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Due to its unique geomorphological characteristics, the loess gully region is easy
to produce ground fissures under the action of coal mining, destroy the ground
infrastructures, induce geological disasters, and threaten the safety of people’s
lives and property. Therefore, it is particularly important to accurately obtain
information about the development of mining-induced ground fissures and
study their spatial-temporal evolution mechanism. Based on the 1212 working
face of a mining area in Yulin City, Shaanxi Province, this paper studies the
extraction method and spatial-temporal evolution mechanism of ground
fissures by combining remote sensing images and field survey data. The study
shows that this proposed method significantly reduces noise points and mis-
extraction, and the accuracy is more than 80%, improving the extraction accuracy
of ground fissures and making the process more automated. By comparing the
extraction accuracy of ground fissures at different flight altitudes, we determine
that the optimal flight altitude for the research area is 60 m. At the beginning of the
working face mining stage, the proportion of low-density areas of ground fissures
continues to increase. Some low-density areas transition into high-density areas,
which is consistent with the progress of the working face advancement. After the
end of theworking face retreat, the width of the ground fissures tends to be evenly
distributed. The mining-induced ground fissures in the Loess gully and ravine
region have good self-similarity. A dynamic development model of ground
fissures is constructed to reveal its formation mechanism. The research
conclusions can provide a technical support for geological disaster monitoring
and land ecological restoration in mining areas.
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1 Introduction

Coal, often referred to as “black gold,” is one of the main sources of energy in the world,
as shown in Table 1 (Brodny and Tutak, 2019; Zhang et al., 2021; IEA, 2022). As of the end of
2021, coal accounted for 26.9% of the world’s primary energy consumption structure (Chen
et al., 2022). While coal mining brings significant social and economic benefits, it also brings
a series of problems to the ecological environment (Wang et al., 2022; Yang et al., 2022).
Ground fissures, resulting from the deformation coupling of topsoil and overlying rock
layers in mined-out areas, represent a major geological disaster induced by coal mining
(Cicmanec et al., 2008; Chen and Hu, 2018). Mining-induced ground fissures exacerbate soil
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and water loss, damage buildings, transportation routes, and other
engineering facilities, and can trigger secondary geological disasters
(such as landslides and collapses), endangering people’s lives and
property (Yang and Fan, 2017; Tang et al., 2020). Therefore, timely
and accurate identification of ground fissures is fundamental to
ensuring sustainable development in mining areas and restoring the
ecological environment (Zhang et al., 2013).

Currently, ground fissure investigation methods mainly
include manual inspections and remote sensing satellite
monitoring (Hang et al., 2014; Cheng et al., 2020).
Traditionally, researchers searched for ground fissures by
vehicle or on foot, measuring and recording them with

instruments such as tape measures, total stations, and
cameras, followed by subsequent data analysis (Bian et al.,
2014; Xu et al., 2021). While manual inspection methods
provide high accuracy, they are time-consuming and labor-
intensive, and researchers’ safety cannot be guaranteed (given
the large number of ground fissures, many of which are located in
dangerous areas) (Peng et al., 2018; Zhu et al., 2023). Some
scholars have extracted ground fissure features using satellite
remote sensing images. For example, Fan et al. (2015) identified
1,802 ground fissures in the Yushenfu mining area through
remote sensing interpretation combined with field
investigations, discovering that they are mainly distributed in

TABLE 1 The proportion of primary energy consumption in the world’s major countries in 2022.

Country Petroleum
(%)

Natural
gas (%)

Coal
(%)

Nuclear
energy (%)

Hydropower
(%)

Other renewable
energy (%)

Other renewable
energy (%)

World 31.6 23.5 26.7 4.0 6.7 7.5 18.2

China 17.7 8.5 55.5 2.4 7.7 8.3 18.4

Russia 24.4 50.8 11.0 7.0 6.4 0.3 13.7

United States 37.7 33.1 10.3 7.6 2.5 8.8 18.9

Japan 37.1 20.3 27.6 2.6 3.9 8.6 15.1

Canada 30.2 31.0 2.8 5.5 26.4 4.2 36.1

France 34.7 16.4 2.5 31.6 5.0 9.7 46.2

Germany 34.6 22.6 18.9 2.5 1.3 19.9 23.7

United Kingdom 36.5 35.4 2.9 5.9 0.7 18.6 25.2

Italy 40.2 38.3 5.0 0.0 4.2 12.4 16.6

European Union 38.0 21.2 12.0 9.4 4.5 14.8 28.7

FIGURE 1
Geographical location of the study area.
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high-intensity mining areas. Wang (2016) used World View-2
data and a method combining human-computer interaction
interpretation and field verification to analyze the cause and
hazard degree of geological disasters in the Wudong mining area,
providing a basis for relevant departments to make geological
disaster prevention and control decisions. Zhang et al. (2019)
proposed a step-by-step extraction method to extract ground

fissures based on GeoEye remote sensing images, achieving an
accuracy rate of 85.7%. However, the use of satellite images to
extract ground fissures is limited in terms of spatiotemporal
resolution and fails to reflect the developmental characteristics
of ground fissures (Hou et al., 2019).

