and six
times the horizontal grid spacing, considering evenly spaced data.
However, when dealing with a survey pattern that has unevenly
spaced data, Reis et al. (2020) adopted an alternative empirical
criterion. According to their proposal, the depth of the equivalent
layer should range from two to three times the spacing between
adjacent flight lines. The criteria of Dampney (1969) and Reis et al.
(2020) are valid for planar equivalent layers. Cordell (1992) have
proposed and an alternative criterion for scattered data that leads
to an undulating equivalent layer. This criterion have been slightly
modified by Guspí et al. (2004), Guspí and Novara (2009) and
Soler and Uieda (2021), for example, and consists in setting one
equivalent source below each datum at a depth proportional to the
horizontal distance to the nearest neighboring data points. Soler
and Uieda (2021) have compared different strategies for defining the
equivalent sources depth for the specific problem of interpolating
gravity data, but they have not found significant differences between
them. Regarding the horizontal layout, Soler and Uieda (2021)
proposed the block-averaged sources locations in which the survey
area is divided into horizontal blocks and one single equivalent
source is assigned to each block. The horizontal coordinates of the
single source in a given block is defined by the average horizontal
coordinates of the observation points at the block. According to
Soler and Uieda (2021), this block-averaged layout may prevent

aliasing of the interpolated values, specially when the observations
are unevenly sampled. This strategy also reduces the number of
equivalent sources without affecting the accuracy of the potential-
field interpolation. Besides, it reduces the computational load for
estimating the physical property on the equivalent layer.

2.2 Matrix G

Generally, the harmonic function gij (Eq. 2) is defined in terms
of the inverse distance between the observation point (xi,yi,zi) and
the jth equivalent source at (xj,yj,zj),

1
rij
≡ 1

√(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2
, (6)

or by its partial derivatives of first and second orders, respectively
given by

∂α
1
rij
≡
−(αi − αj)

r3ij
, α ∈ {x,y,z} , (7)

and

∂αβ
1
rij
≡

{{{{{{{
{{{{{{{
{

3 (αi − αj)
2

r5ij
, α = β,

3 (αi − αj) (βi − βj)

r5ij
− 1
r3ij
, α ≠ β,

α,β ∈ {x,y,z} .

(8)

In this case, the equivalent layer is formed by punctual sources
representing monopoles or dipoles (e.g., Dampney, 1969; Emilia,
1973; Leão and Silva, 1989; Cordell, 1992; Oliveira Jr. et al.,
2013; Siqueira et al., 2017; Reis et al., 2020; Takahashi et al., 2020;
Soler and Uieda, 2021; Takahashi et al., 2022). Another common
approach consists in not defining gij by using Eqs. 6–8, but other
harmonic functions obtained by integrating them over the volume
of regular prisms (e.g., Li and Oldenburg, 2010; Barnes and Lumley,
2011; Li et al., 2014; Jirigalatu and Ebbing, 2019). There are also
some less common approaches defining the harmonic function gij
(Eq. 2) as the potential field due to plane faces with constant physical
property (Hansen and Miyazaki, 1984), doublets (Silva, 1986) or by
computing the double integration of the inverse distance function
with respect to z (Guspí and Novara, 2009).

A commonassumption formost of the equivalent-layermethods
is that the harmonic function gij (Eq. 2) is independent on the actual
physical relationship between the observed potential field and their
true sources (e.g., Cordell, 1992; Guspí and Novara, 2009; Li et al.,
2014). Hence, gij can be defined according to the problem. The only
condition imposed to this function is that it decays to zero as the
observation point (xi,yi,zi) goes away from the position (xj,yj,zj) of
the jth equivalent source. However, several methods use a function
gij that preserves the physical relationship between the observed
potential field and their true sources. For the case in which the
observed potential field is gravity data, gij is commonly defined as
a component of the gravitational field produced at (xi,yi,zi) by a
point mass or prism located at (xj,yj,zj), with unit density. On the
other hand, gij is commonly defined as a component of the magnetic
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induction field produced at (xi,yi,zi) by a dipole or prism located
at (xj,yj,zj), with unit magnetization intensity, when the observed
potential field is magnetic data.

The main challenge in the equivalent-layer technique is the
computational complexity associated with handling large datasets.
This complexity arises because the sensitivity matrix G (Eq. 3) is
dense regardless of the harmonic function gij (Eq. 2) employed. In
the case of scattered potential-field data, the structure of G is not
well-defined, regardless of the spatial distribution of the equivalent
sources. However, in a specific scenario where 1) each potential-
field datum is directly associated with a single equivalent source
located directly below it, and 2) both the data and sources are based
on planar and regularly spaced grids, Takahashi et al. (2020, 2022)
demonstrate thatG exhibits a block-Toeplitz Toeplitz-block (BTTB)
structure. In such cases, the product of G and an arbitrary vector
can be efficiently computed using a 2D fast Fourier transform as a
discrete convolution.

3 Linear inverse problem of
equivalent-layer technique

3.1 General formulation

A general formulation for almost all equivalent-layer methods
can be achieved by first considering that the P× 1 parameter vector
p (Eq. 3) can be reparameterized into a Q× 1 vector q according to:

p =Hq, (9)

where H is a P×Q matrix. The predicted data vector f (Eq. 3) can
then be rewritten as follows:

f = GHq. (10)

Note that the original parameter vector p is defined in a P-
dimensional space whereas the reparameterized parameter vector q
(Eq. 9) lies in a Q-dimensional space. For convenience, we use the
terms P-space and Q-space to designate them.

In this case, the problem of estimating a parameter vector p̃
minimizing a length measure of the difference between f (Eq. 3) and
d is replaced by that of estimating an auxiliary vector q̃minimizing
the goal function

Γ (q) =Φ (q) + μΘ (q) , (11)

which is a combination of particular measures of length given by

Φ (q) = (d− f)⊤Wd (d− f) , (12)

and

Θ (q) = (q− q̄)⊤Wq (q− q̄) , (13)

where the regularization parameter μ is a positive scalar controlling
the trade-off between the data-misfit function Φ(q) and the
regularization function Θ(q); Wd is a D×D symmetric matrix
defining the relative importance of each observed datum di; Wq is
a Q×Q symmetric matrix imposing prior information on q; and q̄
is a Q× 1 vector of reference values for q that satisfies

p̄ =H q̄, (14)

where p̄ is a P× 1 vector containing reference values for the original
parameter vector p.

After obtaining an estimate q̃ for the reparameterized parameter
vector q (Eq. 9), the estimate p̃ for the original parameter vector
(Eq. 3) is computed by

p̃ =H q̃. (15)

The reparameterized vector q̃ is obtained by first computing the
gradient of Γ(q),

∆Γ (q) = −2H⊤G⊤Wd (d− f) + 2 μWq (q− q̄) . (16)

Then, by considering that ∆Γ(q̃) = 0 (Eq. 16), where 0 is a vector of
zeros, as well as adding and subtracting the term (H⊤G⊤WdGH) q̄,
we obtain

δ̃q = B δd, (17)

where

q̃ = δ̃q + q̄, (18)

δd = d−GH q̄, (19)

B = (H⊤G⊤WdGH+ μWq)
−1H⊤G⊤Wd, (20)

or, equivalently (Menke, 2018, p. 62),

B =W−1q H⊤G⊤(GHW−1q H⊤G⊤ + μW−1d )
−1. (21)

Evidently, we have considered that all inverses exist in Eqs. 20, 21.
The Q×D matrix B defined by Eq. 20 is commonly used for

the case in which D > Q, i.e., when there are more data than
parameters (overdetermined problems). In this case, we consider
that the estimate q̃ is obtained by solving the following linear system
for δ̃q (Eq. 18):

(H⊤G⊤WdGH+ μWq) δ̃q =H⊤G⊤Wd δd. (22)

On the other hand, for the cases in which D < Q (underdetermined
problems), matrix B is usually defined according to Eq. 21. In this
case, the general approach involves estimating q̃ in two steps. The
first consists in solving a linear system for a dummy vector, which
is subsequently used to compute q̃ by a matrix-vector product as
follows:

(GHW−1q H⊤G⊤ + μW−1d )u = δd
δ̃q =W

−1
q H⊤G⊤u

, (23)

where u is a dummy vector. After obtaining δ̃q (Eqs. 22, 23), the
estimate q̃ is computed with Eq. 18.

3.2 Formulation without
reparameterization

Note that, for the particular case in whichH = IP (Eq. 9), where
IP is the identity of order P, P = Q, p = q, p̄ = q̄ (Eq. 14) and p̃ = q̃
(Eq. 15). In this case, the linear system (Eqs. 22, 23) is directly solved
for

δ̃p = p̃− p̄, (24)

instead of δ̃q (Eq. 18).

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2023.1253148
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Oliveira Junior et al. 10.3389/feart.2023.1253148

3.3 Linear system solvers

According to their properties, the linear systems associated with
over and underdetermined problems (Eqs. 22, 23) can be solved by
using direct methods such as LU, Cholesky or QR factorization, for
example, (Golub and Van Loan, 2013; Sections 3.2, Section 4.2 and
Section 5.2). These methods involve factorizing the linear system
matrix in a product of “simple” matrices (i.e., triangular, diagonal
or orthogonal). Here, we consider theCholesky factorization, (Golub
and Van Loan, 2013, p. 163).

Let us consider a real linear system M x = y, where M is a
symmetric and positive definite matrix (Golub and Van Loan, 2013,
p. 159). In this case, theCholesky factorization consists in computing

M = GG⊤, (25)

where G is a lower triangular matrix called Cholesky factor and
having positive diagonal entries. Given G, the original linear system
is replaced by two triangular systems, as follows:

G s = y

G⊤ x = s
(26)

where s is a dummy vector. For the overdetermined
problem Eq. 22, M = (H⊤G⊤WdGH+ μWq), x = δ̃q and y =
(H⊤G⊤Wd δd). For the underdetermined problem (Eq. 23), M =
(GHW−1q H⊤G⊤ + μW−1d ), x = u and y = δd.

The use of direct methods for solving large linear systems may
be problematic due to computer 1) storage of large matrices and 2)
time to perform matrix operations. This problem may be specially
complicated in equivalent-layer technique for the cases in which
the sensitivity matrix G does not have a well-defined structure
(Section 2.2).

