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With the gradual decline of natural gas production, reserve upgrading has become
one of the important issues in natural gas exploration and development. However,
the traditional reserve upgrade forecasting method is often based on experience
and rules, which is subjective and unreliable. Therefore, a prediction method
based on neural network is proposed in this paper to improve the accuracy and
reliability of reserve upgrade prediction. In order to achieve this goal, by collecting
the relevant data of natural gas exploration and development in Sichuan Basin,
including geological parameters, production parameters and other indicators, and
processing and analyzing the data, the relevant characteristics of reserves increase
are extracted. Then, a neural network model based on multi-layer perceptron
(MLP) is constructed and trained and optimized using backpropagation algorithm.
The results show that the prediction accuracy of the constructed neural network
model can reachmore than 90% and can effectively predict the reserve upgrading.
Experiments show that the model has high accuracy and reliability, and is
significantly better than the traditional prediction methods. The method has
good stability and reliability, and is suitable for a wider range of natural gas fields.
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1 Introduction

With the continuous development of the global economy and the increasing demand for
sustainable energy, natural gas has gradually become amainstream choice as a clean, efficient, and
renewable energy source. This article focuses on the Sichuan Basin, one of China’s important
natural gas production bases. The Sichuan Basin ranks among the top in terms of total natural gas
resources, characterized by abundant gas reservoirs (Figure 1). Over 200 gas fields and gas-
bearing structures have been discovered in the region, forming the main exploration and
development areas, including the Sichuan central gas zone dominated by deep conventional gas
and continental tight gas, the Sichuan southern gas zone dominated by shale gas, the Sichuan
eastern gas zone dominated by medium-to-high sulfur gas reservoirs, and the Sichuan western
gas zone dominated by ultra-deep conventional gas and volcanic rock gas reservoirs. As of 2021,
the proven natural gas reserves in the Sichuan Basin reached around 4.7 trillion cubic meters,
accounting for approximately 13.6% of the national total, with an annual gas production
exceeding 35 billion cubic meters, representing nearly 17% of the national total.

The natural gas industry in the Sichuan Basin has a long history of development. In the early
1950s, exploration and development of natural gas began in the southern part of Sichuan,
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marking the start of large-scale exploration and development in the
basin. Over the following decades, with continuous improvement in
exploration and development technologies and the expansion of
exploration areas, the natural gas resources in the basin have been
efficiently developed and utilized, leading to the establishment of the
country’s first complete natural gas industrial system. Currently, the
natural gas business in the Sichuan Basin is in a phase of rapid
development, with continuous breakthroughs in theoretical and
technological advancements. Gas reserves and production have
entered a period of rapid growth, and the quality of reserves is
continuously improving. It is expected that more major gas fields
will be discovered, and the natural gas industry will enter a new
golden period. With the increasing demand for new and clean
energy, the future development prospects of natural gas in the
Sichuan Basin will be even broader, with the potential to become a
world-class natural gas production and supply base.

In the development of the natural gas industry, accurate prediction
of the upgrading of low-grade reserves is crucial as it directly impacts the
decision-making process for the deployment of natural gas exploration
and development, thereby significantly influencing the efficiency and
economic benefits of gas extraction. Recent studies have shown that
China has largely achieved its goals in the second round of oil and gas
exploration, and remaining economically recoverable reserves and

production are starting to decline. Therefore, in addition to
enhancing production and cost-effectiveness in mature oil regions, it
is even more important to strategically explore new areas and domains
to ensure the sustained development of natural gas production.
Consequently, how to predict the upgrading of low-grade natural
gas reserves more accurately will be an important research direction
in the field of natural gas exploration and development. (Li, 2021).

There are many factors affecting the upgrading of natural gas
reserves, so in-depth analysis of relevant indicators should be carried
out in the prediction of the upgrading of natural gas reserves. The
composition can be analyzed from a microscopic perspective. For
example, the chemical microstructure of rock samples has been
quantitatively analyzed by using element analyzer, X-ray diffraction
instrument and Fourier infrared spectrometer, including the reverse of
the chemical composition of elements, organics and functional groups.
(Liu and Li, 2022). We can also test the pore structure and fractal
characteristics under different rocks, as well as the changes of the
specific surface area of BET, BJH total pore and adsorption pore, and
study the influence of natural gas porosity on the scale of natural gas
reserve upgrading (Liu et al., 2023a). Liu et al. (2022) pointed out that
the splints and permeability changed by CO2 injection are the key issues
to improve the production of coalbed methane and the geological
storage of CO2 to coal seams, indicating that permeability also