In recent years, UAV remote sensing technology has developed
rapidly, offering advantages such as low cost, high resolution, and rapid

FIGURE 2
DJI M100 UAV and control point. (A) UAV, (B) Control point.

FIGURE 3
UAV image preprocessing results.

FIGURE 4
Principle of K-means clustering algorithm. (A) Randomly generate samples, (B) Clustering results.
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efficiency. It can quickly acquire high-resolution images and has been
widely applied in geological disaster investigations in mining areas
(Zhao et al., 2021). Compared to satellite remote sensing technology,
UAV images can clearly reflect the morphology, location, and other
features of ground fissures (Zhao et al., 2013; Xiang et al., 2019). Some
achievements have already been made in extracting ground fissures
using UAV images. For example, Zhang et al. (2022b)); Zhang et al.
(2022 Y.) used low-altitude UAVs to obtain high-resolution images of
the 8092 working face in a certain Ordos mining area, identifying
ground fissures using a method combining primary and auxiliary
methods with an accuracy of 95%; Wei et al. (2012) used UAV
images and TM images from the Maji Ridge mining area in Shanxi
Province as data sources and successfully extracted ground fissure
information by establishing a knowledge model, proving that the
method has high accuracy; Zhang et al. (2020) based on the
background information of UAV images, constructed different
datasets through cluster analysis and effectively extracted mining
area ground fissures using a combination of machine learning and
image processing algorithms, achieving an overall accuracy of 88.99%;
Li et al. (2014); Wei et al. (2018) accurately extracted ground fissure

information using threshold segmentation algorithms and first-order
Gaussian difference matching filter algorithms based on UAV image
data, providing technical support for geological disaster monitoring.
However, the above studies still have the following problems: (1)
Although manual visual interpretation extraction of ground fissures
has high accuracy, it is time-consuming and laborious due to the
complex morphology and large number of ground fissures. (2) UAV
images enhance object details but increase the differences between
similar objects, making classification more difficult. (3) A single image
processing algorithm cannot achieve high accuracy and automated
extraction of ground fissures.

In summary, this paper takes the 1212 working face of a certain
mining area in Yulin City, Shaanxi Province as the research area.
Based on UAV remote sensing image data, we propose a method to
extract ground fissures by combining geometric morphology and
optical features, achieving high accuracy and automated extraction
of ground fissures. We analyze the timing characteristics of ground
fissures from three aspects: density, width, and fractal dimension,
aiming to provide technical support for geological disaster
monitoring and protection in mining areas.

FIGURE 5
Statistical features. (A) Image gradient, (B) Homogeneous sample map.

FIGURE 6
Ground fissure polishing treatment.
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2 Overview of the study area

2.1 Study area

The research area is located in the northwest of Yulin City,
Shaanxi Province, China (Figure 1). The terrain within the mining
area is quite varied, with loess gullies and ravines crisscrossing the
landscape, sparse vegetation, and characterized as a typical
ecologically vulnerable area. This area has a temperate semi-arid
continental climate, four distinct seasons, large temperature
differences, and low annual precipitation that mainly occurs in
June, July, and August. The average annual precipitation is
440.8 mm, and the average annual temperature is 8.5°C. In order
to correspond the very pronounced ground fissures in Figure 1 to the

mining range of the working face, we named them as fissures a-c. At
the same time, these ground fissures are marked in Figure 14
(Distribution of ground fissures) in Section 4.3.3. By comparing
Figure 1 and Figure 14, the relative relationship between ground
fissures and the range of working face can be obtained.

Large-scale coal mining has led to many environmental
problems, exacerbating the degradation of the ecological
environment, such as ground fissures. Traditional underground
mining methods disrupt the original stress balance of the
overlying rock layers, and due to the special loess gully and
ravine topography of the mining area, numerous ground fissures
can form at the surface. Therefore, this paper takes the active ground
fissure area of the 1212 working face in the mining area as the
research object, obtaining multiple periods of UAV images through
UAV photogrammetry. The size of the 1212 working face is 1965 ×
170.4 m2. The mined coal seam is the #2 coal seam. The average
mining depth is 178 m, and the average coal thickness is 4.8 m. The
working face employs a fully mechanized top-coal caving method,
with the roof managed by complete collapse.