These problems can be overcame by solving the linear system
using an iterative method. These methods produce a sequence of
vectors that typically converge to the solution at a reasonable rate.
The main computational cost associated with these methods is
usually some matrix-vector products per iteration. The conjugate
gradient (CG) is a very popular iterative method for solving
linear systems in equivalent-layer methods. This method was
originally developed to solve systems having a square and positive
definite matrix. There are two adapted versions of the CG method.
The first is called conjugate gradient normal equation residual
(CGNR) Golub and Van Loan (2013, Section 11.3) or conjugate
gradient least squares (CGLS) (Aster et al., 2019, p. 165) and is
used to solve overdetermined problems (Eq. 22). The second is
called conjugate gradient normal equation error (CGNE) method
Golub and Van Loan (2013), sec. 11.3) and is used to solve
the underdetermined problems (Eq. 23). Algorithm 1 outlines
the CGLS method applied to the overdetermined problem (Eq.
 22).

4 Floating-point operations

Two important factors affecting the efficiency of a given matrix
algorithm are the storage and amount of required arithmetic. Here,
we quantify this last factor associated with different computational
strategies to solve the linear system of the equivalent-layer technique

Algorithm 1. Generic pseudo-code for the CGLS applied to the overdetermined
problem (Eq. 22) for the particular case in which H = IP (Eq. 9; subsection 3.2),
μ=0 (Eq. 11),Wd = ID (Eq. 12) and p̄ = 0 (Eq. 14),where IP and ID are the identities
of order P andD, respectively.

(Section 7). To do it, we opted by counting flops, which are floating
point additions, subtractions, multiplications or divisions (Golub
and Van Loan, 2013, p. 12–14). This is a non-hardware dependent
approach that allows us to do direct comparison between different
equivalent-layer methods. Most of the flops count used here can
be found in Golub and Van Loan (2013, p. 12, 106, 107 and
164).

Let us consider the case in which the overdetermined problem
(Eq. 22) is solved by Cholesky factorization (Eqs. 25, 26) directly for
the parameter vector p̃ by considering the particular case in which
H = IP (Eq. 9; Subsection 3.2), μ = 0 (Eq. 11), Wd = ID (Eq. 12) and
p̄ = 0 (Eq. 14), where IP and ID are the identities of order P and D,
respectively. Based on the information provided in Table 1, the total
number of flops can be determined by aggregating the flops required
for various computations. These computations include the matrix-
matrix and matrix-vector products G⊤G and G⊤d, the Cholesky
factorG, and the solution of triangular systems.Thus, we can express
the total number of flops as follows:

fCholesky = 1/3D
3 + 2D2 + 2(P2 + P)D. (27)

The same particular overdetermined problem can be solved by using
theCGLSmethod (Algorithm 1). In this case, we use Table 1 again to
combine the total number of flops associated with the matrix-vector
and inner products defined in line 3, before starting the iteration,
and the 3 saxpys, 2 inner products and 2 matrix-vector products
per iteration (lines 7–12). By considering a maximum number of
iterations ITMAX, we obtain

fCGLS = 2PD+ITMAX (4PD+ 4D) . (28)

The same approach used to deduce (Eqs. 27, 28) is applied to
compute the total number of flops for the selected equivalent-layer
methods discussed in Section 7.

To simplify our analysis, we do not consider the number of flops
required to compute the sensitivity matrix G (Eq. 3) or the matrix
A associated with a given potential-field transformation (Eq. 4)
because they depend on the specific harmonic functions gij and aij
(Equations 2 and 5). We also neglect the required flops to compute
H,Wd,Wq (Eqs. 9, 12 and 13), p̄ (Eq. 14), retrieve q̃ from δ̃q (Eq. 18)
and computing δd (Eq. 19).
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TABLE 1 Total number of flops associated with some useful terms according
to Golub andVan Loan (2013, p. 12). The number of flops associated with
Eqs. 25, 26 depends if the problem is over or underdetermined. Note that
P = Q for the case in whichH = IP (Subsection 3.2). The term η ←ϑ + τ η is a
vector update called saxpy (Golub andVan Loan, 2013, p. 4). The terms
defined here are references to compute the total number of flops throughout
themanuscript.

References Term Flops

Equation 10 GH 2DQP

Equation 15 H q̃ 2PQ

Equation 22 (GH)⊤ (GH) 2Q2D

Equation 22 (GH)⊤δd 2QD

Equation 23 (GH) (GH)⊤ 2D2Q

Equation 23 (GH)⊤u 2QD

Equation 25 lower triangle ofG D3/3 or Q3/3

Equation 26 solve triangular systems 2D2 or 2Q2

Algorithm 1 η ←ϑ + τ η 2Q

Algorithm 1 ϑ⊤ϑ 2Q

Algorithm 4 scale factor σ 2DP + 4D

5 Numerical stability

All equivalent-layer methods aim at obtaining an estimate p̃ for
the parameter vector p (Eq. 3), which contains the physical property
of the equivalent sources. Some methods do it by first obtaining an
estimate q̃ for the reparameterized parameter vector q (Eq. 9) and
then using it to obtain p̃ (Eq. 15).The stability of a solution p̃ against
noise in the observed data is rarely addressed. Here, we follow the
numerical stability analysis presented in Siqueira et al. (2017).

For a given equivalent-layer method (Section 7), we obtain an
estimate p̃ assuming noise-free potential-field data d. Then, we
create L different noise-corrupted data dℓ, ℓ ∈ {1:L}, by adding L
different sequences of pseudorandom Gaussian noise to d, all of
them having zero mean. From each dℓ, we obtain an estimate
p̃ℓ. Regardless of the particular equivalent-layer method used, the
following inequality (Aster et al., 2019, p. 66) holds true:

Δpℓ ≤ κ Δdℓ , ℓ ∈ {1:L} , (29)

where κ is the constant of proportionality between the model
perturbation

Δpℓ =
‖p̃ℓ − p̃‖
‖p̃‖
, ℓ ∈ {1:L} , (30)

and the data perturbation

Δdℓ = ‖d
ℓ − d‖
‖d‖
, ℓ ∈ {1:L} , (31)

with ‖ ⋅ ‖ representing the Euclidean norm. The constant κ acts
as the condition number associated with the pseudo-inverse in
a given linear inversion. The larger (smaller) the value of κ, the
more unstable (stable) is the estimated solution. Because of that,
we designate κ as stability parameter. Equation 29 shows a linear

relationship between the model perturbation Δpℓ and the data
perturbation Δdℓ (Eqs. 30 and 31). We estimate the κ (Eq. 29)
associated with a given equivalent-layer method as the slope of the
straight line fitted to the numerical stability curve formed by the L
points (Δpℓ , Δdℓ).

6 Notation for subvectors and
submatrices

Here, we use a notation inspired on that presented by Van Loan
(1992, p. 4) to represent subvectors and submatrices. Subvectors
of d, for example, are specified by d[i], where i is a list of integer
numbers that “pick out” the elements ofd forming the subvectord[i].
For example, i = (1,6,4,6) gives the subvectord[i] = [d1 d6 d4 d6]⊤.
Note that the list iof indicesmay be sorted or not and itmay also have
repeated indices. For the particular case in which the list has a single
element i = (i), then it can be used to extract the ith element di ≡ d[i]
of d. Sequential lists can be represented by using the colon notation.
We consider two types of sequential lists.The first has starting index
is smaller than the final index and increment of 1. The second has
starting index is greater than the final index and increment of −1.
For example,

i = (3:8) ⇔ d [i] = [d3 d4 … d8]
⊤

i = (8:3) ⇔ d [i] = [d8 d7 … d3]
⊤

i = (:8) ⇔ d [i] = [d1 d2 … d8]
⊤

i = (3:) ⇔ d [i] = [d3 d4 … dD]
⊤

,

where D is the number of elements forming d.
The notation above can also be used to define submatrices of a

D× PmatrixG. For example, i = (2,7,4,6) and j = (1,3,8) lead to the
submatrix

G [i, j] =

[[[[[[[

[

g21 g23 g28
g71 g73 g78
g41 g43 g48
g61 g63 g68

]]]]]]]

]

.

Note that, in this case, the lists i and j “pick out”, respectively, the rows
and columns of G that form the submatrix G[i, j]. The ith row of G
is given by the 1× P vector G[i, :]. Similarly, the D× 1 vector G[:, j]
represents the jth column. Finally, we may use the colon notation to
define the following submatrix:

i = (2:5) , j = (3:7) ⇔ G [i, j] =

[[[[[[[

[

g23 g24 g25 g26 g27
g33 g34 g35 g36 g37
g43 g44 g45 g46 g47
g53 g54 g55 g56 g57

]]]]]]]

]

,

which contains the contiguous elements of G from rows 2 to 5 and
from columns 3 to 7.

7 Computational strategies

The linear inverse problem of the equivalent-layer technique
(Section 3) for the case in which there are large volumes of potential-
field data requires dealing with.
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(i) the large computer memory to store large and full matrices;
(ii) the long computation time tomultiply a matrix by a vector; and
(iii) the long computation time to solve a large linear system of

equations.

Here, we review some strategies aiming at reducing the
computational cost of the equivalent-layer technique. We quantify
the computational cost by using flops (Section 4) and compare the
results with those obtained for Cholesky factorization and CGLS
(Eqs. 27, 28). We focus on the overall strategies used by the selected
methods.

7.1 Moving window

The initial approach to enhance the computational efficiency
of the equivalent-layer technique is commonly denoted moving
window and involves first splitting the observed data di, i ∈ {1:D},
into M overlapping subsets (or data windows) formed by Dm

data each, m ∈ {1:M}. The data inside the mth window are usually
adjacent to each other and have indices defined by an integer list
im having Dm elements. The number of data Dm forming the data
windows are not necessarily equal to each other. Each data window
has a Dm × 1 observed data vector dm ≡ d[im]. The second step
consists in defining a set of P equivalent sources with scalar physical
property pj, j ∈ {1:P}, and also split them intoM overlapping subsets
(or sourcewindows) formed byPm data each,m ∈ {1:M}.The sources
inside the mth window have indices defined by an integer list jm

having Pm elements. Each source window has a Pm × 1 parameter
vector pm and is located right below the corresponding mth data
window. Then, each dm ≡ d[im] is approximated by

fm = Gmpm, (32)

where Gm ≡ G[im, jm] is a submatrix of G (Eq. 3) formed by the
elements computed with Eq. 2 using only the data and equivalent
sources located inside the window mth. The main idea of the
moving-window approach is using the p̃m estimated for each
window to obtain 1) an estimate p̃ of the parameter vector for the
entire equivalent layer or 2) a given potential-field transformation t
(Eq. 4).Themain advantages of this approach is that 1) the estimated
parameter vector p̃ or transformed potential field are not obtained
by solving the full, but smaller linear systems and 2) the full matrix
G (Eq. 3) is never stored.

