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The accurate simulation of anisotropic media is critical in seismic imaging and
inversion. In recent years, some scholars have dedicated efforts to the study of
precise elastic waves in anisotropic media; however, it is easy to separate P-wave
and S-wave from elastic wave fields in isotropic media but difficult to separate
them in anisotropic media. To address this issue, others have proposed pseudo-
pure-wave equations based on the theory of wave-mode separation, but shear
wave interference still exists. Therefore, we derived the first-order pure quasi-P-
wave equationwith no shear wave component in orthorhombic anisotropicmedia
(ORT) which is common in the Earth’s crust and has very important research value.
The presence of a pseudodifferential operator in the equation poses a challenge
for solving. In order to solve the pure wave equation, we decomposed the original
pseudodifferential operator into an elliptic differential operator and a scalar
operator, both of which are easily solvable. In addition, we extended the
equation from ORT media to tilted ORT (TORT) media. The example results
indicate that our pure quasi-P-wave equation can yield a more stable and
accurate P-wave field. The pure wave equation we propose can be applied in
reverse time migration (RTM), the least squares RTM (LSRTM), and even the full
waveform inversion (FWI).
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1 Introduction

With the growing complexity of targets in oil and gas exploration, precise high-
resolution imaging technology has emerged as a vital tool, offering robust technical
support and emphasizing the significance of accounting for underground media
anisotropy (Chen et al., 2010; Fowler et al., 2010; Du et al., 2015). Various migration
and inversion imaging methods have been developed based on anisotropic media, including
Vertical Transverse Isotropy media (VTI) (S. Sun et al., 2022), (C. Luo et al., 2022), (R. Bloot
et al., 2012), tilted TI (TTI) media (Han Q et al., 2022), and orthorhombic anisotropic media
(ORT) media. However, certain challenges emerge when using the original elastic wave
equation for forward numerical simulations. This may result in a complex algorithm and
significant computational costs, especially given the current hardware limitations (Du and
Qin, 2009; Cheng J B et al., 2013). Furthermore, the separation of elastic wave fields using
wavefield separation techniques faces several challenges in anisotropic media (Dellinger J
and Etgen J, 1990; Cheng J and Fomel S, 2014). As a result, scholars from various countries
have recently devoted themselves to the study of single-mode wave propagation, such as the
quasi-P-wave. Broadly speaking, anisotropic numerical simulations of single-mode waves
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can be categorized into two main types of methods. The first
approach is based on the acoustic approximation proposed by
Alkhalifah T (1998), and the core idea of this acoustic
approximation is to set the shear wave velocity along each
anisotropic symmetry axis to zero. Subsequently, he (Alkhalifah
T, 2000) derived a fourth-order wave equation for TI media within
the framework of the acoustic approximation and this equation was
proven to be challenging to solve. Following this, other researchers
decomposed this high-order linear partial differential equation into
lower-order forms that are more easily solvable. Applying these
simplified equations to wavefield simulation and RTM can enhance
computational efficiency (Zhou H et al., 2006; Du X et al., 2008;
Fowler PJ et al., 2010). However, when using these simplified
equations for numerical simulations, several issues may arise,
including potential wavefield interference caused by pseudo-shear
waves (Grechka et al., 2004) and the possibility of numerical instability
when the anisotropic symmetry axis undergoes abrupt changes
(Fletcher et al., 2009; Duveneck and Bakker, 2011; Zhang et al.,
2011). The second method is based on the pure P-wave equation,
thereby fundamentally eliminating interference from shear waves. In
this regard, Klie and Toro (2001) employed a previous version of the
acoustic equation to eliminate an analytical artifact in Alkhalifah’s
solution. Pestana et al. (2011) and Chu et al. (2013) introduced a new
equation that contains intricate pseudo-differential operators, with all
of its model parameters being separable. This equation can be solved
using the pseudospectral method, but computational efficiency
decreases when dealing with complex anisotropic parameters. The
dispersion relation for decoupled qP and qSV waves was introduced
under the assumption of the acoustic approximation in VTI media
(Liu et al., 2009). This approach has proven to be effective in solving
the equation when the anisotropic parametermodel remains relatively
stable. Cheng et al. (2013) derived a pseudo-pure wave equation based
on the theory of elastic wave separation. By isolating the scalar-mode
wave from pseudo-pure-mode wave equations, residual shear wave
components were successfully eliminated (Cheng et al., 2014). Section
3.1 (Example 1) showcases the results of forward wave field
simulations using the pseudo-pure P-wave equation in ORT.
Based on different theories, Sheng and Zhou (2014) derived a
new pure qP wave equation applicable to TTI media. Their
approach presents a broadly adaptable solution for handling
pseudo-differential operators.