2.2 Datasets

The research area has complex terrain, requiring a preliminary
field survey before actual flight. In order to determine the UAV flight
altitude, it is necessary to clarify the general width of ground fissures
in the observation area, as well as the presence of buildings or other
factors that may affect the UAV flight. In this experiment, the
control point is a cross with a size of 1m × 1 m and a width of
10–15 cm. In order to facilitate subsequent data processing, red
paint is sprayed in the center of the cross, and RTK is used to record
its plane position. The imaging collection equipment used in this
experiment is the DJI M100 quadcopter (Figure 2). The UAV is
equipped with a DJI X3 gimbal visible light sensor.

Based on the size of the pixel and the focal length of the objective
lens, the UAV flight altitude was calculated to be 58 m. Considering
the complex terrain of the study area (loess gully and ravine region),
there are differences in the accuracy of images taken at different
flight altitudes. Therefore, photogrammetric measurements were
taken at three flight altitudes: 50m, 60m, and 70 m. The
observation time was from May to June 2019, with an along-
track overlap of 80% and a side overlap of 60%. The UAV flew
six times each day (for each of the three flight altitudes), each flight
height obtaining 500–600 images.

In this experiment, Pix4D software was chosen to correct and
mosaic the UAV images to generate 3D model, Digital Orthophoto
Map (DOM) and Digital Surface Model (DSM). During the UAV
photogrammetric measurement process, factors such as unstable
camera signals and lighting conditions led to uneven image color
and low clarity, resulting in low ground fissure extraction accuracy.
Therefore, prior to ground fissure extraction, the images needed to
undergo gray-scale stretching and noise filtering (Chen et al.,
2009). Gray-scale stretching, also known as contrast stretching,
improves the dynamic range of gray levels during image processing
through linear transformation functions. Common noise filtering
includes three processing methods, namely, mean filtering, median
filtering, and bilateral filtering. By comparing the results of the
three filtering methods, bilateral filtering was chosen for image

FIGURE 7
Ground fissure extraction results. (A) Edge detection algorithm,
(B) Threshold segmentation algorithm, (C) Random deep forest (RF)
classification algorithm, (D) Optimistic algorithm.
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processing. The results of gray-scale stretching and filtering are
shown in Figure 3.

3 Research methods

Common object extraction methods mainly include edge
detection algorithms, threshold segmentation algorithms, and
random forest classification algorithms. These methods often
require a large volume of training samples, and determining the
threshold can be challenging. In view of this, we propose a
method for extracting ground fissures that does not require
training samples or manual intervention. The essence of this
method is the combination of geometric morphology and optical
characteristics, and the application of the K-means clustering
method for ground fissure extraction. Ground fissure extraction
mainly includes two steps: first, combining the regional gradient
changes of ground fissures in the image and the statistical feature
differences with other objects to obtain an indicator that can
highlight ground fissures; second, drawing on the idea of

classification, using the K-means clustering method to achieve
automatic extraction of ground fissures.

3.1 The concept of gradient

The purpose of the gradient is to find the extremes of a function,
which is a vector. The gradient represents the maximum value of the
directional derivative of the function at a certain point, and the
maximum value of the function at that point is the modulus of that
gradient (Chen et al., 2023). Suppose the binary function f(x,y) has a
partial derivative (first-order continuous) in the plane region. For any
point p(x,y) in the function, a vector can be obtained. The coordinates
of the vector (x,y) is the gradient of the binary function f(x,y). The
gradient direction of any point on the function is the direction in which
the function grows fastest at this point. The coordinates of the gradient
are expressed by Eq 1:

gradf x, y( ) � ∂f

∂x
i + ∂f

∂y
j (1)

FIGURE 8
Extraction of ground fissures at different flight heights. (A) 50 m, (B) 60 m, (C) 70 m.

FIGURE 9
Evaluation result. (A) Different methods, (B) Different flight heights.
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When the directional derivative of a certain point is consistent
with the gradient direction, the modulus of the gradient is the
maximum value:

gradf x, y( )∣∣∣∣ ∣∣∣∣ � ��������������
∂f

∂x
( )2

+ ∂f

∂y
( )2

√√
(2)

3.2 The concept of K-means clustering
algorithm

The K-means clustering algorithm is a widely used and versatile
algorithm, and is also an unsupervised classification algorithm that
does not require any prior knowledge (Liu et al., 2010). The essence

of the K-means clustering algorithm is to determine K categories
according to the actual situation, and to repeatedly iterate and divide
different categories, so as to divide a group of unlabeled data into the
specified K categories (the premise is that the samples in the K
categories have common features). The main steps of the K-means
clustering algorithm are: (1) determine the number of classifications
to be carried out, K, that is, K sets can be obtained through
clustering; (2) randomly select K samples from the data set of
samples to be classified as the initial K class centers; (3) calculate
the Euclidean distance from each sample point in the data set to the
K class centers. If a certain sample data is closest to a certain class
center, this sample is classified into the current class, and K
categories of sets are obtained and the mean of each set is
calculated to update the class center; (4) repeat steps (2) to (3)
until the position of the class center changes little, and the samples in

FIGURE 10
Ground fissure extraction results of different dates.