Leão and Silva (1989) presented a pioneer work using the
moving-window approach. Their method requires a regularly-
spaced grid of observed data on a horizontal plane z0. The data
windows are defined by square local grids of √D′ ×√D′ adjacent
points, all of them having the same number of points D′. The
equivalent sources in the mth data window are located below the
observation plane, at a constant vertical distance Δz0. They are
arranged on a regular grid of √P′ ×√P′ adjacent points following
the same grid pattern of the observed data. The local grid of
sources for all data windows have the same number of elements P′.
Besides, they are vertically aligned, but expands the limits of their
corresponding data windows, so thatD′ < P′. Because of this spatial
configuration of observed data and equivalent sources, we have that
Gm = G′ Eq. 32 for all data windows (i.e., ∀ m ∈ {1:M}), where G′ is
a D′ × P′ constant matrix.

Algorithm 2. Generic pseudo-code for the method proposed by Leão and Silva
(1989).

By omitting the normalization strategy used by Leão and Silva
(1989), their method consists in directly computing the transformed
potential field tmc at the central point (xmc ,ymc ,z0 +Δz0) of each data
window as follows:

tmc = (a′)
⊤B′ dm , m ∈ {1:M} , (33)

where a′ is a P′ × 1 vector with elements computed by Eq. 5 by using
all equivalent sources in themth window and only the coordinate of
the central point in themth data window and

B′ = (G′)⊤[G′ (G′)⊤ + μ ID′]
−1 (34)

is a particular case of matrix B associated with underdetermined
problems Eq. 21 for the particular case in which H =Wq = IP′
(Eqs. 9, 13), Wd = ID′ (Eq. 12), p̄ = 0 (Eq. 14), where IP′ and ID′
are identity matrices of order P′ and D′, respectively, and 0 is a
vector of zeros. Due to the presumed spatial configuration of the
observed data and equivalent sources, a′ and G′ are the same for all
data windows. Hence, only the data vector dm is modified according
to the position of the data window. Note that Eq. 33 combines
the potential-field transformation (Eq. 4) with the solution of the
undetermined problem (Eq. 23).

The method proposed by Leão and Silva (1989) can be outlined
by theAlgorithm 2.Note that Leão and Silva (1989) directly compute
the transformed potential tmc at the central point of each data
window without explicitly computing and storing an estimated for
pm (Eq. 32). It means that their method allows computing a single
potential-field transformation. A different transformation or the
same one evaluated at different points require running theirmoving-
data window method again.

The total number of flops in Algorithm 2 depends on computing
the P′ ×D′matrix B′ (Eq. 34) in line 6 and use it to define the 1× P′
vector (a′)⊤B′ (line 7) before starting the iterations and computing
an inner product (Eq. 33) per iteration. We consider that the total
number of flops associated with B′ is obtained by the matrix-matrix
product G′(G′)⊤, its inverse and then the premultiplication by
(G′)⊤. By using Table 1 and considering that inverse is computed
via Cholesky factorization, we obtain that the total number of flops
for lines 6 and 7 is 2(D′)2P′ + 7(D′)3/6+ 2(D′)2P′. Then, the total
number of flops for Algorithm 2 is

fLS89 = 7/6(D
′)3 + 4P′(D′)2 +M 2P′. (35)

Soler and Uieda (2021) generalized the method proposed by
Leão and Silva (1989) for irregularly spaced data on an undulating
surface. A direct consequence of this generalization is that a different
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Algorithm3. Generic pseudo-code for themethodproposedbySoler andUieda
(2021).

submatrix Gm ≡ G[im, jm] (Eq. 32) must be computed for each
window. Differently from Leão and Silva (1989), Soler and Uieda
(2021) store the computed p̃m for all windows and subsequently use
them to obtain a desired potential-field transformation (Eq. 4) as the
superposed effect of all windows. The estimated p̃m for all windows
are combined to form a single P× 1 vector p̃, which is an estimate
for original parameter vector p (Eq. 3). For each data window, Soler
and Uieda (2021) solve an overdetermined problem (Eq. 22) for p̃m

by usingH =Wq = IPm (Eqs. 9, 13),Wm
d (Eq. 12) equal to a diagonal

matrix of weights for the data inside the mth window and p̄ = 0
(Eq. 14), so that

[(Gm)⊤Wm
d Gm + μ IP′] p̃m = (Gm)⊤Wm

d dm. (36)

Unlike Leão and Silva (1989), Soler and Uieda (2021) do not
adopt a sequential order of the data windows; rather, they adopt a
randomized order of windows in their iterations. The overall steps
of the method proposed by Soler and Uieda (2021) are defined by
the Algorithm 3. For convenience, we have omitted the details about
the randomized window order, normalization strategy employed
and block-averaged sources layout proposed by those authors (see
Subsection 2.1). Note that this algorithm starts with a residuals
vector r that is iteratively updated. The iterative algorithm in Soler
and Uieda (2021) estimates a solution (p̃m in Eq. 36 using the data
and the equivalent sources that fall within a moving-data window;
however, it calculates the predicted data and the residual data in
the whole survey data. Next, the residual data that fall within a new
position of the data window is used as input data to estimate a new
solution within the data windowwhich, in turn, is used to calculated
a new predicted data and a new residual data in the whole survey
data.

The computational cost of Algorithm 3 can be defined in terms
of the linear system (Eq. 36) to be solved for each window (line 10)
and the subsequent updates in lines 11 and 12. We consider that
the linear system cost can be quantified by the matrix-matrix and
matrix-vector products (Gm)⊤Gm and (Gm)⊤dm, respectively, and
solution of the linear system (line 10) via Cholesky factorization
(Eqs. 25, 26).The following updates represent a saxpywithout scalar-
vector product (line 11) and amatrix-vector product (line 12). In this
case, according to Table 1, the total number of flops associated with
Algorithm 3 is given by:

fSU21 =M [1/3(P
′)3 + 2(D′)(P′)2 + (4D′)P′] , (37)

where P′ and D′ represent, respectively, the average number of
equivalent sources and data at each window.

Algorithm 4. Generic pseudo-code for themethod proposed by Cordell (1992).

7.2 Column-action update

Cordell (1992) proposed a column-action update strategy similar
to those applied to image reconstructionmethods (e.g., Elfving et al.,
2017).His approach, that was later used byGuspí andNovara (2009),
relies on first defining one equivalent source located right below
each observed data di, i ∈ {1:D}, at a vertical coordinate zi +Δzi,
where Δzi is proportional to the distance from the ith observation
point (xi,yi,zi) to its closest neighbor. The second step consists in
updating the physical property pj of a single equivalent source,
j ∈ {1:D} and remove its predicted potential field from the observed
data vector d, producing a residuals vector r. At each iteration,
the single equivalent source is the one located vertically beneath
the observation station of the maximum data residual. Next, the
predicted data produced by this single source is calculated over all
of the observation points and a new data residual r and the D× 1
parameter vector p containing the physical property of all equivalent
sources are updated iteratively. During each subsequent iteration,
Cordell’s method either incorporates a single equivalent source
or adjusts an existing equivalent source to match the maximum
amplitude of the current residual field.The convergence occurswhen
all of the residuals are bounded by an envelope of prespecified
expected error. At the end, the algorithm produces an estimate
p̃ for the parameter vector yielding a predicted potential field f
(Eq. 3) satisfactorily fitting the observed data d according to a
given criterion. Note that the method proposed by Cordell (1992)
iteratively solves the linear Gp̃ ≈ d with a D×D matrix G. At each
iteration, only a single column of G (Eq. 3) is used. An advantage of
this column-action update approach is that the full matrixG is never
stored.

Algorithm 4 delineates the Cordell’s method. We have
introduced a scale factor σ to improve convergence. Note that
a single column G[:, imax] of the D×D matrix G (Eq. 3) is used
per iteration, where imax is the index of the maximum absolute
value in r. As pointed out by Cordell (1992), the method does not
necessarily decrease monotonically along the iterations. Besides,
the method may not converge depending on how the vertical
distances Δzi, i ∈ {1:D}, controlling the depths of the equivalent
sources are set. According to Cordell (1992), the maximum
absolute value rmax in r decreases robustly at the beginning
and oscillates within a narrowing envelope for the subsequent
iterations.

Guspí and Novara (2009) generalized Cordell’s method to
perform reduction to the pole and other transformations on
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scattered magnetic observations by using two steps. The first
step involves computing the vertical component of the observed
field using equivalent sources while preserving the magnetization
direction. In the second step, the vertical observation direction
is maintained, but the magnetization direction is shifted to the
vertical. The main idea employed by both Cordell (1992) and
Guspí and Novara (2009) is an iterative scheme that uses a
single equivalent source positioned below a measurement station
to compute both the predicted data and residual data for all
stations. This approach entails a computational strategy where a
single column of the sensitivity matrix G (Eq. 3) is calculated per
iteration.

The total number of flops in Algorithm 4 consists in computing
the scale factor σ (line 5), computing an initial approximation
for the parameter vector and the residuals (lines 6 and 7) and
finding the maximum absolute value in vector r (line 8) before the
while loop. Per iteration, there is a saxpy (line 13) and another
search for the maximum absolute value in vector r (line 14). By
considering that selecting the maximum absolute value in a D× 1
vector is a D log2(D) operation (e.g., Press et al., 2007, p. 420), we
get from Table 1 that the total number of flops in Algorithm 38 is
given by:

fC92 = 4D
2 + 6D+D log2 (D) +ITMAX[2D+D log2 (D)] . (38)

7.3 Row-action update

To reduce the total processing time and memory usage of
equivalent-layer technique, Mendonça and Silva (1994) proposed a
strategy called equivalent data concept. The equivalent data concept
is grounded on the principle that there is a subset of redundant
data that does not contribute to the final solution and thus can
be dispensed. Conversely, there is a subset of observations, called
equivalent data, that contributes effectively to the final solution
and fits the remaining observations (redundant data). Iteratively,
Mendonça and Silva (1994) selected the subset of equivalent data
that is substantially smaller than the original dataset. This selection
is carried out by incorporating one data point at a time.

