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Landslides are a major natural hazard that can significantly damage infrastructure
and cause loss of life. In South Korea, the current landslide susceptibility mapping
(LSM) approach is mainly based on statistical techniques (logistic regression (LR)
analysis). According to previous studies, this method has achieved an accuracy of
approximately 75.2%. In this paper, we expand upon this traditional approach by
comparing the performance of sixmachine learning (ML) algorithms for LSM in Inje
County, South Korea. The study employed a combination of geographical data
gathered from 2005 to 2019 to train and evaluate six algorithms, including LR,
Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Random Forest (RF), and Extreme Gradient Boosting (XGB). The
effectiveness of these models was measured by various criteria, such as the
percentage of correct classification (PCC) score, F1 score, and Kappa score.
The results demonstrated that the PCC and F1 scores of the six models fell
between [0.869–0.941] and [0.857–0.940], respectively. RF and XGB had the
highest PCC and F1 scores of 0.939 and 0.941, respectively. This study indicates
that ML can be a valuable technique for high-resolution LSM in South Korea
instead of the current approach.
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1 Introduction

Landslides are a typical natural disaster that can occur anywhere on the earth and have
devastating consequences, including loss of lives and harm to society and the economy
(Highland and Bobrowsky, 2008; Biswas et al., 2022). The Republic of Korea, hereafter
referred to as South Korea, is particularly susceptible to landslide-induced catastrophes. In
South Korea, landslides are primarily concentrated in the summer, when approximately 60%
of the annual rainfall occurs due to the Asian Monsoon. Climate change has intensified this
pattern, evidenced by the nearly doubled mean annual landslide-damaged area, from
276.6 ha/year in 1981–2000 to about 527.6 ha/year in 2001–2020 (Korea Forest Service,
2021). Despite the great efforts, including installing check dams to prevent fatalities and
property loss since 1986, several landslide disasters have often inflicted severe damage. One
of the fatal landslides in 2011 killed 43 people due to landslide-induced debris flows in Seoul
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and Chuncheon, with an estimated damage of 824 ha (Kim et al.,
2011). Moreover, 2020 experienced a prolonged monsoon period of
54 days, the third-longest in the recorded weather history of South
Korea, which resulted in 1,343 ha of damaged area and nine fatalities
(Lee et al., 2021).

Identifying landslide-prone areas and implementing measures
to prevent or mitigate their impacts necessitates a practical landslide
susceptibility assessment (Huabin et al., 2005; Chikalamo et al.,
2020). This evaluation includes an examination of numerous
elements that might contribute to landslides, such as land use,
rainfall, slope, rainfall, and geology (Pourghasemi et al., 2018).
The involvement of fluvial processes and the hydro-geomorphic
characteristics they generate is one crucial component that might
contribute to the danger of landslides (Tran et al., 2022). These
water-moving activities can change the terrain in ways that raise the
danger of landslides. LSM is central to understanding the risk
associated with landslides in various regions. By conducting an
LSM, we can better understand the frequency and location of
landslides and take steps to lessen the danger of these disasters
(Eker et al., 2015; Maes et al., 2017).

Over the past decades, researchers have developed a myriad of
techniques to gauge the potential for landslides. However,
constructing an effective LSM presents several challenges,
primarily related to the completeness and quality of the
incoming data (Pardeshi et al., 2013; Chae et al., 2017). The
effectiveness of an LSM significantly depends on the data quality
it is based upon. Yet, such data might be marred by incompleteness,
inaccuracies, or spatial inconsistencies, resulting in reduced map
accuracy (Thirugnanam et al., 2020; Caleca et al., 2022). Historically,
diverse methods ranging from geomorphological assessments to
statistical models have been employed to predict landslide-prone
zones (Cardinali et al., 2002). While pivotal, these methods have
challenges, ranging from extensive ground truthing to dependency
on consistent spatial data (Lombardo et al., 2020; Shano et al., 2020).
Due to their inherently dynamic nature, landslide-causing
conditions can differ dramatically across temporal and spatial
scales, making it arduous to pinpoint the likelihood of landslides
in a given location (Atkinson and Massari, 2011). There may also be
a lack of resources and technology available to monitor areas
continuously for potential landslides, particularly in remote or
inaccessible regions (Zêzere et al., 2017; Piciullo et al., 2018).
This can make identifying the circumstances that could lead to a
landslide on time challenging. Furthermore, the traditional
statistical models used to construct LSMs are based on statistical
relationships and assumptions that may not always hold in reality,
resulting in uncertainty in the predictions made by the model (Lee
and Min, 2001; Huang et al., 2020).