FIGURE 1
Natural gas exploration results in sichuan basin.
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determines the scale of gas reserve upgrading. Liu et al. (2023b)
conducted an experimental study on the ground stress and
permeability and found that when the deviator stress was applied
parallel to the plywood in coal, the intermediate stress had a greater
impact on the permeability reduction, so the prediction of natural gas
reserves upgrading should be considered in many aspects. A key
evaluation index for the upgrading of natural gas reserves is 3D
seismic monitoring, but seismic data are affected by multiple
indicators at the same time. Xue et al. found that seismic
attenuation has a great impact on the reduction of seismic data
resolution and the increase of main frequency period. Xue et al.
(2023) proposed a seismic absorption coefficient estimation method
based on quantum mechanics to detect hydrocarbons, and used model
and field data. The results show that the proposed method has great
potential for oil and gas detection. Xue et al. (2022b) also proposed a
stable seismic Q estimation method based on quantum mechanics
signal representation. Compared with traditional methods, the Q
estimation method based on quantum mechanics shows higher
stability and noise robustness. The effectiveness and superiority of
the proposedmethod are verified by synthetic and field data application.
Q estimation methods based on quantum mechanics provide a new
field and a complementary method for measuring seismic attenuation.
At the same time, relevant numerical simulation software can be used to
analyze natural gas reserves combined with on-site data. (Xue et al.,
2022a; Liu et al., 2023c; Zhang et al., 2023).

In order to achieve the purpose of upgrading and predicting natural
gas reserves, many scholars at home and abroad have conducted in-
depth research on this topic. Liu et al. (2018) conducted detailed
modeling and description of the gas-bearing effective sand bodies
based on the geological characteristics of a certain gas field. They
also studied and determined the classification evaluation criteria for
reservoirs and the volumetric method for reserve recalculation.
Additionally, they have developed a reservoir evaluation technology
based on well network control, specifically suitable for this type of gas
reservoir. Furthermore, they researched and formulated a fine
evaluation method for the stable production potential of the gas
field by combining multiple factors. Shi et al. (2021) first employed
the Distance-based Comprehensive Evaluation Method (TOPSIS) to
evaluate the geological factors influencing reserve upgrade. Thismethod
was applied to clastic reservoirs in the Bohai Bay Basin, resulting in the
selection of 11 blocks with upgrade potential and achieving favorable
application effects. Furthermore, corresponding upgrade strategies were
proposed for blocks expected to be upgraded in the near future. Li et al.
(2021a) conducted an analysis of the status of upgraded reserves and
studiedmethods for determining reasonable initial production rates and
decline rates. They established a two-tier standard for controlling
reserve upgrade from contingent resources to proved reserves in
deep, low-permeability sand and conglomerate reservoirs under
different geological conditions and oil prices. This enabled the
evaluation of reserve upgrades. Sun et al. (2017) studied the
upgrading patterns and characteristics of oil-controlled reserves in
complex fault block reservoirs by comparing the upgrading rates,
upgrading coefficients, and conversion rates of different reservoirs.
This research provides a reliable basis for making exploration and
development strategic decisions. Xiao et al. (2021) found that low-grade
reserves are characterized by complex geological conditions, strong
reservoir heterogeneity, limited data availability, and limitations in
understanding at different stages, leading to poor performance of

conventional evaluation methods. To address these issues, they
developed a quantitative uncertainty-based method for evaluating
the potential of reserve upgrade and utilization. Zhang (2007)
proposed an evaluation method for assessing the risk of reserve
upgrade by comparing before and after the reserve upgrade. The
method involves utilizing cumulative probability graphs to analyze
the final upgraded proved reserves data, including controlled reserves,
predicted reserves, and trap resources in the Jiyang Depression. A risk
evaluation chart for upgrading lower-level reserves to proved reserves
was established. Based on the analysis of the characteristics of controlled
reserve upgrade, Cui (2013) studied the influencing factors of reserve
upgrade. Utilizing statisticalmethods, the research clarified the potential
for reserve upgrade of un-upgraded controlled reserves. The results
showed that production capacity, reservoir properties, and crude oil
properties are key factors that constrain the upgrade of controlled
reserves. Zhang et al. (2018) focused on the Su 14 Block, Box 8, and
Shan 1 Formation in the Sulige Gas Field. They employed the
volumetric method to recalculate the reserves of the target layer.
Taking into account the existing well network conditions and
different degrees of well network control, they used different
methods to calculate the geological reserves that have been produced
under different well network conditions. The scale and distribution of
the produced geological reserves were established in this study, thereby
achieving reserve evaluation.