The method presented by Mendonça and Silva (1994) is a type
of algebraic reconstruction technique (ART) (e.g., van der Sluis and
van der Vorst, 1987, p. 58) or row-action update (e.g., Elfving et al.,
2017) to estimate a parameter vector p̃ for a regular grid of
P equivalent sources on a horizontal plane z0. Such methods
iterate on the linear system rows to estimate corrections for the
parameter vector, which may substantially save computer time and
memory required to compute and store the full linear systemmatrix
along the iterations. The convergence of such methods strongly
depends on the linear system condition. The main advantage of
such methods is not computing and storing the full linear system
matrix, but iteratively using its rows. In contrast to common row-
action algorithms, the rows in Mendonça and Silva (1994) are
not processed sequentially. Instead, in Mendonça and Silva (1994),
the rows are introduced according to their residual magnitudes
(maximum absolute value in r), which are computed based on the
estimate over the equivalent layer from the previous iteration. The
particular row-action method proposed by Mendonça and Silva
(1994) considers that

Algorithm 5. Generic pseudo-code for themethod proposed byMendonça and
Silva (1994).

d = [

[

de
dr
]

]
, G = [

[

Ge

Rr

]

]
, (39)

where de and dr are De × 1 and Dr × 1 vectors and Ge and Gr are
De × P andDr × Pmatrices, respectively. Mendonça and Silva (1994)
designate de and dr as, respectively, equivalent and redundant data.
With the exception of a normalization strategy, Mendonça and Silva
(1994) calculate a P× 1 estimated parameter vector p̃ by solving an
underdetermined problem (Eq. 23) involving only the equivalent
data de (Eq. 39) for the particular case in whichH =Wp = IP (Eqs. 9,
13),Wd = IDe

(Eq. 12) and p̄ = 0 (Eq. 14), which results in

(F+ μ IDe
)u = de
p̃ = G⊤e u

, (40)

where F is a computationally-efficient De ×De matrix that
approximates GeG⊤e . Mendonça and Silva (1994) presume that the
estimated parameter vector p̃ obtained from Eq. 40 leads to a Dr × 1
residuals vector

r = dr −Grp̃ (41)

having a maximum absolute value rmax ≤ ϵ, where ϵ is a predefined
tolerance.

The overall method of Mendonça and Silva (1994) is defined by
Algorithm 5. It is important noting that the numberDe of equivalent
data in de increases by one per iteration, which means that the
order of the linear system in Eq. 40 also increases by one at each
iteration.Those authors also propose a computational strategy based
on Cholesky factorization (e.g., Golub and Van Loan, 2013, p. 163)
for efficiently updating (F+ μ IDe

) at a given iteration (line 16 in
Algorithm 5) by computing only its new elements with respect to
those computed in the previous iteration.

7.4 Reparameterization

Another approach for improving the computational
performance of equivalent-layer technique consists in setting aP×Q
reparameterization matrix H (Eq. 9) with Q≪ P. This strategy has
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been used in applied geophysics for decades (e.g., Skilling andBryan,
1984; Kennett et al., 1988; Oldenburg et al., 1993; Barbosa et al.,
1997) and is known as subspace method. The main idea relies in
reducing the linear system dimension from the original P-space to
a lower-dimensional subspace (the Q-space). An estimate q̃ for the
reparameterized parameter vector q is obtained in the Q-space and
subsequently used to obtain an estimate p̃ for the parameter vector
p (Eq. 3) in the P-space by using Eq. 9. Hence, the key aspect of this
reparameterization approach is solving an appreciably smaller linear
inverse problem for q̃ than that for the original parameter vector p̃
(Eq. 3).

Oliveira Jr. et al. (2013) have used this approach to describe the
physical property distribution on the equivalent layer in terms of
piecewise bivariate polynomials. Specifically, their method consists
in splitting a regular grid of equivalent sources into source windows
inside which the physical-property distribution is described by
bivariate polynomial functions.The key aspect of theirmethod relies
on the fact that the total number of coefficients required to define
the bivariate polynomials is considerably smaller than the original
number of equivalent sources. Hence, they formulate a linear inverse
problem for estimating the polynomial coefficients and use them
later to compute the physical property distribution on the equivalent
layer.

The method proposed by Oliveira Jr. et al. (2013) consists in
solving an overdetermined problem (Eq. 22) for estimating the
polynomial coefficients q̃ withWd = ID (Eq. 12) and ̄q = 0 (Eq. 14),
so that

(H⊤G⊤GH+ μWq) q̃ =H⊤G⊤ d, (42)

where Wq =H⊤WpH is defined by a matrix Wp representing the
zeroth- and first-order Tikhonov regularization (e.g., Aster et al.,
2019, p. 103). Note that, in this case, the prior information is
defined in the P-space for the original parameter vector p and
then transformed to the Q-space. Another characteristic of their
method is that it is valid for processing irregularly-spaced data on
an undulating surface.

Mendonça (2020) also proposed a reparameterization approach
for the equivalent-layer technique.Their approach, however, consists
in settingH as a truncated singular value decomposition (SVD) (e.g.,
Aster et al., 2019, p. 55) of the observed potential field. Differently
from Oliveira Jr. et al. (2013), however, the method of Mendonça
(2020) requires a regular grid of potential-field data on horizontal
plane. Another difference is that these authors usesWq = IQ (Eq. 13),
which means that the regularization is defined directly in the Q-
space.

We consider an algorithm (not shown) that solves
the overdetermined problem (Eq. 22) by combining the
reparameterization with CGLS method (Algorithm 1). It starts
with a reparameterization step defined by defining a matrix
C = G H (Eq. 10). Then, the CGLS (Algorithm 1) is applied by
replacing G with C. In this case, the linear system is solved by
the reparameterized parameter vector q̃ instead of p̃. At the end,
the estimated q̃ is transformed into p̃ (Eq. 15). Compared to the
original CGLS shown in Algorithm 1, the algorithm discussed here
has the additional flops associated with the matrix-matrix product
to compute C and the matrix-vector product of Eq. 15 outside the
while loop. Then, according to Table 1, the total number of flops

given by:

freparam. = 2Q (DP+D) + 2PQ+ITMAX (4QD+ 4D) . (43)

The important aspect of this approach is that, for the case in which
Q≪ P (Eq. 9), the number of flops per iteration can be substantially
decreased with respect to those associated with Algorithm 1. In this
case, the flops decrease per iteration compensates the additional
flops required to compute C and obtain p̃ from q̃ (Eq. 15).

7.5 Sparsity induction

Li and Oldenburg (2010) proposed a method that applies the
discrete wavelet transform to introduce sparsity into the original
dense matrix G (Eq. 3). Those authors approximate a planar grid of
potential-field data by a regularly-spaced grid of equivalent sources,
so that the number of data D and sources P is the same, i.e.,
D = P. Specifically, Li andOldenburg (2010) proposed amethod that
applies the wavelet transform to the original densematrixG and sets
to zero the small coefficients that are below a given threshold, which
results in an approximating sparse representation ofG in the wavelet
domain. They first consider the following approximation

dw ≈ Gs pw, (44)

where

dw =W d , pw =W p, (45)

are the observed data and parameter vector in the wavelet domain;
W is a D×D orthogonal matrix defining a discrete wavelet
transform; and Gs is a sparse matrix obtained by setting to zero the
elements of

Gw =W GW⊤ (46)

with absolute value smaller than a given threshold.
Li and Oldenburg (2010) solve a normalized inverse problem in

the wavelet domain. Specifically, they first define a matrix

GL = Gs L−1 (47)

and a normalized parameter vector

pL = L pw, (48)

where L is a diagonal and invertible matrix representing an
approximation of the first-order Tikhonov regularization in the
wavelet domain. Then they solve an overdetermined problem
(Eq. 22) to obtain an estimate p̃L for pL (Eq. 48), with GL (Eq. 47),
H = IP (Eq. 9), μ = 0 (Eq. 11), Wd = ID (Eq. 12) and p̄ = 0 (Eq. 14)
via conjugate-gradient method (e.g., Golub and Van Loan, 2013;
Section 11.3). Finally, Li andOldenburg (2010) compute an estimate
p̃ for the original parameter vector given by

p̃ =W⊤ (L−1 p̃L) , (49)

where the termwithin parenthesis is an estimate p̃w of the parameter
vector pw (Eq. 45) in the wavelet domain andmatrixW⊤ represents
an inverse wavelet transform.
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Barnes and Lumley (2011) also proposed a computationally
efficient method for equivalent-layer technique by inducing sparsity
into the original sensitivity matrix G (Eq. 3). Their approach
consists in setting a P×Q reparameterization matrix H (Eq. 9)
with Q ≈ 1.7 P. Note that, differently from Oliveira Jr. et al. (2013)
and Mendonça (2020), Barnes and Lumley (2011) do not use the
reparameterization with the purpose of reducing the number of
the parameters. Instead, they use a reparameterization scheme that
groups distant equivalent sources into blocks by using a bisection
process. This scheme leads to a quadtree representation of the
physical-property distribution on the equivalent layer, so thatmatrix
GH (Eq. 10) is notably sparse. Barnes and Lumley (2011) explore
this sparsity in solving the overdetermined problem for q̃ (Eq. 42)
via conjugate-gradient method (e.g., Golub and Van Loan, 2013;
sec. 11.3).

It is difficult to predict the exact sparsity obtained from the
methods proposed by Li and Oldenburg (2010) and Barnes and
Lumley (2011) because it depends on several factors, including
the observed potential-field data. According to Li and Oldenburg
(2010), their wavelet approach results in a sparse matrix having ≈2%
of the elements inGw (Eq. 46). The reparameterization proposed by
Barnes and Lumley (2011) leads to a sparse matrix G H (Eq. 10)
with only ≈1% of non-zero elements. These sparsity patterns can
be efficiently explored, for example, in computing the required
matrix-vector products along the iterations of the CGLS method
(Algorithm 1).

7.6 Iterative methods using the full matrix G

Xia and Sprowl (1991) introduced an iterative method for
estimating the parameter vector p̃ (Eq. 3), which was subsequently
adapted to the Fourier domain by Xia et al. (1993). Their method
uses the full and dense sensitivitymatrixG (Eq. 3) (without applying
any compression or reparameterization, for example,) to compute
the predicted data at all observation points per iteration. More than
two decades later, Siqueira et al. (2017) have proposed an iterative
method similar to that presented by Xia and Sprowl (1991). The
difference is that Siqueira et al.’s algorithm was deduced from the
Gauss’ theorem (e.g., Kellogg, 1967, p. 43) and the total excess of
mass (e.g., Blakely, 1996, p. 60). Besides, Siqueira et al. (2017) have
included a numerical analysis showing that their method produces
very stable solutions, even for noise-corrupted potential-field data.

The iterative method proposed by Siqueira et al. (2017) is
outlined in Algorithm 6, presumes an equivalent layer formed by
monopoles (point masses) and can be applied to irregularly-spaced
data on an undulating surface. Instead of using the element of
area originally proposed by Siqueira et al. (2017), we introduce
the scale factor σ, which can be automatically computed from the
observed potential-field data. Note that the residuals r are used to
compute a correction Δp for the parameter vector at each iteration
(line 11), which requires a matrix-vector product involving the full
matrix G. Interestingly, this approach for estimating the physical
property distribution on an equivalent layer is the same originally
proposed by Bott (1960) for estimating the basement relief under
sedimentary basins. The methods of Xia and Sprowl (1991) and
Siqueira et al. (2017) were originally proposed for processing gravity
data, but can be potentially applied to any harmonic function

Algorithm 6. Generic pseudo-code for the iterative method proposed by
Siqueira et al. (2017).

because they actually represent iterative solutions of the classical
Dirichlet’s problem or the first boundary value problem of potential
theory (Kellogg, 1967, p. 236) on a plane.