To simplify the algorithms for numerical simulation in
anisotropic media, approximations for the phase and group
velocities of qP waves have found widespread use. Many
approximate algorithms have been introduced previously to meet
the numerical simulation requirements for various purposes.
Dellinger and Etgen (1990) presented two consecutive continuous
scalar anisotropic approximations expressed directly as rational
polynomials. Alkhalifah and Tsvankin (1995) recommended
performing velocity analysis by inversely deducing the dependency
of P-wave moveout velocities on the ray parameter in TI media.
Tsvankin (1996) examined the p-wave velocity and summarized its
sign in TI media. Fomel (2004) and Fomel et al. (2013) put forward
the approximation approach for three-dimensional anisotropic media
on the basis of previous studies. Qi et al. (2014) and Qi et al. (2015)
simplified the P-wave phase velocity by an elliptic approximation and
they further elucidated the correlation between elastic coefficients and
Thomsen-type parameters of ORT media. Zhang et al. (2022)

systematically clarified the approximation of P-, S1- and S2- wave
reflection coefficients in ORT. Guo et al. (2019), Guo et al. (2021), and
Li et al. (2023) proposed theoretical models for rock effective elastic
properties in the TI media, and these models provide the basis to link
fracture properties to seismic attributes.

In this article, we have derived the dispersion equation for pure qP
waves inORTmedia. Instead of employing the exact dispersion relation
presented by Tsvankin (1997), we utilized the phase velocity equation
for pure qP waves introduced by Qi and Stovas (2016) to simplify the
expression of the equation. This choice was driven by the goal of
significantly decreasing the computational workload in ORT media.
Importantly, the simplified phase velocity approximation remains
highly accurate for acoustic or elastic ORT media characterized by
strong anisotropy. After that, we deconstruct the pseudo-differential
operator in the aforementioned dispersion equation into an elliptic
differential operator and a scalar operator. This equation became easy to
solve using this method and the wave field simulated in this way will
have more balanced amplitudes, as demonstrated in the work by Sheng
et al. (2015). Notably, when the differential operator is substitutedwith a
Laplacian operator, following the approach by Sheng and Zhou (2014),
the equation exhibits an improved tolerance to directional errors. Lastly,
we extend the equation from ORT media to TORT media, to better
simulate real geological stratum media.

2 Materials and methods

To reduce algorithm complexity, we start from the last of the
three formulas: the GMA-type approximate formula, the Fomel
approximation, and the simplified Fomel approximation for ORT
media proposed by Qi and Stovas (2016). All the formulas are
accurate for elastic or acoustic orthorhombic media with strong
anisotropy and the simplified one reduces the steps of the algorithm
but has no effect on the final result. The simplified phase velocity in
ORT media has the following form:

v2p θ,φ( ) � 1
2
v2p0 cos 2 θ + α φ( )sin 2 θ( )
+ 1
2
v2p0

�����������������������������������
cos 2 θ + α φ( )sin 2 θ( )2 + 4β φ( )cos 2 θsin 2 θ

√
(1)

With α φ( ) � 1
2

r2ξ
2
2cos

2 φ + r1ξ
2
1sin

2 φ( )
+ 1
2

���������������������������������������
r2ξ

2
2cos

2 φ + r1ξ
2
1sin

2 φ( )2 + 1

ξ23
r1r2ξ

2
1ξ

2
2sin

2 2φ( )√
(2)

β φ( ) � r1sin
2 φ + r2cos

2 φ − α φ( ) (3)
And all the parameters are defined as:

r1 ≡ 1 + 2δ 1( ), r2 ≡ 1 + 2δ 2( ), ξ1 ≡
�������
1 + 2η 1( )

√
ξ2 ≡

�������
1 + 2η 2( )

√
,

ξ3 ≡
�������
1 + 2η 3( )

√
η 1( ) ≡ ε 1( ) − δ 1( )( )/ 1 + 2δ 1( )( ),

η 2( ) ≡ ε 2( ) − δ 2( )( )/ 1 + 2δ 2( )( ), η 3( ) ≡
ε 1( ) − ε 2( ) − δ 3( ) 1 + 2ε 2( )( )

1 + 2ε 2( )( ) 1 + 2δ 3( )( )
(4)

where θ is phase angle measured from the vertical axis (z − axis)
ranges from 0 to π and φ is azimuthal angles measured from the
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x − axis between 0 and 2π, vp is the p-wave phase velocity along the
axis of symmetry, ε(1)ε(2)δ(1)δ(2)δ(3) are Thomsen (1986)
anisotropic parameters.