According to the survey conducted on the research status, it has
been found that the majority of studies on reserve upgrading primarily
rely on traditional reserve upgrading prediction methods. These
methods are mainly based on statistical techniques and empirical
formulas, such as Kriging interpolation, variogram analysis, and
regression analysis. Although these methods are straightforward and
practical, their predictive performance is often unstable and unreliable
due to factors such as data quality and subjective human influence.
Therefore, finding more accurate and reliable prediction methods has
become a current research hotspot and challenge.

In recent years, artificial intelligence (AI) technology has been
widely applied in the field of natural gas reserve upgrading
prediction. Neural networks, as AI methods with nonlinear mapping
capabilities, exhibit strong adaptability and generalization, and have
been extensively used in reserve upgrading prediction. Compared to
traditional statistical methods, neural network methods can better
explore data features, improving prediction accuracy and reliability.
However, there are still some challenges and issues in current research.
On one hand, existing studies often rely on a single neural network
structure for prediction, lacking comparative analysis of multiple neural
network architectures. On the other hand, comprehensive evaluations
of model performance, stability, and reliability in predicting
effectiveness are lacking in current research.

Therefore, we aim to construct a neural network-based reserve
upgrading prediction model specifically for the Sichuan Basin natural
gas field.Multiple indicator data will be collected and processed, relevant
features for reserve upgrading will be extracted, and a multilayer
perceptron (MLP) neural network model will be built. The model
will be further optimized and trained. Additionally, comprehensive
evaluations of the model’s performance, including stability, prediction
accuracy, and reliability, will be conducted. Validation and comparative
analysis of the model will be carried out using methods such as cross-
validation and error analysis to enhance prediction accuracy and
reliability. The goal is to provide a novel and efficient method for
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natural gas reserve upgrading prediction, offering scientific and reliable
technical support for gas exploration and development.

2 Determination of factors influencing
natural gas reserves

2.1 Analysis of factors influencing the
upgrade of natural gas reserves

2.1.1 Cluster analysis method
Cluster analysis is a commonly used unsupervised learning

method that discovers the underlying structure and patterns in

data by grouping similar data points together. In the study of natural
gas production upgrading, analyzing the influencing factors is
crucial for achieving the desired objectives. However, the
influencing factors vary among different gas reservoirs. To
achieve more accurate predictions of natural gas reserve
upgrades, a pre-processing step using cluster analysis is
performed on the target gas reservoirs to classify them into
distinct clusters. Subsequently, predictions of natural gas reserve
upgrades based on BP neural networks are conducted separately for
each cluster. The principle of cluster analysis primarily involves
identifying production data with similar characteristics and
categorizing them into clusters. (Khater et al., 2020; Marietta
et al., 2023).

FIGURE 2
Cluster analysis flowchart.

FIGURE 3
Cluster analysis results.
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The commonly used formulas in cluster analysis are distance
formulas and similarity coefficient formulas. Distance formulas are
used to calculate the distance between two data points, enabling the
determination of whether they belong to the same cluster during the
clustering process. Common distance formulas include Euclidean
distance, Manhattan distance, and Chebyshev distance, which are
calculated as follows:

Euclidean distance:

dij �
������������
∑n
k�1

xik − xjk( )2
√√

(1)

Manhattan distance:

dij � ∑n
k�1

xik − xjk

∣∣∣∣ ∣∣∣∣ (2)

Chebyshev distance is a commonly used distance metric method
that extends from the Euclidean distance and is used to calculate the
distance between two vectors in multi-dimensional space.
Chebyshev distance:

dij � max
0≤ k≤ n

xik − xjk

∣∣∣∣ ∣∣∣∣ (3)

In the formula, dij represents the distance between the i-th and j-th
data points, n is the dimensionality of the data points, and xik and xjk

are the values of the i-th and j-th data points in the k-th dimension.
The similarity coefficient formulas are used to measure the

similarity between two data points and are commonly employed
in calculating similarity matrices in clustering methods, enabling the
selection of the most similar data points for aggregation during the
clustering process. Common similarity coefficient formulas include
the inverse of Euclidean distance and cosine similarity, which are
calculated as follows:

The inverse of Euclidean distance:

sij � 1
1 + dij

(4)

Cosine similarity:

sij � ∑n
k�1xikxjk������∑n

k�1x
2
ik

√ �������∑n
k�1x

2
jk

√ (5)

In the formula, sij is the similarity between the i-th and j-th data
points, dij is the distance between them, n is the dimension of the
data points, xik and xjk is the value of the i-th and j-th data points in
the k-th dimension.