Recently, Jirigalatu and Ebbing (2019) presented another
iterative method for estimating a parameter vector p̃ (Eq. 3).
With the purpose of combining different potential-field data, their
method basically modifies that shown in Algorithm 6 by changing
the initial approximation and the iterative correction for the
parameter vector. Specifically, Jirigalatu and Ebbing (2019) replace
line 5 by p̃ = 0, where 0 is a vector of zeros, and line 11 byΔp = ωG⊤r,
where ω is a positive scalar defined by trial and error. Note that this
modified approach requires two matrix-vector products involving
the full matrixG per iteration. To overcome the high computational
cost of these two products, Jirigalatu and Ebbing (2019) set an
equivalent layer formed by prisms and compute their predicted
potential field in the wavenumber domain by using the Gauss-FFT
technique Zhao et al. (2018).

The iterative method proposed by Siqueira et al. (2017)
(Algorithm 6) requires computing the scale factor σ (line 5),
computing an initial approximation for the parameter vector and
the residuals (lines 6 and 7) before the main loop. Inside the main
loop, there is a half saxpy (lines 11 and 12) to update the parameter
vector, a matrix-vector product (line 13) and the residuals update
(line 14). Then, we get from Table 1 that the total number of flops is
given by:

fSOB17 = 4D
2 + 6D+ITMAX(2D2 + 3D) . (50)

Note that the number of flops per iteration in fSOB17 (Eq. 50) has the
same order of magnitude, but is smaller than that in fCGLS (Eq. 28).

7.7 Iterative deconvolution

Recently, Takahashi et al. (2020, 2022) proposed the
convolutional equivalent-layer method, which explores the structure
of the sensitivity matrixG (Eq. 3) for the particular case in which 1)
there is a single equivalent source right below each potential-field
datum and 2) both data and sources rely on planar and regularly
spaced grids. Specifically, they consider a regular grid ofD potential-
field data at points (xi,yi,z0), i ∈ {1:D}, on a horizontal plane z0.
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The data indices i may be ordered along the x− or y− direction,
which results in an x− or y− oriented grid, respectively. They also
consider a single equivalent source located right below each datum,
at a constant vertical coordinate z0 +Δz, Δz > 0. In this case, the
number of data and equivalent sources are equal to each other
(i.e., D = P) and G (Eq. 3) assumes a doubly block Toeplitz (Jain,
1989, p. 28) or block-Toeplitz Toeplitz-block (BTTB) (Chan and Jin,
2007, p. 67) structure formed by NB ×NB blocks, where each block
has Nb ×Nb elements, with D = NBNb. This particular structure
allows formulating the product ofG and an arbitrary vector as a fast
discrete convolution via Fast Fourier Transform (FFT) (Van Loan,
1992; Section 4.2).

Consider, for example, the particular case in which NB = 4,
Nb = 3 and D = 12. In this case, G (Eq. 3) is a 12× 12 block matrix
given by

G =

[[[[[[[

[

G0 G1 G2 G3

G−1 G0 G1 G2

G−2 G−1 G0 G1

G−3 G−2 G−1 G0

]]]]]]]

]D×D

, (51)

where each block Gn, n ∈ {(1−NB):(NB − 1)}, is a 3× 3 Toeplitz
matrix. Takahashi et al. (2020, 2022) have deduced the specific
relationship between blocks Gn and G−n and also between a given
block Gn and its transposed (Gn)⊤ according to the harmonic
function gij (Eq. 2) defining the element ij of the sensitivity matrixG
(Eq. 3) and the orientation of the data grid.

Consider the matrix-vector products

Gv = w (52)

and

G⊤ v = w, (53)

involving a D×D sensitivity matrix G (Eq. 3) defined in terms of a
given harmonic function gij (Eq. 2), where

v =
[[[[

[

v0

⋮

vNB−1

]]]]

]D×1

, w =
[[[[

[

w0

⋮

wNB−1

]]]]

]D×1

, (54)

are arbitrary partitioned vectors formed by NB sub-vectors vn and
wn, n ∈ {0:(NB − 1)}, all of them having Nb elements. Eqs. 52, 53 can
be computed in terms of an auxiliary matrix-vector product

Gc vc = wc, (55)

where

vc =

[[[[[[[

[

v0c
⋮

vNB−1
c

0

]]]]]]]

]4D×1

, wc =

[[[[[[[

[

w0
c

⋮

wNB−1
c

0

]]]]]]]

]4D×1

, (56)

are partitioned vectors formed by 2Nb × 1 sub-vectors

vnc = [

[

vn

0
]

]2Nb×1

, wn
c = [

[

wn

0
]

]2Nb×1

, (57)

and Gc is a 4D× 4D doubly block circulant (Jain, 1989, p. 28) or
block-circulant circulant-block (BCCB) (Chan and Jin, 2007, p. 76)
matrix. What follows aims at explaining how the original matrix-
vector products defined by Eqs. 52, 53, involving a D×D BTTB
matrixG exemplified by Eq. 51, can be efficiently computed in terms
of the auxiliary matrix-vector product given by Eq. 55, which has a
4D× 4D BCCB matrix Gc.

Matrix Gc (Eq. 55) is formed by 2NB × 2NB blocks, where each
blockGn

c , n ∈ {(1−NB):(NB − 1)} is a 2Nb × 2Nb circulantmatrix. For
the case in which the original matrix-vector product is that defined
by Eq. 52, the first column of blocks forming the BCCBmatrixGc is
given by

Gc [ :, : 2Nb] =

[[[[[[[[[[[[[[[[[[[[

[

G0
c

G−1c
⋮

G1−NB
c

0

GNB−1
c

⋮

G1
c

]]]]]]]]]]]]]]]]]]]]

]4D×2Nb

, (58)

with blocks Gn
c having the first column given by

Gn
c [ :, 1] =

[[[[

[

Gn [ :, 1]

0

(Gn [1, Nb:2])
⊤

]]]]

]2Nb×2Nb

,

n ∈ {(1−NB) : (NB − 1)} , (59)

where Gn are the blocks forming the BTTB matrix G (Eq. 51). For
the case in which the original matrix-vector product is that defined
by Eq. 53, the first column of blocks forming the BCCBmatrixGc is
given by

Gc [ :, : 2Nb] =

[[[[[[[[[[[[[[[[[[[[

[

G0
c

G1
c

⋮

GNB−1
c

0

G1−NB
c

⋮

G−1c

]]]]]]]]]]]]]]]]]]]]

]4D×2Nb

, (60)

with blocks Gn
c having the first column given by

Gn
c [ :, 1] =

[[[[

[

(Gn [ 1, :])⊤

0

Gn [Nb:2, 1]

]]]]

]2Nb×2Nb

, n ∈ {(1−NB) : (NB − 1)} .

(61)

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2023.1253148
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Oliveira Junior et al. 10.3389/feart.2023.1253148

The complete matrix Gc (Eq. 55) is obtained by properly
downshifting the block columns Gc[:, :2Nb] defined by Eq. 58
or 60. Similarly, the nth block Gn

c of Gc is obtained by properly
downshifting the first columns Gℓ

c[ :, 1] defined by Eq. 59 or 61.
Note that Gc (Eq. 55) is a 4D× 4D matrix and G (Eq. 51) is a

D×D matrix. It seems weird to say that computing Gcvc is more
efficient than directly computing Gv. To understand this, we need
first to use the fact that BCCB matrices are diagonalized by the 2D
unitary discrete Fourier transform (DFT) (e.g., Davis, 1979, p. 31).
Because of that, Gc can be written as

Gc = (F2NB
⊗F2Nb
)*Λ(F2NB

⊗F2Nb
) , (62)

where the symbol “⊗” denotes the Kronecker product (e.g., Horn
and Johnson, 1991, p. 243), F2NB

and F2Nb
are the 2NB × 2NB

and 2Nb × 2Nb unitary DFT matrices (e.g., Davis, 1979, p. 31),
respectively, the superscritpt “*” denotes the complex conjugate and
Λ is a 4D× 4D diagonal matrix containing the eigenvalues of Gc.
Due to the diagonalization of the matrixGc, Eq. 55 can be rewritten
by using Eq. 62 and premultiplying both sides of the result by
(F2NB
⊗F2Nb
), i.e.,

Λ(F2NB
⊗F2Nb
)vc = (F2NB

⊗F2Nb
)wc. (63)

By following Takahashi et al. (2020), we rearrange Equation 63 as
follows

L◦(F2NB
VcF2Nb

) =F2NB
WcF2Nb

(64)

where “◦” denotes the Hadamard product (e.g., Horn and Johnson,
1991, p. 298) and L, Vc and Wc are 2NB × 2Nb matrices obtained
by rearranging, along their rows, the elements forming the diagonal
of Λ (Eq. 62), vector vc and vector wc (Eq. 56), respectively.
Then, by premultiplying both sides of Eq. 64 by F *

2NB
and then

postmultiplying both sides byF *
2Nb

, we obtain

F *
2NB
[L◦(F2NB

VcF2Nb
)]F *

2Nb
=Wc. (65)

Finally, we get from Eq. 62 that matrix L can be computed by
using only the first column Gc[:,1] of the BCCB matrix Gc (Eq. 55)
according to (Takahashi et al., 2020)

L = √4D F2NB
C F2Nb
, (66)

where C is a 2NB × 2Nb matrix obtained by rearranging, along its
rows, the elements of Gc[:,1] (Eq. 55). It is important noting that
the matrices C and L (Eq. 66) associated with the BTTB matrix G
(Eq. 51) are different from those associated with G⊤.

The whole procedure to compute the original matrix-vector
products Gv (Eq. 52) and G⊤v (Eq. 53) consists in 1) rearranging
the elements of the vector v and the first column G[:,1] of
matrix G into the matrices Vc and C (Eqs. 65, 66), respectively;
2) computing terms F2NB

AF2Nb
and F *

2NB
AF *

2Nb
, where A

is a given matrix, and a Hadamard product to obtain Wc
(Eq. 65); and 3) retrieve the elements of vector w (Eq. 52) from
Wc (Eq. 65). It is important noting that the steps (i) and (iii)
do not have any computational cost because they involve only
reorganizing elements of vectors and matrices. Besides, the terms
F2NB

AF2Nb
and F *

2NB
AF *

2Nb
in step (ii) represent, respectively,

the 2D Discrete Fourier Transform (2D-DFT) and the 2D Inverse
Discrete Fourier Transform (2D-IDFT) ofA. These transforms can
be efficiently computed by using the 2D Fast Fourier Transform
(2D-FFT). Hence, the original matrix-vector products Gv (Eq.
52) and G⊤v (Eq. 53) can be efficiently computed by using the
2D-FFT.