We bring the following relationship function into Eq. 1,

sin θ cosφ � vp θ,φ( )kx
ω

, sin θ sinφ � vp θ,φ( )ky
ω

, cos θ

� vp θ,φ( )kz
ω

(5)

So we get the dispersion equation in ORT media as:

ω2 � 1
2
v2p0 M k( ) + ������������

M2 k( ) + P k( )√[ ] (6)

Where k � (kx, ky, kz)M(k) � k2z + Q(kx, ky)

P k( ) � 4 r1k
2
y + r2k

2
x − Q kx, ky( )[ ]k2z

Q kx, ky( ) � 1
2

r2ξ
2
2k

2
x + r1ξ

2
1k

2
y +

������������������������������
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2
2k

2
x + r1ξ

2
1k

2
y( )2 + 4

1

ξ23
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2
1ξ

2
2k

2
xk

2
y

√⎡⎢⎣ ⎤⎥⎦
(7)

Where kxkykz denotes the P-wave wavenumber in their axis
(x − axis; y − axis; z − axis) and ω denotes angular frequency. vp0 is
vertical velocity.

At this time, the dispersion equation is still hard to solve. We
use the elliptic differential operator method proposed by Sheng
et al. (2015) to solve the equation. First, we rewrite Eq. 5 into the
format:

ω2 � 1
2
v2p0 M k( ) +

������������
M2 k( ) + P k( )

√[ ]
� 1
2
v2p0 M k( ) +M k( )

��������������
1 + P k( )/M2 k( )

√[ ]
� v2p0M k( ) 1

2
1 +

��������������
1 + P k( )/M2 k( )

√[ ] (8)

We define Se � 1
2 [1 +

��������������
1 + P(k)/M2(k)√ ] and Se is the elliptic scalar.

In order to further solve the equation, we bring Eq. 4 into Eq. 8:

ω � v2p0 k2z + Q kx, ky( )[ ]Se
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2
2k

2
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2
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2
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(9)

Then we rewrite Eq. 9 into the first order form, and the first
order pure qP-wave equation of ORT media can be defined as:

∂tu � v20 ∂z pz( ) + 1
2

r2ξ
2
2∂x px( ) + r1ξ

2
1∂y py( )[{

+
����������������������������������������������
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2
2∂x px( ) + r1ξ

2
1∂y py( )[ ]2 + 4

1

ξ23
r1r2ξ

2
1ξ

2
2∂x px( )∂y py( )√ ⎤⎥⎦⎫⎬⎭Se

∂tpx � ∂xu, ∂tpy � ∂yu, ∂tpz � ∂zu

(10)

In order to ensure the stability of the equation, we introduce the
self-conjugate differential operator in the rotating coordinate system
according to Zhang et al. (2011) and Bube et al. (2012) in tilted
media. Finally, the first-order pure qP-wave equation of TORT
media can be derived as

∂tu � v20 GT
z pz( ) + 1

2
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2
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T
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2
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T
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+
������������������������������������������������
r2ξ

2
2G

T
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2
1G

T
y py( )[ ]2 + 4

1

ξ23
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2
1ξ

2
2G

T
x px( )GT

y py( )√ ⎤⎥⎥⎦⎫⎬⎭
Se∂tpx � Gxu, ∂tpy � Gyu, ∂tpz � Gzu

(11)
Where

Gx � cosφ cos θ cos α − sinφ sin α( ) ∂
∂x

+ sinφ cos θ cos α + cosφ sin α( ) ∂
∂y

− sin θ cos α( ) ∂
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+ ∂
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z
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3 Numerical tests

3.1 Example 1

In order to verify the correctness of the pure qP wave
equation derived in this paper of ORT and TORT anisotropic
media. Firstly, we extend the pseudo-pure P-wave equation of
Cheng et al. (2013) to ORT media and remove residual shear
wave components in wavefields, then compared these results with
ours’. All three models’ parameters are shown in Table 1. Model
1 is used by the pseudo-pure wave simulation. The parameters θ,
φ, α are set as 0, and γ(1) and γ(2) are anisotropy parameters of
shear waves in model 1. Figures 1A–C are the three components
of pseudo-pure qP-wave fields, where X, Y, and Z represent
inline, crossline, and depth slices of the snapshots in each
picture. The outermost wave corresponds to the qP wave, the
innermost wave corresponds to the qSH wave and the middle
corresponds to the qSV wave. As can be seen in the first three
Figures, the shear wave energy is also strong when the shear wave
anisotropy is strong in each component. The fourth picture
represents the summation of three components, obviously, the
qP-wave energy is highlighted and the qS-wave energy is
eliminated from each other, but there is still residual qS-wave
energy. Figures 2A–C respectively are two horizontal and vertical
components of divergence, polarization projection and deviation
operators in the wavenumber domain of ORT media. Figure 2D
shows the separated qP wavefield snapshots after correction of
the polarization deviations. Comparing Figures 1D, 2D, it can be
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seen that the qS-wave component is almost completely
eliminated in the corrected qP-wave fields, leaving only a little
energy which may be due to the complexity of orthogonal
anisotropy or the selection of anisotropy parameters. The pure
qP-waves field snapshots of ORT and TORT anisotropic media
are shown in Figure 3. Figure 3A uses model 2 and Figure 3B uses
model 3. The distinction between Model 1 and Model 2 and 3 lies
in the fact that, in Model 2 and 3, all three parameters Vs0, γ(1),
and γ(2), representing shear waves, were set to 0. The shape of
each component of qP-wave in Figures 2D, 3A is completely
consistent which also verifies the correctness of the equation we
derived indirectly, moreover, there is no shear wave energy at all
and the amplitude is relatively balanced in Figure 3A. We can see