By using the aforementioned formulas, different influencing
factors such as porosity, permeability, sedimentary microfacies,
well control degree, etc., are employed as indicators in the
clustering analysis. The existing natural gas reservoirs are subjected
to cluster analysis, and the similar and correlated reservoirs are
grouped together to achieve the preprocessing of natural gas
reservoirs, laying the foundation for subsequent predictions of
reservoir capacity upgrading. The main steps involved are as follows:

(1) Data collection: Gather data related to natural gas production,
such as geological structures, well control degree, 3D seismic
data, and other relevant information.

(2) Data preprocessing: Perform data preprocessing techniques
including filtering, transformation, and normalization to
eliminate noise and unnecessary information in the
influencing factor data.

(3) Determine the number of clusters: Select an appropriate number
of clusters, usually determined through experimentation.

(4) Choose a clustering algorithm: Select a suitable clustering
algorithm. In this study, the clustering algorithm based on
Chebyshev distance and K-means is used.

(5) Perform cluster analysis: Utilize the chosen clustering algorithm
to divide the data into several clusters, where each cluster
represents a group of data points with similar characteristics.

(6) Interpret the clustering results: Analyze and interpret the
clustering results, identifying the features and differences
among each cluster, and further infer the factors influencing
reservoir capacity upgrading.

(7) Validate the clustering results: Compare the clustering results
with the actual situation to verify the effectiveness of the cluster
analysis.

FIGURE 4
Schematic diagram of Analytic Hierarchy Process.
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Among these steps, conducting the cluster analysis in step 5 is
crucial for this research. The main workflow of this step is as follows
(Figure 2):

Through cluster analysis, potential patterns and similarities in
natural gas production data can be discovered. The selected
indicators for this cluster analysis include sedimentary
microfacies, porosity, permeability, reservoir type, reservoir
thickness, effective reservoir thickness, reservoir continuity,
fracture development, gas reservoir type, geological reserves,
technically recoverable reserves, geological reserve abundance,
recoverable reserve abundance, seismic exploration, well control
per km2/well, stable production at kilometer well depth, and well
average. By performing cluster analysis on these reservoir indicators,
preprocessing of experimental data is achieved. The cluster analysis
may reveal significant correlations between reservoir thickness and
reserves in certain regions, while other regions may be influenced
more by geological structures and wellhead pressure. These results
can provide reference for decision-making in natural gas extraction
and production. Due to the abundance of production data in gas
reservoir areas, only partial cluster results are presented below
(Figure 3):

From the graph, it can be visually observed that clustering
multiple natural gas reservoirs results in different grouping
patterns. Several grouping experiments have been conducted
based on actual conditions, and it has been determined that the
data preprocessing is more effective when the number of groups is
set to four. Next, the research object data will be subjected to cluster
analysis in order to reduce the error in predicting the scale of natural
gas reserve upgrades caused by significant differences between
groups.

2.1.2 The Analytic Hierarchy Process
The Analytic Hierarchy Process (AHP) is a systematic analysis

method developed by American mathematician Thomas L. Saaty in
the early 1970s. Its core involves decomposing complex problems
into hierarchical structures, conducting pairwise comparisons at

each level, and ultimately determining the weights or priority
ranking of the problem elements. It is a mathematical method
used for analyzing complex decision-making problems. In this
study, the AHP is utilized to assess the accuracy of the natural
gas reserve upgrading prediction model. The principle is to
determine the weights of various factors using the AHP,
eliminating insignificant factors that have minimal impact on
reserve upgrading, and comparing these weights with those
derived from the neural network. This comparison helps to
determine the accuracy of the neural network predictions.
(Shadmaan and Islam, 2021; Redfoot et al., 2022).

First, the hierarchical structure of the influencing factors is
determined and decomposed into multiple levels and factors.
Then, expert judgments and the Analytic Hierarchy Process
(AHP) are used to compare and evaluate the importance of each
factor at each level, ultimately determining the contribution of each
factor to the objective, i.e., the degree of influence of each factor on
the natural gas reserve upgrading.

In the AHP, when assessing the hierarchical structure model
based on expert judgments, it is necessary to calculate the
consistency ratio to ensure the accuracy and reliability of the
judgment experiment results. The formula for calculating the
consistency ratio is as follows:

CR � CI

RI
(6)

Among them, CI is a consistency indicator and RI is a random
consistency indicator. The specific calculation formula is as follows:

CI � λ max − n

n − 1
(7)

RI � 1
RIn

(8)

Among them, λmax is the maximum eigenvalue of the judgment
matrix, n is the order of the judgment matrix, RIn is the pre
calculated value of the random consistency indicator. To

TABLE 1 Weight table of influencing factors for each group.