Algorithm 7 and Algorithm 8 show pseudo-codes for the
convolutional equivalent-layer method proposed by Takahashi et al.
(2020, 2022). Note that those authors formulate the overdetermined
problem (Eq. 22) of obtaining an estimate p̃ for the parameter
vector p (Eq. 3) as an iterative deconvolution via conjugate gradient
normal equation residual (CGNR) Golub and Van Loan (2013,
sec. 11.3) or conjugate gradient least squares (CGLS) (Aster et al.,
2019, p. 165) method. They consider H = IP (Eq. 9), μ = 0 (Eq. 11),
Wd =Wq = IP (Eqs. 12, 13) and p̄ = 0 (Eq. 14). As shown by
Takahashi et al. (2020, 2022), the CGLS produces stable estimates p̃
for the parameter vector p (Eq. 3) in the presence of noisy potential-
field data d. This is a well-known property of the CGLS method
(e.g., Aster et al., 2019, p. 166).

The key aspect of Algorithm 7 is replacing the matrix-vector
products of CGLS (Algorithm 1) by fast convolutions (Algorithm 8).
A fast convolution requires one 2D-DFT, one 2D-IDFT and an
entrywise product of matrices. We consider that the 2D-DFT/IDFT
are computed with 2D-FFT and requires λ (4D) log2(4D) flops,
where λ = 5 is compatible with a radix-2 FFT (Van Loan, 1992, p.
16), and the entrywise product 24D flops because it involves two
complex matrices having 4D elements (Golub and Van Loan, 2013,
p. 36). Hence, Algorithm 8 requires λ (16D) log2(4D) + 26D flops,
whereas a conventional matrix-vector multiplication involving a
D×D matrix requires 2D2 (Table 1). Finally, Algorithm 7 requires
two 2D-FFTs (lines 4 and 5), one fast convolution and an inner
product (line 8) previously to the while loop. Per iteration, there
are three saxpys (lines 12, 15 and 16), two inner products (lines
14 and 17) and two fast convolutions (lines 13 and 17), so
that:

fTOB20 = λ (16D) log2 (4D) + 26D+ITMAX[λ (16D) log2 (4D) + 58D] .
(67)

7.8 Direct deconvolution

The method proposed by Takahashi et al. (2020, 2022) can
be reformulated to avoid the iterations of the conjugate gradient
method. This alternative formulation consists in considering that
v = p and w = d in Eq. 52, where p is the parameter vector (Eq. 3)
and d the observed data vector. In this case, the equality “=” in
Eq. 52 becomes an approximation “≈ ”. Then, Eq. 64 is manipulated
to obtain

Vc ≈F *
2NB
[(F2NB

WcF2Nb
)◦L̆]F *

2Nb
, (68)

where

L̆ =L* ⊘ (L◦L* + ζ1) , (69)

1 is a 4D× 4D matrix of ones, “⊘” denotes entrywise division and
ζ is a positive scalar. Note that ζ = 0 leads to 1⊘L. In this case,
the entrywise division may be problematic due to the elements of
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FIGURE 1
Total number of flops for different equivalent-layer methods (Eqs. 27, 28, 35, 37, 38, 43, 50, 67, and 70). The number of potential-field data D varies
from 10,000 to 1,000,000.

FIGURE 2
Synthetic prisms used in numerical simulations. The prisms A to D with
horizontal projections represented by dashed lines have density
contrasts of, respectively, 1,500, −1800, −3,000 and 1,200 kg/m3, tops
varying from 10 to 100 m, bottom from 1,010 to 1,500 m and side
lengths varying from 1,000 to 4,000 m. The prism E with horizontal
projection represented by solid lines has a density contrast
−900 kg/m3, top at 1,000 m, bottom at 1,500 m and side lengths of
4,000 and 6,000 m. Our model also have 300 additional small cubes
(not shown), with top at 0 m and side lengths defined according to a
pseudo-random variable having uniform distribution from 100 to
200 m. Their density contrasts vary randomly from 1,000 to
2000 kg/m3.

L having absolute value equal or close to zero. So, a small ζ is set
to avoid this problem in Eq. 69. Next, we use L̆ to obtain a matrix
Vc from Eq. 68. Finally, the elements of the estimated parameter
vector p̃ are retrieved from the first quadrant of Vc. This procedure
represents a direct deconvolution (e.g., Aster et al., 2019, p. 220) using
aWiener filter (e.g., Gonzalez and Woods, 2002, p. 263).

Algorithm 7. Generic pseudo-code for the convolutional equivalent-layer
method proposed by Takahashi et al. (2020, 2022).

Algorithm 8. Pseudo-code for computing the generic matrix-vector products
given by Eqs. 52, 53 via fast 2D discrete convolution for a given vector v (Eq. 54)
andmatrixL (Eq. 66).

The required total number of flops associated with the direct
deconvolution aggregates one 2D-FFT to compute matrix L
(Eq. 66), one entrywise product L◦L* involving complex matrices
and one entrywise division to compute L̆ (Eq. 69) and a fast
convolution (Algorithm 8) to evaluate Eq. 68, which results in:

fdeconv. = λ (12D) log2 (4D) + 72D. (70)

Differently from the convolutional equivalent-layer method
proposed by Takahashi et al. (2020, 2022), the alternative direct
deconvolution presented here produces an estimated parameter
vector p̃ directly from the observed data d, in a single step,
avoiding the conjugate gradient iterations. On the other hand,
the alternative method presented here requires estimating a set
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FIGURE 3
Noise-free gravity data produced by an ensemble of rectangular prisms (Figure 2). The data are located on a regular grid of 50×50 points. Panels (A–F)
show, respectively, the xx, xy, xz, yy, yz and zz component of the gravity-gradient tensor in Eötvös (E). Panel (G) shows the gravity disturbance in
milligals (mGal).

of tentative parameter vectors p̃ for different predefined ζ. Besides,
there must be criterion to chose the best p̃ from this tentative set.
This can be made, for example, by using the well-known L-curve
(Hansen, 1992). From a computational point of view, the number of
CGLS iterations in the method proposed by Takahashi et al. (2020,
2022) is equivalent to the number of tentative estimated parameter
vectors required to form the L-curve in the proposed direct
deconvolution.

8 Numerical simulations

8.1 Flops count

Figure 1 shows the total number of flops for solving the
overdetermined problem (Eq. 22) with different equivalent-layer

methods (Eqs. 27, 28, 35, 37, 38, 43, 50, 67 and 70), by considering
the particular case in which H = IP (Eq. 9; Subsection 3.2), μ = 0
(Eq. 11), Wd = ID (Eq. 12) and p̄ = 0 (Eq. 14), where IP and ID are
the identities of order P and D, respectively. The flops are computed
for different number of potential-field data ranging from 10,000 to
1,000,000. Figure 1 shows that the moving data-window strategy by
using Leão and Silva’s 1989method and direct deconvolution are the
fastest methods.

The control parameters to run the equivalent-layer methods
shown in Figure 1 are the following: 1) in CGLS, reparameterization
approaches (e.g., Oliveira Jr. et al., 2013; Mendonça, 2020),
Siqueira et al. (2017), and Takahashi et al. (2020) (Eqs. 28, 38, 43,
50, 67) we set ITMAX = 50; 2) Cordell (1992) we set ITMAX = 10D;
3) in Leão and Silva (1989) (Eq. (35)) we set D′ = 49(7× 7) and
P′ = 225(15× 15); and 4) in Soler and Uieda (2021) (Eq. (37)) we set
D′ = P′ = 900(30× 30).
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FIGURE 4
Numerical stability curves obtained for the 21 synthetic gravity data sets by using the Cholesky factorization with μ ≈2× 10−2; column-action update
(C92) with 25,000 iterations (10× the number D of potential-field data); CGLS, iterative method (SOB17) and iterative deconvolution (TOB20) with 50
iterations each (Algorithm 1, Algorithm 6 and Algorithm 7); and the direct deconvolution (deconv.) computed with four different values for ζ (Eq. 69): 0,
10–18 (overshoot), 10–22 (optimal) and 10–28 (suboptimal). The stability parameter κ (Eq. 29) obtained for the eight curves described above are 2.37
(Cholesky); 2.45 (CGLS); 3.13 (C92); 2.78 (SOB17); 2.44 (TOB20); 4.28, 1.63, 1.15 and 0.93 (deconv. with null, suboptimal, optimal and overshoot ζ).

8.2 Synthetic potential-field data

We create a model composed of several rectangular prisms
that can be split into three groups. The first is composed of 300
small cubes (not shown) with top at 0 m and side lengths defined
according to a pseudo-random variable having uniform distribution
from 100 to 200 m.Their density contrasts are defined by a pseudo-
random variable uniformly distributed from 1,000 to 2000 kg/m3.
These prisms produce the short-wavelength component of the
simulated gravity data. The 4 prisms forming the second group
of our model (indicated by A-D in Figure 2) have tops varying
from 10 to 100 m and bottom from 1,010 to 1,500 m. They have
density contrasts of 1,500, −1800, −3,000 and 1,200 kg/m3 and
side lengths varying from 1,000 to 4,000 m. These prisms produce
the mid-wavelength component of the simulated gravity data.
There is also a single prism (indicated by E in Figure 2) with
top at 1,000 m, bottom at 1,500 m and side lengths of 4,000
and 6,000 m. This prism has density contrast is −900 kg/m3

and produces the long-wavelength of our synthetic gravity
data.

We have computed noise-free gravity disturbance and gravity-
gradient tensor components produced by our model (Figure 2)
on a regularly spaced grid of 50× 50 points at z = −100 m
(Figure 3). We have also simulated additional L = 20 gravity
disturbance data sets dℓ, ℓ ∈ {1:L}, by adding pseudo-random
Gaussian noise with zero mean and crescent standard deviations
to the noise-free data (not shown). The standard deviations
vary from 0.5% to 10% of the maximum absolute value in
the noise-free data, which corresponds to 0.21 and 4.16 mGal,
respectively.

8.3 Stability analysis and gravity-gradient
components

We set a planar equivalent layer of point masses having
one source below each datum at a constant vertical coordinate
z ≈ 512.24 m. This depth was set by following the Dampney’s
(1969) criterion (see Subsection 2.1), so that the vertical distance
Δz between equivalent sources and the simulated data is equal
to 3× the grid spacing (Δx = Δy ≈ 204.08 m). Note that, in this
case, the layer has a number of sources p equal to the number of
data D.