FIGURE 11
Statistical results of ground fissure density.
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FIGURE 12
Statistical results of ground fissure width.

FIGURE 13
Fractal dimension. (A) 25th May, (B) 1st May, (C) 15th May, (D) 24th May.
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each category are relatively stable, and the iteration ends (Liu et al.,
2010).

The equation for calculating the centroid of each category set is:

uk �
∑nk
i�1

xi

nk
(3)

Assuming K=2, the K-means clustering algorithm can be
described by Figure 4.

3.3 Ground fissure extraction method

Given the unique terrain of the Loess gully and ravine region and
the shortcomings of existing methods, we propose a ground fissure
extraction method that combines geometric morphology and optical
features (hereafter referred to as “the method”), the main process of
which is as follows:

(1) Based on the characteristic that the image gradient reaches its
maximum value at the edge position, calculate the gradient value
and use it as one of the statistical features of the object (Figure 5A);

(2) Calculate the number of homogeneous points in the sliding
window template based on the RGB observation values of the
image, as the second statistical feature of the object (Figure 5B);

(3) Combine the RGB observation values of points on the image as
the third statistical feature;

(4) Use the K-means unsupervised classifier to judge object
attributes based on the three statistical features. Since the
selected range is small, we set K=2 in this experiment,
dividing into two categories: fissures and non-fissures.

The calculation process for the number of homogeneous
samples is as follows: Suppose a 3x3 window is divided with a
pixel point as the center. The 8 pixel points within its neighborhood
and the central pixel point are the same type of object. Use the
9 points above to fit into a chi-square distribution model, look up the
degree of freedom to obtain the quantile, and calculate the
confidence interval; Determine whether the pixel values in the
window (centered on the pixel point) fall within the confidence
interval to obtain the number of homogeneous points corresponding
to each center pixel point.

As can be seen from Figure 5, the selected two features can
distinctly highlight the characteristic information of ground fissures
and can well differentiate between ground fissure objects and non-
ground fissure objects.

3.4 Fine processing of binary images of
ground fissures

The ground fissure extraction method proposed in this paper is
similar to traditional edge detection algorithms (with gradient as one
of the statistical features), and the extracted ground fissures are some
edge “thin lines” and have some holes. To eliminate mis-extracted
targets and noise, and to fill in the holes in the ground fissures,
morphological methods are used to denoise the binary images and
fill in the holes in the ground fissures (Li et al., 2018).

The most common operations in mathematical morphology are
dilation and erosion operations, and closing and opening operations.
To avoid the global impact on the target caused by the above
algorithms, some scholars have connected the fracture
phenomenon using the hit or miss algorithm. We draw on this

FIGURE 14
Distribution of ground fissures.
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method to refine the extracted binary images of ground fissures
(Figure 6). The specific process is as follows:

(1) For the initially extracted binary images of ground fissures, use
closing operations to fill in the holes within the ground fissures
and clear small amounts of noise points on the edge. Smooth
linear edges using opening operations;

(2) Treat noise points as isolated points and remove them. In the
window template range at the center of each pixel (matching the
image with a 3x3 sliding window centered on the pixel), if there
are no extra pixels in the window, consider this pixel point as an
isolated point and remove it.

(3) After most isolated points have been eliminated, apply main
filtering to further process larger isolated patches.

Noise is a random change of brightness or color information in
the image, which is mainly due to the fact that the sensor is subject to
factors such as homogeneous heterospectrum and homogeneous
heterogeneity during the imaging process. In this paper, a variety of

methods are used to remove the noise points in the image. (1) Firstly,
before the extraction of ground fissures, the image is subjected to
gray-scale stretching and noise filtering. By comparing the
commonly used filtering methods, bilateral filtering is selected to
process the image. Bilateral filtering is a kind of nonlinear filtering.
The filtering method takes into account the spatial proximity
information and color similarity information at the same time.
While filtering out noise and smoothing the image, it also
preserves the edge information. By comparing the results of
visual interpretation, it is found that bilateral filtering can filter
out noise points on the UAV image and retain and highlight the
ground fissure information. (2) Secondly, ground fissures are
extracted by the method proposed in this paper. This method
combines the difference of statistical characteristics and regional
gradient changes between ground fissures and other features in
optical images, can obtain indicators that highlight ground fissures.
This can effectively distinguish between ground fissures and non-
ground fissures, and greatly reduce noise points. This is confirmed in
Section 4.2 (ROC curve quantitative evaluation). (3) Finally,

FIGURE 15
Dynamic development model of ground fissure. (A) Mining stage 1, (B) Mining stage 2, (C) Mining stage 3, (D) Mining stage 4.
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morphological methods are used to denoise the binary images. The
methods remove the noise points as isolated points based on
whether there are redundant pixels in the 3 × 3 sliding window.
Due to the serious development of ground fissures in the study area,
their width and length are large, so they will not be removed as noise
points. It can be seen from Figure 6 that many noise points are
removed by the above methods.