Group
number

Sedimentary
microfacies

Porosity Permeability Reservoir
type

Reservoir
thickness

Effective
reservoir
thickness

Reservoir
continuity

Development
of cracks

Well
average

Group A 0.021 0.0045 0.0786 0.0695 0.0224 0.0252 0.0983 0.0964 0.0234

Group B 0.04805 0.0589 0.1705 0.03101 0.0617 0.02818 0.11576 0.06579 0.06579

Group C 0.03571 0.0020 0.04794 0.02338 0.10769 0.03301 0.04401 0.01403 0.1169

Group D 0.07852 0.0117 0.09541 0.09757 0.08269 0.03048 0.08337 0.09795 0.05856

Group
number

Gas
reservoir
type

Geological
reserves

Technical
recoverable
reserves

Abundance
of geological

reserves

Abundance of
recoverable
reserves

Seismic
exploration

Well
control
km2/well

Stable
production at

a depth
of 1 km

Group A 0.0638 0.1017 0.0993 0.0223 0.0286 0.139 0.0978 0.0082

Group B 0.0453 0.01576 0.04648 0.06233 0.04805 0.00558 0.06705 0.06371

Group C 0.10007 0.11206 0.09076 0.08171 0.06186 0.07964 0.01657 0.03261

Group D 0.09516 0.01721 0.00679 0.02088 0.02291 0.07274 0.09552 0.03251
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calculate the maximum eigenvalues and corresponding eigenvectors
of the judgment matrix. The specific calculation formula is as
follows:

A �v � λ max �v (9)
Among them, A is the judgment matrix, and �v is the

corresponding eigenvector, λmax is the maximum eigenvalue.
For the judgment of consistency ratio, if CR≤ 0.1, the judgment

matrix is considered consistent. Otherwise, it needs to be revised or
reconstructed. For each level in the hierarchy, the influencing factors
are ranked based on the calculated weights. The weights of all levels
are sorted according to their importance, resulting in the final
weights of each influencing factor.

Since the impact of influencing factors on natural gas reserve
upgrading varies across different blocks, the application of the
Analytic Hierarchy Process (AHP) is initiated to determine the

impact of factors on the results. The following steps are involved
when using the AHP to solve the problem:

(1) Determine the hierarchical structure model of the problem:
decompose the factors affecting the scale of natural gas reserves
upgrade layer by layer, and build a hierarchical structure model.

(2) Construct a paired comparison matrix: For the influencing
factors at each level, compare the influencing factors at the
next level in pairs to obtain the relative importance degree
between each factor, and construct a paired comparison matrix.

(3) Calculation of eigenvectors: For each pairwise comparison
matrix of influencing factors, its eigenvectors are solved and
normalized.

(4) Calculate the consistency index: calculate the consistency index
of the pair comparison matrix, which is used to judge whether
the constructed comparison matrix is reasonable.

FIGURE 5
Weight chart of influencing factors. (A) Group A. (B) Group B. (C) Group C. (D) Group D.
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(5) Solving the weight vector: the weight value of the influencing
factors of natural gas is obtained by weighted average of the
eigenvectors of each pair comparison matrix.

(6) Consistency test: test whether the calculated weight value is
consistent.

The schematic diagram of the Analytic Hierarchy Process is as
follows (Figure 4):

Through the above steps, the weight value of each factor in
natural gas production upgrading can be obtained, so as to
determine the importance of each factor to natural gas
production increase. According to the results of cluster analysis,
the cluster groups were divided into group A, Group B, group C and
group D, and the weight of influencing factors in each group was
calculated respectively to determine the influence degree of each
influencing factor on each group. The factors that have the least
influence on the increase of natural gas reserves are eliminated, and
the remaining factors are processed. Table 1 shows an example of the
results for a group of reservoirs:

Due to the significant differences among the groups of reservoirs
and the varying degrees of impact of each influencing factor on
reserve upgrading within each group, it is important to have a clear
understanding of the proportion of each influencing factor within
each group, as shown in Figure 5. This will also aid in further
validating the accuracy of the neural network in subsequent analysis.

From the table, it can be observed that the degree of influence of
each group’s influencing factors on the scale of natural gas
production upgrading varies, and there are significant differences
among the groups. In this research phase, a preliminary screening of
the influencing factors in each group has been conducted, removing
factors with low correlation to reserve upgrading. This provides
indicators for the subsequent establishment of a predictive model for

the scale of natural gas production upgrading and also offers
quantifiable evaluation metrics for the accuracy of the model. It
serves as a reliable basis for formulating scientific strategies for
reserve upgrading.