We have applied the Cholesky factorization (Eqs. 25, 26),
CGLS (Algorithm 1), column-action update method of Cordell
(1992) (Algorithm 4), the iterative method of Siqueira et al. (2017)
(Algorithm 6), the iterative deconvolution (Algorithm 7 and
Algorithm 8) proposed by Takahashi et al. (2020) and the direct
deconvolution (Eqs. 68 and 69) with four different values for the
parameter ζ to the 21 gravity data sets.

For each method, we have obtained one estimate p̃ from the
noise-free gravity data d and L = 20 estimates p̃ℓ from the noise-
corrupted gravity data dℓ, ℓ ∈ {1:L}, for the planar equivalent layer of
point masses, totaling 21 estimated parameter vectors and 20 pairs
(Δpℓ , Δdℓ) of model and data perturbations (Eqs. 30, 31). Figure 4
shows the numerical stability curves computed with each method
for the synthetic gravity data.

All these 21 estimated parameters vectors were obtained by
solving the overdetermined problem (Eq. 22) with the samemethod
for the particular case in which H = I (Eq. 9; Subsection 3.2),
Wd =Wq = I (Eqs. 12, 13) and p̄ = 0 (Eq. 14), where I is the identity
of order D.
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FIGURE 5
Residuals between the gravity data predicted by the equivalent layer estimated with the iterative deconvolution (TOB20) (Algorithm 7). The inverse
problems was solved by using the noise-corrupted gravity disturbance having the maximum noise level (not shown). Panels (A–F) show the residuals
between the predicted and noise-free gravity gradient data (Figure 3) associated with the xx, xy, xz, yy, yz and zz components of the gravity-gradient
tensor, respectively. The values are in Eötvös. (G) Shows the residuals between the predicted and noise-corrupted gravity disturbances. The values are
in milligals (mGal).

Figure 4 shows how the numerical stability curves vary as the
level of the noise is increased.We can see that for allmethods, a linear
tendency is observed as it is expected.The inclination of the straight
line indicates the stability of each method. As shown in Figure 4, the
direct deconvolutionwith ζ = 0 exhibits a high slope, which indicates
high instability and emphasizes the necessity of using the Wiener
filter (ζ > 0 in Eq. 69).

The estimated stability parameters κ (Eq. 29) obtained for
the Cholesky factorization, CGLS and iterative deconvolution are
close to each other (Figure 4). They are slightly smaller than that
obtained for the iterative method of Siqueira et al. (2017). Note
that by varying the parameter ζ (Eq. 69) it is possible to obtain
different stability parameters κ for the direct deconvolution. There
is no apparent rule to set ζ. A practical criterion can be the
maximum ζ producing a satisfactory data fit. Overshoot values
tend to exaggeratedly smooth the predicted data. As we can see in
Figure 4, the most unstable approaches are the direct deconvolution

with null ζ (deconv. unstable), followed by the column-action
update (C92).

We inverted the noise-corrupted gravity disturbance with the
highest noise level (not shown) to estimate an equivalent layer (not
shown) via iterative deconvolution (Algorithm 7). Figure 5G shows
the residuals (in mGal) between the predicted and noise-corrupted
gravity disturbances. As we can see, the residuals are uniformly
distributed on simulated area and suggest that the equivalent
layer produces a good data fit. This can be verified by inspecting
the histogram of the residuals between the predicted and noise-
corrupted gravity disturbances shown in panel (G) of Figure 6.

Using the estimated layer, we have computed the gravity-
gradient data (not shown) at the observations points. Figure 5A–F
show the residuals (in Eötvös) between the predicted (not shown)
and noise-free gravity-gradient data (Figure 3). These figures show
that the iterative deconvolution (Algorithm 7) could predict the six
components of the gravity-gradient tensor with a good precision,
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FIGURE 6
Histograms of the residuals shown in Figure 5. The residuals were normalized by removing the mean and dividing the difference by the standard
deviation. Panels (A–F) show the histograms associated with the xx, xy, xz, yy, yz and zz components of the gravity-gradient tensor, respectively. (G)
Shows the histogram of the residuals between the predicted and noise-corrupted gravity disturbances.

which can also be verified in the corresponding histograms shown
in Figure 6.

In the Supplementary Material, we show the residuals
between the gravity data predicted by the equivalent layer
estimated by using the following methods: 1) the CGLS method
(Algorithm 1); 2) the Cholesky factorization (Eqs. 25, 26);
3) the iterative method proposed by Siqueira et al. (2017)
(Algorithm 6); 4) the direct deconvolution with optimal value
of ζ = 10–22 (Eq. 69); and 5) the iterative method proposed by
Cordell (1992) (Algorithm 4).

9 Applications to field data

In this section, we show the results obtained by applying
the iterative deconvolution (Algorithm 7) to a field data set
over the Carajás Mineral Province (CMP) in the Amazon
craton (Moroni et al., 2001; Villas and Santos, 2001). This
area (Figure 7) is known for its intensive mineral exploration

such as iron, copper, gold, manganese, and, recently,
bauxite.

9.1 Geological setting

The Amazon Craton is one of the largest and least-known
Archean-Proterozoic areas in the world, comprehending a region
with a thousand square kilometers. It is one of the main tectonic
units in South America, which is covered by five Phanerozoic basins:
Maranhão (Northeast), Amazon (Central), Xingu-Alto Tapajós
(South), Parecis (Southwest), and Solimões (West). The Craton
is limited by the Andean Orogenic Belt to the west and the by
Araguaia Fold Belt to the east and southeast. The Amazon craton
has been subdivided into provinces according to two models, one
geochronological and the other geophysical-structural (Amaral,
1974; Teixeira et al., 1989; Tassinari and Macambira, 1999). Thus,
seven geological provinces with distinctive ages, evolution, and
structural patterns can be observed, namely,: 1) Carajás with two
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FIGURE 7
Location of the Carajás Mineral Province (CMP), Brazil. The
coordinates are referred to the WGS-84 datum. The study area (shown
in red) is located at the UTM zone 22S.

domains - the Mesoarchean Rio Maria and Neoarchean Carajás;
2) Archean-Paleoproterozoic Central Amazon, with Iriri-Xingu
and Curuá-Mapuera domains; 3) Trans-Amazonian (Ryacian),
with the Amapá and Bacajá domains; 4) the Orosinian Tapajós-
Parima, with Peixoto de Azevedo, Tapajós, Uaimiri, and Parima
domains; 5) Rondônia-Juruena (Statherian), with Jamari, Juruena,
and Jauru domains; 6) The Statherian Rio Negro, with Rio
Negro and Imeri domains; and 7) Sunsás (Meso-Neoproterozoic),
with Santa Helena and Nova Brasilândia domains (Santos et al.,
2000). Nevertheless, we focus this work only on the Carajás
Province.

The Carajás Mineral Province (CMP) is located in the east-
southeast region of the craton (Figure 7), within an old tectonically
stable nucleus in the South American Plate that became tectonically
stable at the beginning of Neoproterozoic (Salomao et al., 2019).
This area has been the target of intensive exploration at least since
the final of the ’60s, after the discovery of large iron ore deposits.
There are several greenstone belts in the region, among them are
the Andorinhas, Inajá, Cumaru, Carajás, Serra Leste, Serra Pelada,
and Sapucaia (Santos et al., 2000). The mineralogic and petrologic
studies in granite stocks show a variety of minerals found in the
province, such as amphibole, plagioclase, biotite, ilmenite, and
magnetite (Cunha et al., 2016).

9.2 Potential-field data

The field data used here were obtained from an airborne survey
conducted by Lasa Prospecções S/A. andMicrosurvey Aerogeofísica
Consultoria Científica Ltda. between April/2013 and October/2014.
The survey area covers ≈58000 km2 between latitudes −8°/ − 5°
and longitudes −53°/ − 49.5° referred to the WGS-84 datum. We

FIGURE 8
Field aerogravimetric data over Carajás, Brazil. There are D = 500,000
observations located on regular grid of 1,000×500 points.

obtained the horizontal coordinates x and y already in the UTM
zone 22S.The flight and tie lines are spaced at 3 km and 12 km, with
orientation along directions N− S and E−W, respectively. The data
are placed at an approximately constant distance of 900 m above
the ground. Figure 8 shows the D = 500,000 aerogravimetric data
on a grid of 1,000× 500 observation points with Δx = 358.12 m and
Δy = 787.62 m.

9.3 Potential-field transformation

We applied the equivalent-layer technique to the observed
data (Figure 8) with the purpose of illustrating how to estimate
the gravity-gradient tensor over the study area. We used an
equivalent layer layout with one source located below each datum
(so that P = D) on a horizontal plane having a vertical distance
Δz ≈ 2362.86 m from the observation plane. This setup is defined
by setting Δz ≈ 3dy, which follows the same strategy of Reis et al.
(2020). We solve the linear inverse problem for estimating the
physical-property distribution on the layer by using the iterative
deconvolution (Algorithm 7) with a maximum number of 50
iterations. Actually, the algorithm have converged with only 18
iterations.

Figure 9G shows the histogram of the residuals between the
predicted (not shown) and observed data (Figure 8). As we can see,
the iterative deconvolution produced an excellent data fit. By using
the estimated layer, we have computed the gravity-gradient tensor
components at the observation points. The results are shown in
Figure 9A–F.

Considering the processing time, the iterative deconvolution
took ≈1.98 s to execute the 18 iterations for estimating
the physical-property distribution on the layer by inverting
the D = 500,000 observed data. The code was run in a
modest computer with 16,0 GiB of memory and processor
12thGen Intel R© Core™ i9− 12900H× 20. Given the estimated
equivalent layer, the gravity-gradient components shown in
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FIGURE 9
Estimated gravity-gradient tensor components over Carajás, Brazil. Panels (A–F) show, respectively, the xx, xy, xz, yy, yz and zz components of the
gravity-gradient tensor in Eötvös. Panel (G) shows the histogram of the residuals between predicted data (not shown) and field data (Figure 8). The
residuals were normalized by removing the mean and dividing the difference by the standard deviation. The results were generated by applying the
iterative deconvolution (TOB20) (Algorithm 7) with 50 iterations.

Figure 9 were computed in ≈3.41 s. These results demonstrate the
efficiency of the iterative deconvolution method in processing large
datasets.

10 Discussion

The review discusses strategies utilized to reduce the
computational cost of the equivalent-layer technique for processing
potential-field data. These strategies are often combined in
developed methods to efficiently handle large-scale data sets. Next,
the computational strategies are addressed. All results shown here
were generated with the Python package gravmag (https://doi.org/
10.5281/zenodo.8284769). The datasets generated for this study can
be found in the online repository: https://github.com/pinga-lab/eql
ayer-review-computational.