4 Results and discussion

4.1 Ground fissure extraction results and
analysis

4.1.1 Comparison of ground fissure extraction
results by different research methods

In order to verify the superiority of the method proposed in this
paper in ground fissure extraction, we used three common methods:
edge detection algorithm, threshold segmentation algorithm, and
random deep forest (RF) classification algorithm, to extract ground
fissures, and compared the experimental results in detail. Figure 7 is
the ground fissure extraction results.

There are many ways to use the edge detection algorithm. After
several experiments, we finally chose the Robert algorithm and the
Sobel algorithm. As can be seen from Figure 7A, the overall effect of
ground fissure extraction using the edge detection algorithm is not
good, and obvious noise exists in the ground fissure results extracted
by both methods. The extraction effect of the Robert algorithm is
slightly better than the Sobel algorithm, indicating that the Robert
algorithm is more suitable for extracting mining-induced ground
fissures in the Loess gully and ravine region.

Through the maximum interclass variance method, we
calculated that the threshold most suitable for segmenting
fissures in the study area is 0.56. As can be seen from Figure 7B,
there are a large number of weeds in the ground fissure results
extracted using the threshold segmentation algorithm. These weeds
have similar spectral features to ground fissures, resulting in a large
number of mis-extractions. Therefore, the threshold segmentation
algorithm is not suitable for extracting mining-induced ground
fissures in the Loess gully and ravine region.

The RF classification algorithm in this experiment was
completed in the random forest plugin of ENVI5.0. According to
the actual situation of the Loess gully and ravine region, four types of
objects including ground fissures were chosen for classification,
including two types of vegetation, roads, and fissures. Finally, the
other three types of objects in the classification results were
combined into one type of object to obtain the ground fissure
extraction results. As can be seen from Figure 7C, using the RF
classification algorithm can intuitively distinguish ground fissures
from other objects and highlight the features of ground fissures.
Compared with the edge detection and threshold segmentation
algorithms, the extraction effect of ground fissures is better, the
noise in the image is significantly reduced, and the mis-extraction
phenomenon is also improved, indicating that the RF algorithm is
more suitable for extracting mining-induced ground fissures in the
Loess gully and ravine region. However, the RF classification
algorithm requires a large number of accurate training samples,
and compared to other methods, it requires more work.

As can be seen from Figure 7D, the optimized algorithm
proposed in this paper has a noticeably superior extraction effect
on ground fissures compared to other methods, with fewer mis-
extractions and less noise in the image compared to other methods.
Using morphological methods to finely process the initially
extracted binary images of ground fissures, we found that the
holes in the ground fissures were filled and the noise points were
also removed, further improving the ground fissure extraction effect.
Since the optimized algorithm combines the K-means algorithm to
automatically classify ground fissures, compared with the RF
classification algorithm (which requires manual selection of a
large number of training samples), it has more advantages.

4.1.2 Comparison of ground fissure extraction
results at different flight heights

To compare the impact of UAV images shot at different flight
heights on the accuracy of ground fissure extraction, we selected an
area in the study region that is representative and has a high density
of ground fissures. Images were captured at flight heights of 50m,
60m, and 70 m, and the ground fissure extraction method proposed
in this paper was applied to the original images. To more intuitively
compare the extraction of ground fissures at different flight heights,
the ground fissure extraction results were displayed as scatter points
using the scatter function and overlaid on the original ground fissure
images taken at the three flight heights, as shown in Figure 8.

FromFigure 8, it can be seen that some small ground fissures on the
original images can be better extracted from images shot atflight heights
of 60 m and 70m,while there aremany instances ofmissed extraction in
the original images shot at a flight height of 50 m. In the lower left and
lower right corners of the original images, there are some ground
fissures caused by terrain factors rather thanmining disturbances. In the
images shot at a flight height of 70 m, there are many instances of mis-
extraction of these ground fissures. Therefore, images shot at a flight
height of 60 m are more suitable for extracting mining-induced ground
fissures, with the best extraction results and the fewest instances of mis-
extraction and missed extraction.