3 Construction of a prediction model
for the upgrading scale of natural gas
reserves

The main model used is the neural network model, which is an
artificial intelligence model that mimics the biological nervous
system, and learns the weight and bias of the model through
training data, and finally realizes the prediction of unknown data.
Subsequently, the multi-layer perceptron model will be used to
predict the upgrade of reserves. A multilayer perceptron is a type
of feedforward neural network, usually consisting of an input layer,
one or more hidden layers, and an output layer. Each neuron is
connected to all the neurons in the previous layer, and each
connection has a corresponding weight indicating the importance
of that connection. (Huang and Geng, 2004; Li et al., 2021b;
Sheikhoushaghi et al., 2022).

In a neural network, each neuron transforms its input into an
output using an activation function. The activation functions
commonly used in the hidden and output layers are the Sigmoid
function or the ReLU function. During the training process, we use
the backpropagation algorithm to update the weights and biases of
the neural network to minimize prediction errors. Neural network
models typically consist of multiple layers, with each layer
containing multiple nodes. Here are some basic formulas
involved in the neural network model:

(1) Input Layer: The raw data is used as input, typically represented
as x. For a single input neuron i, its output can be represented as
follows:

a 1( )
i � xi i � 1, 2, 3, . . . , n (10)

In the formula, n is the number of input features, xi is the value
of the i-th input feature.

(2) Hidden layer: The signal of the input layer is non-linear
transformed and obtained by linear combination of weight w
and deviation b. For a hidden layer neuron j, its output can be
expressed as:

z 2( )
j � ∑n

i�1w
1( )

ij a 1( )
i + b 1( )

j j � 1, 2, 3 . . . , h (11)

In the formula, h is the number of hidden layer nodes,w(1)
ij is the

weight from the i-th node of the input layer to the j-th node of the
hidden layer, b(1)j is the offset term of the j-th node in the hidden
layer, a(1)i is the output of the i-th node in the input layer. Usually,
z(2)j performs nonlinear conversion through Activation function
f(), and outputs the value a of neuron a(2)j :

a 2( )
j � f z 2( )

j( ) j � 1, 2, 3 . . . , h (12)

(3) Output layer: Maps the output of the hidden layer to the final
output, which can be represented as:

FIGURE 6
Flow chart of neural network model establishment.
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z 3( )
k � ∑h

j�1w
2( )

jk a
2( )
j + b 2( )

k k � 1, 2, . . . , m (13)

Among them, m is the number of output features, w(2)
jk is the

weight from the j-th node in the hidden layer to the k-th node in the
output layer, b(2)k is the offset term of the k-th node in the output
layer, a(2)j is the output of the j-th node in the hidden layer

(4) Loss function: used to measure the error between the predicted
value and the actual value. Common Loss function include
square error, Cross entropy, etc.

J θ( ) � 1
2m

∑m

i�1 yi − ŷi( )2 (14)

Among them, θ Is the parameter in the neural network,m is the
number of samples, yi is the true value of the i-th sample, ŷi

Predicted value for the i-th sample.

(5) Backpropagation: by calculating the derivative of the Loss
function to each parameter in the network, back propagation

error is propagated layer by layer, so as to update the weight and
deviation, and gradually improve the prediction ability of the
model.

The output error in the Backpropagation is:

δk � yk − ŷk (15)
Hidden layer error in Backpropagation:

δ 2( )
j � ∑m

k�1w
2( )
jk δkf′ z 2( )

j( ) (16)

In the formula, f′() is the derivative of the Activation function
Based on the application of the aforementioned formulas in

neural networks, the construction of the multilayer perceptron for
reservoir upgrade prediction model is based on the following steps:

(1) Select input variables: Influencing factors related to the
upgrading of natural gas reserves need to be selected as input
variables. In other words, sedimentary microfacies, porosity,

FIGURE 7
Schematic diagram of Multilayer perceptron model.

TABLE 2 The weight value of the neural network.

Group
number

Sedimentary
microfacies

Porosity Permeability Reservoir
type

Reservoir
thickness

Effective
reservoir
thickness

Reservoir
continuity

Development
of cracks

Well
average

Group A 0.02 0.0041 0.079 0.0698 0.0221 0.0245 0.0977 0.0954 0.0221

Group B 0.0491 0.0584 0.1681 0.0351 0.0631 0.02751 0.1094 0.06512 0.0662

Group C 0.0358 0.0023 0.04801 0.02342 0.1093 0.0302 0.0421 0.01451 0.1142

Group D 0.0791 0.0114 0.0948 0.0982 0.0831 0.031 0.0842 0.0961 0.0588

Group
number

gas
reservoir
type

geological
reserves

Technical
recoverable
reserves

Abundance
of geological

reserves

Abundance of
recoverable
reserves

Seismic
exploration

Well
control
km2/well

Stable
production at

a depth
of 1 km

Group A 0.064 0.1011 0.102 0.0244 0.0291 0.13066 0.10537 0.00867

Group B 0.04582 0.01592 0.04676 0.0625 0.04902 0.00571 0.06812 0.06412

Group C 0.1021 0.117 0.0912 0.08242 0.0632 0.0752 0.0162 0.0328

Group D 0.0953 0.0171 0.0068 0.0211 0.0226 0.0731 0.0952 0.0321
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permeability, reservoir type and regional thickness are selected
as input variables.