The first one is the moving data-window scheme spanning the
data set.This strategy solves several much smaller, regularized linear
inverse problems instead of a single large one. Each linear inversion
is solved using the potential-field observations and equivalent

sources within a given moving window and can be applied to both
regularly or irregularly spaced data sets. If the data and the sources
are distributed on planar and regularly spaced grids, this strategy
offers a significant advantage because the sensitivity submatrix
of a given moving window remains the same for all windows.
Otherwise, the computational efficiency of the equivalent-layer
technique using the moving-window strategy decreases because the
sensitivity submatrix for each window must be computed.

The second and third strategies, referred to as the column-
action and row-actionupdates, involve iteratively calculating a single
column and a single row of the sensitivity matrix, respectively. By
following the column-action update strategy, a single column of the
sensitivity matrix is calculated during each iteration. This implies
that a single equivalent source contributes to the fitting of data
in each iteration. Conversely, in the row-action update strategy, a
single row of the sensitivity matrix is calculated per iteration, which
means that one potential-field observation is incorporated in each
iteration, forming a new subset of equivalent data much smaller
than the original data. Both strategies (column- and row-action
updates) have a great advantage because a single column or a single
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TABLE 2 Computational strategies to overcome the intensive computational cost of the equivalent-layer technique for processing potential-field data and the
corresponding articles.

Computational strategies Characteristics Advantages Disadvantages Articles

Moving data-window
scheme

A single and small
sensitivity submatrix for all

moving windows

One of the fastest strategies Regularly spaced grids of
sources and data

Leão and Silva (1989)

Moving data-window
scheme

Multiple and small
sensitivity submatrices, one

for each moving

Irregularly spaced grids of
sources and data

Computational speed is
reduced

Soler and Uieda (2021)

Column-action updates A single equivalent source is
used, iteratively

A single column of the
sensitivity matrix is

calculated

Issues related to
convergence

Cordell (1992), Guspí and
Novara (2009)

Row-action updates Equivalent data concept A subset of rows of the
sensitivity matrix is

calculated

Increasing the order of the
linear system of equations,

iteratively

Mendonça and Silva (1994)

Reparametrization of the
original parameters

Reduction the dimension of
the linear system of

equations

Lower-dimensional linear
system of equations

Undesirable smoothing
effect

Oliveira Jr. et al. (2013),
Mendonça (2020)

Sparsity induction of the
sensitivity matrix

Sparse representation of the
original dense sensitivity

matrix

Fast iteration of the CG
algorithm

Requires computing the full
and dense sensitivity matrix

Li and Oldenburg (2010),
Barnes and Lumley (2011)

Iterative methods using the
full sensitivity matrix

The equivalent layer is
updated, iteratively

Fast iterations Requires computing the full
and dense sensitivity matrix

Xia and Sprowl (1991),
Xia et al. (1993),

Siqueira et al. (2017),
Jirigalatu and Ebbing (2019)

Iterative deconvolution Block-Toeplitz
Toeplitz-block (BTTB)

matrices concept

One of the fastest strategies Regularly spaced grids of
sources and data

Takahashi et al. (2020),
Takahashi et al. (2022)

Direct deconvolution BTTB matrices concept One of the fastest strategies Solution instability

row of the sensitivity matrix is calculated iteratively. However, to
our knowledge, the strategy of the column-action update presents
some issues related to convergence, and the strategy of the row-
action update can also have issues if the number of equivalent
data is not significantly smaller than the original number of data
points.

The fourth strategy is the sparsity induction of the sensitivity
matrix using wavelet compression, which involves transforming
a full sensitivity matrix into a sparse one with only a few
nonzero elements. The developed equivalent-layer methods using
this strategy achieve sparsity by setting matrix elements to zero if
their values are smaller than a predefined threshold. We highlight
two methods that employ the sparsity induction strategy. The
first method, known as wavelet-compression equivalent layer,
compresses the coefficients of the original sensitivity matrix using
discrete wavelet transform, achieves sparsity in the sensitivity
matrix, and solves the inverse problem in the wavelet domain
without an explicit regularization parameter. The regularized
solution in the wavelet domain is estimated using a conjugate
gradient (CG) least squares algorithm, where the number of
iterations serves as a regularization factor. The second equivalent-
layer method that uses the sparsity induction strategy applies
quadtree discretization of the parameters over the equivalent layer,
achieves sparsity in the sensitivity matrix, and solves the inverse
problem using CG algorithm. In quadtree discretization, equivalent
sources located far from the observation point are grouped
together to form larger equivalent sources, reducing the number

of parameters to be estimated. Computationally, the significant
advantage of the equivalent-layer methods employing wavelet
compression and quadtree discretization is the sparsity induction
in the sensitivity matrix, which allows for fast iteration of the CG
algorithm. However, we acknowledge that this strategy requires
computing the full and dense sensitivity matrix, which can be
considered a drawback when processing large-scale potential-field
data.

The fifth strategy is the reparametrization of the original
parameters to be estimated in the equivalent-layer technique.
In this strategy, the developed equivalent-layer methods reduce
the dimension of the linear system of equations to be solved by
estimating a lower-dimensional parameter vector. We highlight two
methods that used the reparametrization strategy: 1) the polynomial
equivalent layer (PEL) and; 2) the lower-dimensional subspace of the
equivalent layer. In the PEL, there is an explicit reparametrization
of the equivalent layer by representing the unknown distribution
over the equivalent layer as a set of piecewise-polynomial functions
defined on a set of equivalent-source windows. The PEL method
estimates the polynomial coefficients of all equivalent-source
windows. Hence, PEL reduces the dimension of the linear system of
equations to be solved because the polynomial coefficients within
all equivalent-source windows are much smaller than both the
number of equivalent sources and the number of data points. In
the lower-dimensional subspace of the equivalent layer, there is
an implicity reparametrization of the equivalent layer by reducing
the linear system dimension from the original and large-model
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space to a lower-dimensional subspace. The lower-dimensional
subspace is grounded on eigenvectors of the matrix composed by
the gridded data set. The main advantage of the reparametrization
of the equivalent layer is to deal with lower-dimensional linear
system of equations. However, we acknowledge that this strategy
may impose an undesirable smoothing effect on both the
estimated parameters over the equivalent layer and the predicted
data.

The sixth strategy involves an iterative scheme in which
the estimated distribution over the equivalent layer is updated
iteratively. Following this strategy, the developed equivalent-
layer methods differ either in terms of the expression used
for the estimated parameter correction or the domain utilized
(wavenumber or space domains). The iterative estimated correction
may have a physical meaning, such as the excess mass constraint.
All the iterative methods are efficient as they can handle irregularly
spaced data on an undulating surface, and the updated corrections
for the parameter vector at each iteration are straightforward,
involving the addition of a quantity proportional to the data residual.
However, they have a disadvantage because the iterative strategy
requires computing the full and dense sensitivity matrix to compute
the predicted and residual data in all observation stations per
iteration.

The seventh strategy is called iterative deconvolutional of the
equivalent layer. This strategy deals with regularly spaced grids
of data stations and equivalent sources which are located at a
constant height and depth, respectively. Specifically, one source
is placed directly below each observation station, which results
in sensitivity matrices with a BTTB (Block-Toeplitz Toeplitz-
Block) structure. It is possible to embed the BTTB matrix into
a matrix of Block-Circulant Circulant-Block (BCCB) structure,
which requires only one equivalent source. This allows for fast
matrix-vector product using a 2D fast Fourier transform (2D
FFT). As a result, the potential-field forward modeling can be
calculated using a 2D FFT with only one equivalent source
required. The main advantages of this strategy are that the entire
sensitivity matrices do not need to be formed or stored; only
their first columns are required. Additionally, it allows for a highly
efficient iteration of the CG algorithm. However, the iterative
deconvolutional of the equivalent layer requires observations and
equivalent sources aligned on a horizontal and regularly-spaced
grid.

The eigth strategy is a direct deconvolution method, which
is a mathematical process very common in geophysics. However,
to our knowledge, direct deconvolution has never been used to
solve the inverse problem associated with the equivalent-layer
technique. From the mathematical expressions in the iterative
deconvolutional equivalent layer with BTTB matrices, direct
deconvolution arises naturally since it is an operation inverse
to convolution. The main advantage of applying the direct
deconvolution strategy in the equivalent layer is that it avoids,
for example, the iterations of the CG algorithm. However, the
direct deconvolution is known to be an unstable operation. To
mitigate this instability, the Wiener deconvolution method can be
adopted.

Table 2 presents a list of computational strategies used in
the equivalent-layer technique to reduce the computational
demand. The table aims to emphasize the important characteristics,

advantages, and disadvantages of each computational strategy.
Additionally, it highlights the available methods that use each
strategy.

11 Conclusion

Wehave presented a comprehensive review of the strategies used
to tackle the intensive computational cost associatedwith processing
potential-field data using the equivalent-layer technique. Each of
these strategies is rarely used individually; rather, some developed
equivalent-layer methods combine more than one strategy to
achieve computational efficiency when dealing with large-scale
data sets. We focuses on the following specific strategies: 1) the
moving data-window scheme; 2) the column-action and row-action
updates; 3) the sparsity induction of the sensitivity matrix; 4) the
reparametrization of the original parameters; 5) the iterative scheme
using the full sensitivity matrix; 6) the iterative deconvolution; and
7) the direct deconvolution. Taking into account the mathematical
bases used in the above-mentioned strategies, we have identified
five groups: 1) the reduction of the dimensionality of the linear
system of equations to be solved; 2) the generation of a sparse linear
system of equations to be solved; 3) the explicit iterative method;
4) the improvement in forward modeling; and 5) the deconvolution
using the concept of block-Toeplitz Toeplitz-block (BTTB)
matrices.

We show in this review that the computational cost of the
equivalent layer can vary from up to 109 flops depending on
the method without compromising the linear system stability.
The moving data-window scheme and direct deconvolution are
the fastest methods; however, they both have drawbacks. To be
computationally efficient, the moving data-window scheme and the
direct deconvolution require data and equivalent sources that are
distributed on planar and regularly spaced grids. Moreover, they
both requires choosing an optimun parameter of stabilization. We
stress that the direct deconvolution has an aditional disadvantage in
terms of a higher data residual and border effects over the equivalent
layer after processing. These effects can be seen from the upward
continuation of the real data from Carajás.

We draw the readers’ attention to the possibility of combining
more than one aforementioned strategies for reducing the
computational cost of the equivalent-layer technique.
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