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Fracture modelling is essential for understanding fluid flow in fractured
hydrocarbon reservoirs, particularly in the phase of production; however,
traditional discrete fracture network (DFN) modelling methods lack constraints
that reflect characteristics of fracture development. Fractures or fracture networks
exhibit a high degree of randomness; as such, it is difficult to model fracture
characteristics. This paper proposes a new approach for DFN modelling
constrained by seismic attributes. Firstly, the steerable pyramid method is
adopted to improve seismic data resolution; secondly, multiple seismic
attributes are extracted and combined into a composite attribute to
characterize fracture spatial distribution; finally, a DFN modelling method is
established by using the composite attribute as a location constraint. To verify
the effectiveness of the approach, a case study is conducted in the Bonan
Depression, in East China. The results show that, compared with the traditional
DFN modelling methods, the DFN modelling with the location constraint create a
more realistic fracture model which accurately reflects fracture distribution
characteristics. The application demonstrates the potential of wide application
prospects in fractured reservoirs.
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1 Introduction

Fractures including joints, faults, pressure solution seams, and deformation bands are
pervasive in crustal rocks (Welch et al., 2022). These features interconnect to form complex
fracture networks that provide crucial storage space for oil and gas reservoirs, as well as
important channels for their transportation and exploitation. For example, Hardebol et al.
(2015); Azim (2016) studied the impact of fracture network geometry on fluid flows in
fractured reservoirs. Hunziker et al. (2018) studied the impact of stochastic fracture networks
on seismic attenuation. Understanding the spatial distribution of fractures is essential for
efficiently developing oil and gas reservoirs.

The Discrete Fracture Network (DFN) (Shi et al., 2021) method is an important tool
for studying the spatial distribution patterns of fractures. This method directly uses
fractures of various sizes and shapes to form a network, and then uses discrete data to
characterize the fracture system. Since Baecher et al. (1977); Baecher, (1983) introduced
the DFN method for evaluating reservoirs in 1977, many scholars have tried to improve
it. For example, Mardia et al. (2007) used a Markov Monte Carlo method to update
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fracture locations, achieving a dynamic simulation with a
changing sampling distribution. Xu and Dowd (2010) and
Dong et al. (2018b) created the shape of a random polygon
with a fixed number of sides that more accurately follows
geological laws. Singh et al. (2022) combined DFN with the
discrete element method to improve fracture stability.
Kolyukhin et al. (2023) perform the statistical analysis of
model realization on different spatial scales to investigate the
possibility to evaluate the corresponding correlation fractal
dimension and power exponent. However, many of these
methods focus on improving the fracture shape and
probability distribution pattern, and for realistic fracture
modeling, integrating more geological or geophysical
knowledge is essential.

In recent years, many scholars have attempted to integrate
various constraints to enhance DFN modelling accuracy. Dong
et al. (2018a) introduced a fracture density-constrained cast point
modelling method, which improved fracture modelling accuracy to
a certain extent. However, the method has high randomness and low
accuracy in measuring fracture density parameters. To further
enhance fracture modelling accuracy, Lei et al. (2020) applied
constraints using various parameters from well logs, such as
ground stress, lithology, and permeability. However, obtaining
these parameters directly from wells in real-world applications
can be difficult as they are typically obtained by examining rock
samples from wells in laboratories, which only reflect fractures at
sparse well locations. Also, in this paper, we study the possibility of
using seismic data to characterize the DFN. Seismic attributes have
been used to determine the probability distribution of fault lengths
(Torabi et al., 2017). Schneider et al. (2016) employed seismic
attributes to estimate fracture orientation and intensity. To
overcome the limitation of a possible wide spatial constraint,
Yang et al. (2022) utilized a single seismic attribute for DFN
fracture modelling, but this approach suffers from inaccuracy and
large randomness because fracture characterization using a single
seismic attribute tends to be incomplete and biased. Nevertheless, to
achieve realistic DFN modelling, more robust constraints with less
randomness and higher accuracy are required.

This paper presents a novel approach for DFN modelling by
integrating a new location constraint of multiple seismic
attributes extracted using the steerable pyramid technology.
Firstly, the steerable pyramid method is employed to
decompose seismic data and enhance its resolution. Secondly,
multiple seismic attributes are meticulously integrated to create a
high-resolution composite attribute that serves as both a fracture
identification tool and a DFN location constraint. Finally, an
accurate fracture model is established with the constraint to
reflect the realistic fracture distribution and reproduce spatial
fracture characteristics more accurately. To validate the
effectiveness of this approach, a real case study is conducted
in the Bonan Depression of East China.

2 Methodology

To overcome the problems addressed in the current DFN
modelling technology, this paper developed an approach to
constrain the DFN modelling with multiple seismic attributes

extracted from high resolution seismic data obtained with the
steerable pyramid method. The goal is to integrate different
seismic attributes to identify spatial fracture distribution and
characterize fracture network in a quantitative sense.