that the wave field value does not appear unstable or wrong
and there is no obvious dispersion in Figure 3B, although we
designed a large dip angle parameter in model 3. Eq. 11 in
tilted medium can also simulate the results well and the
algorithm is stable and reliable. Comparing the two figures, it
can be found that the wave field of the x-z plane is the most
sensitive to the large dip parameter, and the other two planes
have less influence.

The length, width, and height of all the models contain
300 sampling points, and the sampling interval is 25. The source
wavelet is Rick wavelet, with a dominant frequency of 25 Hz. The
source point is located in the center of the model. All wavefield
snapshots are at the time t = 500ms.

FIGURE 1
Wavefield modeling in ORT media. (A–C) are two horizontal and one vertical component of pseudo-pure qP-wave fields. (D) is the summation of
three components.

TABLE 1 Orthotropic parameter values in Thomsen form.

Parameter vp0 vs0 ε(1) ε(2) δ(1) δ(2) δ(3) γ(1) γ(2) θ φ α

Model 1 3,200 1,500 0.22 0.1 0.05 0.04 0.03 0.1 0.047 0 0 0

Model 2 3,200 0 0.22 0.1 0.05 0.04 0.03 0 0 0 0 0

Model 3 3,200 0 0.22 0.1 0.05 0.04 0.03 0 0 43 33 23
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FIGURE 2
Wavenumber domain divergence, polarization projection, and deviation operators in ORT (c)media and the separated qP wavefield snapshots. (A)
represents two horizontal and vertical components of the divergence operator. (B) is two horizontal and vertical components of the polarization
projection operator. (C) represents two horizontal and vertical components of the projection deviation operator. (D) is the separated qP wavefield
snapshots after correction of the polarization deviations.

FIGURE 3
The pure qP-waves fields snapshots in ORT and TORT anisotropic media. (A) represents two horizontal and vertical components of snapshots in
ORT. (B) is two horizontal and vertical components of snapshots in TORT.
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3.2 Example 2

In order to test the applicability of the algorithm, we used the
modified actual anisotropic parameter fields for numerical
simulation. Because each parameter field is constant and does
not change in Example 1, the anisotropic parameter field is

variable in space in the actual seismic data processing or
simulation, so just completing Example 1 is not enough to
prove the reliability of the method. Figures 4A–I shows nine
anisotropic parameter fields. The inline has 1,220 sampling
points, the crossline has 195 sampling points, and the z-axis
contains 1,510 sampling points. The x-axis and y-axis have the
same sampling interval is 25, and the z-axis is 10. The source
wavelet is Rick wavelet, with a dominant frequency of 25 Hz.
The source point is in the surface of the model. Figure 4J
shows the wavefield snapshots of the real model at the time
t = 2,500 ms. Figure 4K represents a three-dimensional shot
record and the length of record t is 2,000 ms. Figures 4J, K
have relatively clear wave fields, and it can be seen that the
wave field changes with the change of space in the anisotropic
parameters.

4 Conclusion

We derived a first-order pure qP-wave equation of ORT and
extended the equation to TORT media. The problem of solving
pseudo-differential operators is solved by using anelliptic
approximation method. The differential operator is replaced by
an elliptic differential operator instead of a Laplacian operator, so
the pure qP-wave equation could simulate a more stable and
balanced amplitude P-wave field. It can be seen from Example
1 that the equation we derived is correct, furthermore, there is no
shear wave energy and Eq. 11 can also simulate a stable wave field
under a large dip angle. The accuracy of our equation is relatively
high and meets the accuracy of the current actual production
based on the results in Example 2. In subsequent research, we are
going to apply the equation to the RTM and simulate seismic wave
fields using equations without approximation in orthotropic
media.
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