4.2 Accuracy evaluation and analysis

The experiment uses the ROC (Receiver Operating Characteristic
Curve) to quantitatively evaluate the accuracy of ground fissure
extraction by different methods. In this ROC quantitative evaluation,
the ground truth was first obtained through manual visual
interpretation, and representative ground fissures were selected as
the standard values for classification (Zhang, et al., 2022a). The
ground fissure extraction results were overlaid with the ground truth
for analysis, and the TPR (True Positive Rate) and FPR (False Positive
Rate) were calculated, as shown in Figure 9. The TPR is the probability
of correct extraction of mining-induced ground fissures, i.e., the hit rate;
the FPR is the probability of incorrect extraction of mining-induced
ground fissures, i.e., the false alarm rate. The calculation equations are as
follows:

TPR � TP

TP + FN
(4)

FPR � FP

FP + TN
(5)
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Where: TP represents the number of correctly extracted ground
fissure pixels; FN represents the number of missed ground fissure pixels;
FP represents the number of incorrectly extracted ground fissure pixels;
TN represents the number of correctly unextracted ground fissure pixels.

As can be seen from Figure 9A, when the error rate is at 20%, the
correct rate of the optimized algorithm proposed in this paper is
close to 80%, the correct rate of the RF classification algorithm is
close to 50%, and the correct rates of the threshold segmentation
algorithm and edge detection algorithm are less than 40%.When the
error rate is around 30%, the correct rate of the optimized algorithm
is over 80%, while the correct rates of the other three methods are all
less than 70%, indicating that the optimized algorithm proposed in
this paper has higher accuracy.

As can be seen from Figure 9B, when the error rate is over 20%,
the correct rates corresponding to the three flight heights are all over
50%, indicating that the method proposed in this paper is suitable
for extracting mining-induced ground fissures in the Loess gully and
ravine region. When the error rate is close to 20%, the correct rate
corresponding to a flight height of 60 m is 83%, while the correct
rates corresponding to other flight heights are around 50%. This
indicates that for this study area, the ground fissure extraction effect
is the best when the flight height is set to 60 m.

4.3 Analysis of time series characteristics of
ground fissures

4.3.1 Distribution characteristics of ground fissure
density

After choosing the optimal flight height, we captured multi-
period original images of the study area (May 25th, June 1st, June
15th, and June 24th) and used the method proposed in this paper to
extract the ground fissures. The ground fissures were also displayed
as scatter points on the original images (Figure 10).

As can be seen from Figure 10, the ground fissures are mainly
concentrated in the northwest of the study area, that is, the relatively
flat area, and with the passage of time (the continuous advancement
of the working face), the density of ground fissures in the northwest
gradually increases. From May 25th to June 24th, the number and
density of ground fissures in the southwest increased from small to
large. Overall, the distribution of ground fissures gradually increases
from east to west, extending in a “curved” state to the north and
south, consistent with the direction of mining.

This paper introduces the “hydrological density” to
quantitatively analyze the distribution of ground fissures.
Considering that the area of ground fissures within a unit area
can effectively express its development characteristics and
morphological features, the area of ground fissure pixels in the
unit area grid is used as the density (the unit grid scale in this paper is
set to 1 m2). The calculation equation is as follows:

D � ∑n
i�1
wi × li (6)

Where: li represents the length of each ground fissure in the unit
area, cm; wi represents the width of each fissure in the unit area, cm;
n represents the number of ground fissures in the unit area; D
represents the ground fissure density, cm2.

Based on the actual situation, the ground fissure density of the
study area is divided into 6 intervals, namely 9–180 cm2,
180–360 cm2, 360–540 cm2, 540–720 cm2, 720–900 cm2,
and >900 cm2 (Figure 11). On May 25th, the ground fissure
density in the study area was mainly concentrated in the
9–180 cm2 interval, accounting for 45.09%, and the development
of ground fissures was weak, and there was no situation where
ground fissures were densely gathered. On June 1st, the ground
fissure density in the study area was mainly concentrated in the
9–180 cm2 interval, accounting for 48.99%, an increase of 3.90%
compared to May 25th, and the area with a ground fissure density
greater than 900 cm2 increased by 2.27%. This indicates that as the
working face continues to advance, the proportion of low-density
areas increases, and some low-density areas are transformed into
high-density areas, that is, some small fissures develop into large
fissures. On June 15th, the proportion of low-density areas
(9–180 cm2) significantly decreased, decreasing by 12.44%; the
proportion of medium-density and high-density areas
(360–540 cm2, >900 cm2) significantly increased, indicating that
the surface is affected by mining. The degree of influence has
further increased, leading to more low-density areas transitioning
into high-density areas. On June 24th, the proportion of low-density
areas (9–180 cm2) and high-density areas (>900 cm2) increased,
increasing by 5.48% and 5.17% respectively, indicating that new
ground fissures have been generated in some areas. Due to the
continuous development of ground fissures, some low-density areas
have transitioned into high-density areas.