The basis of this approach lies in selecting the optimal seismic
data and integrating multiple seismic attributes to identify fractures
and fracture networks. Three major phases are involved in the
method are as follows.

(1) Seismic data decomposition and data selection. The original
seismic data are decomposed into 7 volumes with different
dominant frequencies, or called ‘Levels’ using the steerable
pyramid method. The method is able to decompose seismic
data into different levels, while maintaining the geological
structure information. Lower levels of higher dominant
frequencies are stacked to produce a new seismic data of a
high resolution for later stage processing.

(2) Composite attribute building and fracture identification.
Multiple seismic attributes are carefully extracted from the
lower levels data of high-resolution produced in the previous
step. The selected attributes are merged with proper weights to
form a composite seismic attribute, which holds advantages of
each attribute to enhance the fracture representation and
identification.

(3) DFN modelling with the location constraint of composite
seismic attribute. The composite seismic attribute (holding
high resolution content) is utilized as the constraint of DFN
modelling, which is essentially the DFN modelling process
constrained with multiple seismic attributes.

2.1 Seismic data decomposition and data
selection

Before we go to the details of this study, a brief review of the
steering pyramid method is given here. The steering pyramid
method is an algorithm for multi-scale, multi-directional
decomposition and reconstruction of seismic data. The method
decomposes an image into a group of images (called Levels) of
the same size as the original one but with different resolution or
different frequency band (Mathewson and Hale, 2008). In the
process of decomposition, different radial filters and directional
filters are designed to enhance data intrinsic features of discontinuity
as well as the original structure of the input image remain
unchanged. The following filter formulas are defined based on
different angles:

Gk � ∑
m
∑

n
WkGk−1 2x +m, 2y + n( ) (1)

fθ x, y( ) � ∑M

j�1kj θ( )fθj x, y( ) (2)

where Gk represents the k th level of the pyramid, x, y represents
an array of image pixels from different levels, andWk represents a
window function with low-pass characteristics. fθ(x, y) is a
function of the controllable filter in the θ direction, which can
be obtained by combining the interpolation function kj(θ) in the
θ direction and the linear fθj(x, y) of the basic function in the θ
direction, andM is the number of the basic functions required for
steering. kj(θ) are the weighting functions.
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In the seismic application of the decomposition method, seismic
data are normally decomposed into 7 levels of different frequency band.
The levels holding high-frequency can be stacked to one, and for
example Level 0 and 1 are stacked to form a high-frequency stack, which
improves seismic data resolution and enhances the discontinuity for the
purpose of identification of edges, joints, faults, fractures or cavities.

Zhao et al. (2021) used the steerable pyramid technology on seismic
data to recognize geological structure. This method effectively removes
background noise and enhances the potential geological structures.

Following the seismic decomposition and level stack, a comparison
analysis is performed to evaluate the benefits of the process in both
frequency domain and time domain, depending on the study objective.
For example, high-resolution stacks can exhibit clearer or more
consistent images of fault development in 3D space for fault
interpretation. This process is shown in a workflow of Figure 1.

2.2 Composite attribute building and
fracture identification

Once the seismic decomposition is complete, seismic attributes
can be extracted from the stack with high resolution. For fracture
identification in this paper, the seismic attributes, variance,
curvature and mean consistent curvature are selected.

The variance attribute is a seismic attribute that describes the
variability of seismic amplitudes in neighboring seismic traces. It is
more sensitive to fractures caused by faults with strong
discontinuities and is suitable for identifying faults at median-
scale (Zhang et al., 2021). Curvature can provide information
about the spatial distribution of structural features in a rock
formation, and is most sensitive to fractures developed by fold; it
is suitable for identifying large-scale fractures (Al-Dossary and
Marfurt, 2006). The mean consistent curvature, a specific
curvature derivative, is a type of seismic attribute that measures
the curvature of a seismic horizon or event in a consistent manner
throughout the entire seismic volume. The mean consistent
curvature attribute is designed to be more sensitive to small-scale
fractures and other subtle structural features, as it is able to capture
variations in the seismic response that are not evident in the original
seismic data (Chilès and Marsily, 1993).

The attributes above represents different characteristics of fractures
or fracture networks (e.g., geometry, scales and accuracy). To combine
the advantages of each of the seismic attributes, a composite seismic
attribute with high accuracy is generated using a linear superposition
method. The steps to achieve this are as follows.

① Seismic attributes are normalized to ensure that they be
superposed.

② Giving each seismic attribute a weight. This weight is
represented by the fracture-related fill ratio, which is the
ratio of the fault area described by the seismic attribute to the
existing geologically recognizable fault area. The closer to
1 the ratio is, the better the seismic attributes fit with the
actual, and the higher the correlation is.