(2) Design the network structure: the structure of the neural
network is composed of several layers, including the input
layer, the output layer and several hidden layers. The multi-
layer perceptron model is mainly used, and the number of
hidden layers and the number of neurons in each layer of the
multi-layer perceptron model are constantly tested and adjusted
to achieve the optimal prediction effect.

(3) Data preprocessing: Data needs to be preprocessed before neural
network training. The main methods are data cleaning and data

normalization. Data cleaning to remove outliers and noise to
make the data more standardized; Data normalization can
transform data of different dimensions into the same scale
and avoid errors caused by different data dimensions.

(4) Data training: the data set is divided into training sets and test
sets. The training set is used to train the neural network model
and the back propagation algorithm is used to optimize the
model parameters. The basic idea of backpropagation algorithm
is to calculate the partial derivative of the loss function to each
layer of neurons through the chain rule, and then update the
network parameters according to the gradient descent method.

FIGURE 8
Comparison of weight proportion (A) group A. (B) Group B. (C) Group C. (D) Group D.

TABLE 3 Relative error table.

Group Group 1 (%) Group 2 (%) Group 3 (%) Group 4 (%)

relative error 5.763 5.619 6.552 7.649
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(5) Use the trained model to predict the future upgrade of natural
gas reserves, obtain the forecast results and analyze them.

Combining the formula and establishment process, the process
of establishing the model is shown in Figure 6:

The neural network model was established with the following
settings: the maximum number of training epochs was set to 1,000,
the target error was set to 0.01, and the minimum gradient was set to
1e-6. The hidden layer of the neural network consisted of 10 nodes.
The Levenberg-Marquardt algorithm was used for network training.
The activation function applied to the hidden layer and output layer
was the Sigmoid function.

The multilayer perceptron is a powerful predictive model
(Figure 7) that can extract regular patterns from a large
amount of historical data through the learning and
optimization process of a neural network, enabling future
predictions. In this research component, the multilayer
perceptron is utilized to train on the combination of multiple
factors, allowing for the prediction of the scale of natural gas
reserve upgrades. Additionally, it can determine the degree of
influence that each factor has on the scale of natural gas reserve
upgrades, providing crucial decision-making guidance for natural
gas exploration and development.

4 Verification and evaluation of the
prediction model for the upgrading
scale of natural gas reserves

After training the neural network model, it is necessary to
validate and evaluate its performance. This step is crucial for
assessing the accuracy, stability, and generalization capability of
the model. It involves testing the model’s true capabilities to ensure
its reliability and effectiveness in practical applications. Validation
allows quantifying the prediction accuracy of the model and
comparing it against actual observations to determine if the
model meets the expected performance level. The validation
process also helps identify and address issues such as overfitting
or underfitting, optimizing model parameters and hyperparameters.
Additionally, validation provides insights into the model’s
generalization ability, i.e., how well it performs on new data. A
comprehensive and systematic validation enables a deep
understanding of the model’s performance, serving as a reliable
basis for its application and further improvements. Therefore,
validating the well-established neural network model is crucial to
ensure its reliability and credibility.

Based on the previous analysis of influencing factors, the natural
gas reservoirs were divided into four groups. In this section, the

FIGURE 9
Standardized residual plot. (A) Group A. (B) Group B. (C) Group C. (D) Group D.
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research focuses on the reserve upgrading prediction for each group,
observing the accuracy of the neural network predictions in different
groups. The objective is to validate the accuracy of the model. Firstly,
a comparison is made between the weight values of the influencing
factors predicted by the Analytic Hierarchy Process and the weight
values of the influencing factors obtained through back-propagation
in the neural network (Table 2). This mutual validation is intended
to confirm their consistency. Figure 8 presents the comparison of
weights between the two approaches.

A comparison was made between the weight proportions of the
factors obtained from the Analytic Hierarchy Process and the weight
proportions derived through back-propagation in the neural
network. The results of the two calculations were found to be
consistent, providing mutual validation and confirming the
feasibility of establishing a natural gas reserve upgrading
prediction model based on the neural network approach. To
further confirm the reliability of the results, the standardized
residuals of the model predictions in each group are presented
below, aiming to provide additional validation of the model’s
reliability.