LSM utilizes a variety of strategies, such as statistical methods
and ML algorithms, to predict potential landslide zones (Stanley
et al., 2021; Rahman et al., 2022). One such statistical technique is LR
analysis, which assesses the association between a dependent
variable (e.g., occurrence or absence of landslides) and several
independent elements (e.g., land use, slope, and geology) (Lee,
2005; Woo et al., 2014). This technique is attractive due to its
ability to handle multiple independent variables and its probabilistic
outcome, offering a likelihood of occurrence for landslides in specific
areas (Reichenbach et al., 2018). Another frequently applied
statistical method in LSM is bivariate statistical analysis (Mersha

and Meten, 2020). Bivariate analysis examines the relationship
between two variables—landslides and slope inclination—to
uncover patterns and trends. This analysis’s simplicity and ability
to identify statistically significant associations between landslide
occurrence and influencing factors make it a valuable tool in
LSM (Yalcin, 2008; Hong et al., 2019). These statistical
techniques have garnered popularity due to their simplicity and
capability to handle multiple variables, as they often operate under
assumptions of linearity and independence among predictors. Such
assumptions can restrict their predictive power in complex natural
terrains (Yalcin et al., 2011).

Recently, ML techniques have emerged as powerful tools in
LSM due to their ability to analyze large volumes of data, identify
hidden patterns and relationships that may not be evident to
human analysts (Lv et al., 2022; Wang et al., 2023). Common
models employed for LSM include decision trees (DTs), RF,
SVM, and neural networks (Azarafza et al., 2021; Wang et al.,
2021). DTs are a form of ML technique that includes building a
tree-like model of decisions based on various variables or
attributes. This model is designed to forecast the chance of
landslides occurring across multiple territory regions (Kadavi
et al., 2019). RFs include ensembling a group of DTs and utilizing
their aggregate forecasts to produce more accurate predictions
about the risk of landslides happening (Dou et al., 2019; Sahin
et al., 2020). SVMs estimate the likelihood of landslides occurring
in various parts of the region by locating the hyperplane in a
high-dimensional space that maximum separates distinct classes
(Pham et al., 2016; Ye et al., 2023). These ML algorithms can be
beneficial for detecting locations at high risk of landslides and
developing strategies to mitigate this risk (Youssef and
Pourghasemi, 2021). Despite its efficacy, each algorithm
presents its strengths and challenges. The success of these
algorithms largely depends on the nature of the data and the
research context (Merghadi et al., 2020; Ado et al., 2022).
Therefore, it is essential to compare the performance of
several ML algorithms to identify the most effective approach
for a given study area.

In South Korea, LSM relies on the statistical technique of LR
analysis, which has an accuracy rate of approximately 75.2% (Lee
et al., 2015). Although LR has been helpful, it has certain limitations,
mainly when modeling non-linear interactions. This has motivated
the exploration of alternative ML techniques, each presenting
unique strengths: GNB’s probabilistic approach, KNN’s
adaptability to non-linear data boundaries, SVM’s prowess in
high-dimensional spaces, and the ensemble capabilities of RF and
XGB that efficiently capture complex data relationships. However,
comprehensive comparative studies on these ML algorithms,
especially in the South Korean setting, are limited due to past
restrictions in accessing high-resolution data.

This study aims to fill this gap by investigating the performance of
6 ML algorithms for high-resolution LSM in Inje County, Gangwon,
SouthKorea, an area characterized by steep terrain and a high frequency
of landslides (Lee et al., 2016). The novelty of this study lies in its
comprehensive comparison of the performance of 6 ML algorithms,
providing a more extensive analysis than previous research in the South
Korean context. This study also leverages high-resolution data to
provide a detailed evaluation of each algorithm’s performance,
addressing previous limitations in data availability.
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This article discusses the following important research
questions: 1) What is the overall accuracy of the ML algorithms
for predicting landslide susceptibility? 2) How do the ML algorithms
perform for specific assessment criteria like recall, precision, and F1
score? 3) How do the ML algorithms perform across different
landslide susceptibility classes? 4) How does the effectiveness of
the ML algorithms compare to that of other methods, such as the
traditional statistic method? 5) What are the critical factors
influencing the performance of the ML techniques in the
research area?