③ The linear superposition is applied to generate a composite
attribute and the process can be represented with the
mathematical relationships between multiple seismic
attributes using the Eq. 3.

ri � Si
S

ωi � ri
∑3

i�1ri
K � ω1KCur + ω2KCon + ω3KVar

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3)

FIGURE 1
The processing workflow with the steerable pyramid method.

FIGURE 2
Flow chart of DFN fracture modelling.
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where KCur represents curvature; KCon represents the mean
consistent curvature; KVar represents the seismic variance; ri
denotes the correlation between different seismic attributes and
large faults; Si is the area of large faults with different seismic
attributes; S is the area of large faults for which existing
geological measured; ωi is the constraint weight; and
ω1、ω2、ω3 are the constraint weights, which are summed as 1.

Assuming that the geological survey large fault area S is 20 km2. The
curvature attribute calculation obtains the fault area S1 as 10km2, and
the variance attribute calculation obtains the area S2 as 18 km2. Then the
correlation r1 between the curvature attribute and the fault is 0.5, and
the correlation r2 between the variance and the fault is 0.9. From the
above equations, it can be deduced that the weight ω1 of the curvature
attribute is 0.357, and that of the variance ω2 is 0.643.

2.3 DFN modelling with the constraint of
composite seismic attribute

In this section, the composite seismic attribute generated from
the previous section is utilized as the fracture location constraint in
the DFN modelling (Chopra and Marfurt, 2013) by introducing the
Poisson process. DFN modelling is a numerical modelling approach
used to simulate fluid flow and transport in fractured rock masses.

The principle of the Poisson process is a mathematical model
used to describe the occurrence of random events over time or space.
It is particularly useful in modelling systems where events occur
randomly, or in this paper, fractures distribute randomly. Therefore,
the Poisson process can be used in DFN modelling to generate
random fractures in a rock mass to create a DFNmodel simulate the
development of natural fractures or fracture network in rocks.

When generating fractures in 3D space, the flow chart of the
traditional approach is shown in Figure 2. In this paper, we use

the composite seismic attribute to constraint fracture location
distribution as the attribute is much related to the development of
fractures or fracture network. The steps are as follows.

① The composite seismic attribute is regularized, shown in Eq. 4.
The generation probability Pr of fractures per unit volume can
be calculated as,

Pr � P − P min

P max − P min
(4)

where Pr is the generation probability of fractures; P is the input
composite seismic attribute; P min is the minimum value of the input
composite seismic attribute and P max is the maximum value of the
input composite seismic attribute.

② With the composite seismic attribute, a fracture network can
be generated by randomly placing fractures in rock mass
according to the Poisson distribution. The Poisson process is
used to generate the fracture center locations (x, y, z), where
x, y, z are independent random coordinate values that obey
the uniform distribution.

③The probability values Pr(x, y, z) are extracted. If
Pr(x, y, z)≥ rand, the generated fracture center position is
valid; otherwise, it is invalid. rand is a random value in the
interval [0, 1].

④ When the value of effective fractures is less than the preset
value N of the fractures, the above steps are repeated;
otherwise, the process is terminated.

Overall, using the Poisson process as an input for DFN simulations
can help create more realistic and representative models of fractured
rockmasses, which can be useful for understanding and predicting fluid
flow and transport in geological systems.

FIGURE 3
Study area map.
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3 Application

3.1 Geological background

The study area, the Bonan Depression, is located in themiddle of
the Zhanhua Oil field, in East China. In spite of the long production
history, the geological structure and fault systems are not fully
understood due to the presence of the complex faults and fault
system. Seismic interpretation shows that the depression is crossed
by two major faults indicated by two bold red curves (Kang et al.,
2002; Wang and Zhang, 2023) shown in Figure 3. Manyminor faults
develop as branches of the two majors.

The study area is approximately 16.2 km from east to west and
9.2 km from north to south, and the thickness of the target layer, the
Shasi Interval, is around 15 m. High-angle tectonic fractures are
developed within the distance of hundreds of meters of the faults,

and there are six wells in the study area. The reservoir model is not
effective based on the traditional DFN modelling approach, and the
workflow proposed in the previous section will be tested and verified
in the study area in order to improve the understanding of the
reservoir model.