Based on Figure 9, the standardized residuals of the comparison
samples were calculated. According to the t-test in the residual
analysis, when the standardized residuals fall within the range of [-2,

2], it indicates that the errors are small and there are no outliers. The
calculation results showminimal error, indicating a high degree of fit
between the neural network predictions and the actual values. The
following (Figure 10) presents the comparison between predicted
values and actual values in each group. This section showcases
10 data points selected from each group.

In order to verify the accuracy of the prediction results of natural
gas reserves upgrading, the error analysis of each group of reserves
upgrading scale is carried out based on the neural network. Error
analysis can help to determine the accuracy of calculation methods
and results. The method chosen for error analysis is relative error
method, and the formula used is as follows:

δ � Δ/ L × 100% (17)
In the formula, δ - actual relative error, generally given as a

percentage, Δ - absolute error, L - truth value. Combining the
predicted and actual data with the above formula, the following
results are obtained (Table 3).

From Figure 10, it can be observed that the predicted results of
the experimental outcomes are highly consistent with the actual
results. This indicates the successful accuracy of the reserve upgrade
scale prediction model in accurately forecasting natural gas reserve
upgrades. By utilizing the complex pattern recognition and learning

FIGURE 10
Comparison between predicted and actual values. (A) Group A. (B) Group B. (C) Group C. (D) Group D.
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capabilities of neural networks, the model captures the key trends
and influencing factors of reserve upgrades, thereby providing
reliable prediction results. The accuracy and practicality of this
prediction model are satisfactory, and further research and
application are anticipated to enhance the prediction capabilities
of natural gas reserve upgrades.

5 Conclusion

The objective of this study was to explore the neural network
prediction method for natural gas reserve upgrade scale and validate
the accuracy and reliability of the model by combining it with cluster
analysis and analytic hierarchy process (AHP) for analyzing the
weights of influencing factors.

Initially, cluster analysis was applied to categorize multiple natural
gas reservoirs into different groups. This step aimed to address the issue
of inaccurate predictions due to variations among different reservoir
types. The impact and significance of influencing factors vary across
different types of reservoirs, affecting the reserve upgrade scale
differently. Through validation, it was determined that the cluster
analysis resulted in four groups, providing a basis for subsequent
analysis. Next, AHP was employed to analyze the weights of
influencing factors within each group. This analytical method helped
identify the most significant factors influencing the reserve upgrade scale
while eliminating factors with minimal impact on the prediction results.
The accuracy of the model was validated by comparing the weights
obtained from AHP with those derived from the neural network.

During the prediction phase, a neural network model was
utilized to forecast the reserve upgrade scale. The model was
established by configuring appropriate network architecture,
defining input and output variables, and conducting training and
validation processes. Multiple validation methods were employed to
assess the performance of the model, including comparing the
weights obtained from AHP, analyzing the standardized residuals
of sample points, and directly comparing the actual and predicted
values. The comparative validation yielded satisfactory results, with
the predicted reserve upgrade scale highly consistent with the actual
results, thus confirming the accuracy of the developed neural
network model in predicting natural gas reserve upgrades. It
further demonstrated the effectiveness of neural networks in
pattern recognition and learning capabilities, as well as their
potential in forecasting natural gas reserve upgrade scales.

This research outcome provides important information and
reference for relevant stakeholders and decision-makers. By
analyzing the weights of influencing factors in different groups,
the factors with the greatest impact on the natural gas reserve
upgrade scale can be identified, providing a basis for optimizing
upgrade plans and allocating resources effectively. Additionally, by
establishing an accurate prediction model, reliable forecasts of
reserve upgrade scale can be provided to decision-makers,
helping them make informed decisions and reduce decision risks.

However, our research also has limitations. Firstly, the study is
based on a limited dataset, and expanding the size and diversity of
the dataset may enhance the model’s generalization ability.
Secondly, our model only considers specific influencing factors
and does not account for other potential factors that may impact
the reserve upgrade scale. Therefore, future research can incorporate

more factors into consideration. To further improve the model’s
performance, future studies can explore more complex neural
network architectures, introduce additional influencing factors,
and compare them with other prediction methods. Furthermore,
for sample points with significant prediction errors, further analysis
of their characteristics and causes can be conducted to identify
methods for improving prediction accuracy.

In summary, in this paper, we propose a comprehensive
prediction method of natural gas reserves upgrading scale which
combines cluster analysis, analytic hierarchy process and neural
network. The validity and reliability of this method are verified by
verification and analysis. In view of the relative lack of research on the
prediction of natural gas reserves upgrading scale, this study aims to
fill the gap and provide reference for future research. It is believed that
the results provide valuable tools and insights for decision makers and
stakeholders in the gas industry and inspire future research.
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