In summary, in the early stage of the working face advancement,
the proportion of low-density areas of ground fissures continues to
increase, indicating that the surface is continuously generating new
fissures due to the influence of mining; due to the continuous
development of ground fissures (increasing width and length),
some low-density areas are transitioning into high-density areas.
The proportion of high-density areas continues to increase, which is
consistent with the progress of the working face advancement.

4.3.2 Distribution characteristics of ground fissure
width

Based on the actual situation, the ground fissure width in the
study area is divided into five intervals, namely 0–9 cm, 9–18 cm,
18–27 cm, 27–36 cm, and >36 cm (Figure 12). On May 25th, the
width of ground fissures was concentrated in the 9–18 cm range,
accounting for 49.47%. On June 1st, the ground fissure width was
concentrated in the 9–18 cm range, accounting for 43.92%, a
decrease of 5.55% compared to May 25th. The proportion of
ground fissure widths greater than 18 cm in each range
increased, among which the proportion of ground fissure widths
greater than 36 cm increased by 2.3%, indicating a continued
development of ground fissures. On June 15th, the ground fissure
width was concentrated in the 9–18 cm range, accounting for
40.36%, which continued to decrease compared to June 1st. The
proportion of ground fissure widths greater than 18 cm in each
range continued to increase, among which the proportion of ground
fissure widths greater than 36 cm increased by 6%, indicating that
some small fissures gradually developed into larger ones. On June
24th, the difference in the proportion of ground fissures in each
width range was small, indicating that the number of new ground
fissures decreased as the working face retreat ended. Compared with
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June 15th, the proportion of ground fissure widths in the 9–18 cm
range decreased significantly, but the proportion greater than 36 cm
increased significantly, even exceeding the proportions in the
0–9 cm and 27–36 cm ranges, indicating that the development of
ground fissures is nearing its peak.

In summary, as the working face continues to advance, the width of
the ground fissures tends to be evenly distributed, with small differences
in the proportions of eachwidth range. After the end of theworking face
retreat, the number of new ground fissures decreases, and the
development of the ground fissures is nearing its peak.

4.3.3 Fractal characteristics of ground fissure
development degree

To further study the distribution characteristics and
development of ground fissures in the Loess gully and ravine
region, the fractal dimension is introduced to describe the degree
of filling and density in two-dimensional space (Su et al., 2006). The
box-counting method is usually used to calculate the fractal
dimension, with the equation as follows:

d � lim
r ���→ 0

logN r( )
−log r (7)

Where: r is the grid side length of different scales, and N(r)
represents the number of grids containing fissure pixels at the
current scale. Using different grid scales r, the corresponding
N(r) values can be obtained. With log r as the horizontal
coordinate and log N(r) as the vertical coordinate for regression
analysis, if the two have a good linear relationship, it shows that the
fissures have good fractal characteristics and comply with statistical
self-similarity. The slope value is the fractal dimension. The scales r
corresponding to different periods are 2.5 m, 5 m, 10m, 20m, and the
fractal dimension diagram is shown in Figure 13.

According to Figure 13, the ground fissures at different times
in the study area have good fractal characteristics under different
scales, and the correlation between log N(r) and log r is high, with
R2 all above 0.98, indicating that the ground fissures in the Loess
gully and ravine region caused by mining have good self-
similarity. The fractal dimensions of each period range from
1.618 to 1.787. Generally speaking, the larger the fractal
dimension, the more complex the fissure morphology, and the
greater the density and development degree. Comparing the
fitting results of the four periods, it can be seen that the
fractal dimension is constantly increasing, reaching the
maximum value on June 24th, indicating that the fissure
density and development degree are the largest at this time,
which is consistent with the conclusion in Section 4.3.1.

To better understand the distribution of ground fissures after
the 1212 working face retreat, researchers used the method
proposed in this paper to draw a schematic diagram of the
ground fissure distribution (active fissure area), as shown in
Figure 14. Dynamic development fissures are located at the
end of half of the 1212 working face range, with violent
development and high density. Overall, a large number of
ground fissures are distributed directly above the working
face, and the distribution range is larger than the working face
range, most of which are arc-shaped, and the overall shape is “C"-
shaped, with the opening direction opposite to the direction of

the working face advancement, consistent with the research
results of scholars such as Hou et al. (2019).