3.2 Seismic data decomposition, seismic
attribute computation and composite
attribute generation

For the case application, seismic data from the Bonan
Depression area were decomposed, and seismic attributes were
extracted before the composite attribute was generated. The
steerable pyramid technique decomposed the seismic data into
seven levels, from Level 0 to 6. Level 0 contained much noise

FIGURE 4
Seismic profiles: (A) original seismic profile, (B) stacked seismic profile.
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and was not considered. The higher levels (Level 4, 5, and 6), holding
low-frequency content, indicated the large-scale trend of the fault
system. The other levels (Level 1, 2, and 3) of the high-frequency

band were stacked to improve the resolution and prediction of
small-scale faults. To examine the workflow, crossline 803 was
extracted and presented in Figure 4A. The section stacked with

FIGURE 5
Map showing different seismic attributes: (A) original variance, (B) optimal variance, (C) original curvature, (D) optimal curvature, (E) original mean
consistent curvature, (F) optimal mean consistent curvature, (G) composite seismic attribute map.
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Level 1, 2, and 3 is shown in Figure 4B for comparison. The area
highlighted in the ellipses indicates the improved clarity of the two
faults (enhancement of the discontinuity), which facilitates seismic
interpretation.

Following the decomposition, three seismic attributes, variance,
curvature and mean consistent curvature are extracted using the
stack. Figure 5B shows the variance for the window parameter of
3*3. Figure 5D shows the variancefor a vertical radius parameter of
12. Figure 5F shows the mean consistent curvature for the window
parameter of 3*3. Figures 5A, C, E are the three attributes extracted
from the original seismic using the same parameters. It can be seen
that the attributes from the original seismic are much noisier,
compared with the ones from the stack, from which the outlines
of the faults and fault system are more clearly observed. Since
fractures develop along the faults or within the fault system.
These clear images will reflect more logical fracture distribution
if they are utilized to constrain the DFN modelling in this area.

With the extracted seismic attribute, a composite attribute is
computed according to the Eq. 3 in the previous section shown in
Figure 5G. The composite attribute combines the advantage of the
three, reflecting the potential fractures along the fault or within the
fault system. And it will be used as the final resulting attribute
constrain the DFN modelling in the next section.

3.3 Fracture modeling

With the composite attribute extracted, it is served as the
location constraint of the DFN modelling in this section. The
modelling process is constructed with the approach presented in

the section II(C). In addition, Fracture density distribution (or the
number of fractures in one location) is created from wells in the
method presented in (Jian et al., 2021) and the details are not
discussed here as we focus on the location constraint. By examining
the fracture properties at the wells, its orientation is determined as
30° and 135° with the variance of 0.1. The fracture dip angle is mainly
high-angle, and the mean value and variance are 75° and 0.5,
respectively. In the process of fracture generating, each fracture is
created with 4 edges, and the mean fracture length is 10 m, and its
width is around 3–4 m.

With the parameters above, the DFN model created with the
location constraint is shown in Figure 6B. Figure 6A is the model
built without the constraint. By comparison, fractures in Figure 6A
distribute across the full area; however, in tectonic sense, they should
only emerge along the faults or within the fault system. Therefore,
with the location constraint, Figure 6B indicates the consistency of
the spatial relation between fractures and the regional faults. For
example, many fractures develop in the two ellipses (see Figure 6A)
there are no faults, which is not correct in geological sense; at the
same locations (the two ellipses in Figure 6B), few fractures develop
as the location constraint is applied.

As the same time, we compare the number of fractures near the
well with the daily fluid production. The number of fractures within
a square with the side length of 100 m, centered at the well. The
number of fractures for Wells Y1–Y6 are 2, 4, 21, 14, 14 and 9,
respectively. The corresponding daily fluid productions per well
were 1.18, 5.19, 27.9, 28.77, 13.2 and 18.5. The fracture distribution
at the wells is consistent with the production with the correction
coefficient of 0.755 (Figure 6C). This demonstrates the effectiveness
of the DFN method.

FIGURE 6
Fracture modelling and analysis in study area in the southern Bonan Depression: (A) fracture model constrained by fracture density, (B) fracture
model constrained by composite seismic attribute, (C) number of fractures near the well in the model and the daily fluid production.
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4 Conclusion

To improve DFN modelling, a new approach is developed by
integrating high resolution seismic attributes as a location constraint
into a more realistic modelling workflow in this paper. The steerable
pyramid technology is able to enhance seismic resolution, whichmake it
possible to generate a high-resolution fracture prediction map along
with seismic attribute extraction techniques. For fractured reservoir
modelling, DFN modelling provides a powerful tool for simulate
fractured reservoir models, helping understand the characteristics of
fractures or fracture network in rock masses. With the map as a spatial
and geological constraint, DFN modelling is able to generate a more
logical and realistic fracture models, promoting the ability of more
fracture modelling. The correlation between the logging daily
production rate and the fracture model is as high as 70%, and there
is an obvious positive correlation. At the same time, the fracture model
has a higher degree of overlap with the fracture development zones
predicted by seismic attribute results. All the above real case application
shows that the approach in this paper can effectively improve the
accuracy of fracture modelling, reducing randomness in the traditional
DFN modelling. Also, the real case demonstrates the potential of this
approach in wide application prospect.
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