4.4 Formation mechanism of mining-
induced ground fissures

According to the distribution of ground fissures (Figure 14),
mining-induced ground fissures can be divided into two types:
boundary fissures (open-off cut in working face, near stop line
and roadway) and dynamic fissures (inside working face). The
formation and development of mining-induced ground fissures is
a bottom-up dynamic evolution process covering “underground
mining-overburden rock movement-surface damage”. When the
tensile deformation of the local surface loess layer exceeds its
own strain limit, ground fissures will be formed. The
development of ground fissures causes the non-uniformity of
surface subsidence. Its essence is the discontinuous deformation
and failure of rock-soil mass on both sides of the ground fissure.
Under the influence of mining, the local rock-soil mass on the
surface will slip, sink and tilt relative to its adjacent area, which will
induce the continuous development of ground fissures. Therefore,
this paper constructs a dynamic development model of mining-
induced ground fissures, as shown in Figure 15.

When the working face is mined to stage 1, the horizontal tensile
deformation of the surface reaches the limit, resulting in ground
fissures 1 and 2. At this time, both fissures are located in the surface
tensile zone; when the working face is mined to stage 2, the range of
the surface subsidence basin increases, and the width of fissures
1 and 2 increases due to the influence of tensile stress. At this time,
both fissures are located in the surface tensile zone; when the
working face is mined to stage 3, fissure 1 is in the surface
tensile zone, and the width continues to increase. Fissure 2 is in
the center of the sinking basin, from the tensile zone to the
compression zone, and the width of fissure 2 begins to decrease.
When the working face is mined to stage 4, the range of subsidence
basin reaches the maximum, and the surface subsidence tends to be
stable. At this time, the width of fissure s 1 and 2 does not change
(Chen et al., 2023).

When the rock strata movement and deformation are
transmitted to the surface, a subsidence basin with a much larger
area than the goaf will be formed.With the continuous mining of the
working face (before full mining), the surface subsidence curve takes
the inflection point of surface deformation as the demarcation point,
which can be divided into tensile zone and compression zone. The
tensile zone is dominated by expansion deformation, and the
compression zone is dominated by compression deformation,
and the range of these two zones is constantly changing
(Figure 15). Therefore, for boundary fissures, because they are
always in the surface tension zone, they are continuously
stretched, and the fissure width gradually increases. After the
local surface subsidence tends to be stable, the fissure width
remains unchanged, as shown in fissure 1 in Figure 15. For
dynamic fissures, they are first in the surface tension zone and
then in the surface compression zone. They undergo a
transformation process from tension to compression. The fissure
width increases first and then decreases, and it is stable with the
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surface subsidence, showing a “closure effect”, such as the fissure 2 in
Figure 15.

5 Conclusion

This paper, taking the 1212 working face of a mining area in
Yulin City, Shaanxi Province as the research background, uses low-
altitude UAV imagery. Based on the comparison of common ground
fissure extraction methods, we propose a method suitable for
extracting mining-induced ground fissures in the Loess gully and
ravine region and study its spatial and temporal evolution
mechanism. The main conclusions are as follows:

(1) A ground fissure extraction method is proposed. This method,
by combining the regional gradient changes of ground fissures
in images and the statistical feature differences with other
ground objects, can obtain indicators that highlight ground
fissures. It greatly reduces noise points and mis-extraction,
improving the extraction accuracy of ground fissures and
making the process more automated. In addition,
morphological methods are used to refine the initially
extracted binary images of ground fissures, which further
improves the extraction effect of ground fissure.

(2) The optimal flight height for the study area is determined to be
60 m. In the initial stage of the working face advancement, the
proportion of low-density areas of ground fissures continues to
increase, some low-density areas transition into high-density
areas, which is consistent with the progress of the working face
advancement. After the end of the working face retreat, the
width of the ground fissures tends to be evenly distributed.

(3) The ground fissures at different times in the study area have
good fractal characteristics and self-similarity under different
scales. As the working face continues to advance, the larger the
fractal dimension, the greater the density, and themore complex
the morphology. Overall, the distribution range of ground
fissures is larger than the working face range, and the
opening direction is opposite to the direction of the working
face advancement.

(4) A dynamic development model of ground fissures is constructed
to reveal its formation mechanism. Under the influence of
mining, the local rock-soil mass on the surface will slip, sink
and tilt relative to its adjacent area, which will induce the
continuous development of ground fissures. The surface
subsidence curve takes the inflection point of surface
deformation as the demarcation point, which can be divided
into tensile zone and compression zone. For boundary fissures,
they are continuously stretched, and the fissure width gradually
increases. For dynamic fissures, they undergo a transformation
process from tension to compression, and the fissure width
increases first and then decreases.

The ground fissure extraction method proposed in this paper
has high accuracy. Considering that the extraction process combines
the geometric morphology and optical features of ground fissures,

the extraction accuracy will be affected in the more complex
environment of the mining area. Therefore, the extraction of
ground fissures in complex environments will be the focus of
future research.
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