By identifying the most effective ML algorithms for LSM in
South Korea, this study aims to contribute to developing more
accurate and reliable landslide risk assessment models. These can
underpin informed decision-making in disaster management,
ultimately mitigating the impacts of landslide disasters. The
remainder of the article is structured as follows: The Material
and Methods section presents the data sources, the selection and
implementation of the ML algorithms, and the evaluation of
algorithm performance. The Results section describes the
research results, and the Discussion section discusses the

implications of the findings. The Conclusion section summarizes
the key findings and provides recommendations for further study.
The schematic diagram of this study is illustrated in Figure 1.

2 Materials and methods

2.1 Study area

Landslides are ground movements caused by the movement of
slope-forming elements comprising rock, soil, vegetation, and water
downward and outward. These movements can range from slow
creep to rapid and destructive slides, often activated by factors like
precipitation, geological attributes, human activity, or a combination
of these triggers.

This investigation is centered in Inje County, Gangwon
Province, South Korea. Situated in the eastern segment of the
Korean Peninsula, Inje County is distinctly characterized by its
steep terrains, predisposing it to a heightened risk of landslides (Yoo
et al., 2009). These geophysical phenomena not only carry the

FIGURE 1
Flowchart of this study.
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potential to damage infrastructure severely but also to impede
transportation networks and critically impact local community
livelihoods (Kadavi et al., 2019). Recently, Inje County has
witnessed an uptick in the frequency and magnitude of landslide
events, a pattern emerging from an intricate interplay of natural and
anthropogenic influences. Intense meteorological events like heavy
monsoons and shifts in land use patterns have amplified these
landslide occurrences (Lee et al., 2015). Notably, the county is
especially susceptible to landslides triggered by heavy rainfall
events, typical during the monsoon phase (Lee et al., 2015).
Figure 2 presents the study area.

For LSM, the input data quality and the selection of the
appropriate modeling approach are among the components that
have the most significant impact on the accuracy of the map (Yalcin,
2008). Because landslides are the slope’s movement or the slope’s
instability and their control parameters, the fundamental causes of
landslides are typically connected to geology, hydrology,
morphology, and anthropogenic activities (Ayalew and
Yamagishi, 2005). As a result, it is crucial to identify the

causative conditions for landslides in prone areas. Despite this,
there is no universally accepted technique or approach for
identifying effectiveness variables in LSM (Pourghasemi et al.,
2018), and identifying these elements differs from one research
to the next.

For this study, guided by recommendations from the National
Institute of Forest Science, South Korea, we gathered data spanning
ten distinct types selected as input attributes for the modeling
process. These data sources included soil depth (SD), tree
diameter (TD), forest condition (FC), bedrock (BR), curvature
(CU), azimuth (AZ), topographic wetness index (TWI),
catchment length (CL), catchment area (CA), and slope (SL). All
variables have been compiled into a high-resolution raster grid
format corresponding to a grid cell size of 10 m× 10 m. In
addition, information on past landslide occurrences was also
collected from the Korean Meteorological Administration
database. All data were processed and analyzed using geographic
information systems software. Figure 3 depicts a map of several
conditions contributing to landslide occurrence in the region.

FIGURE 2
Location of the studied region.
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2.2 Data pre-processing

As previously highlighted, the ten factors collected in this research
are rasterized with an impressive 10 m resolution. In addition to these
datasets, we collected and processed data on landslide inventory for
2005–2019. It can be said that this is the most important dataset for
studies on building LSM based on ML algorithms. This entire dataset
was measured and analyzed by surveys at locations immediately after
a landslide from aerial images, drones, and field trips. The pre-
processing of this dataset for the ML models is marked by several
integral phases. The landslide inventory dataset is first rasterized to
match the grid cell size of the ten factors mentioned in this study,
which is 10 m×10 m. This high resolution indicates that a single
landslide event can be identified across multiple neighboring cells and
the number of landslide-affected cells depending on the scale and size
of the respective landslide event. Following rasterization, cell locations
affected by landslides are carefully identified, inventoried, and labeled.
Ten different data types are then stacked on the digitized landslide
data. Once layered, data from all the superimposed layers is extracted
for each grid cell. Based on their data attributes, these cells are
systematically classified as landslides or non-landslides.

After processing and analyzing the data, it was found that
approximately 7,188 grid cells recorded landslides, significantly
lower than the number of grid cells that did not. The imbalance
between these data classes is a typical problem in practice and can
result in biased algorithms that perform poorly on the minority class

(Fernández et al., 2018). This occurs because ML models may learn
to classify the majority class correctly while ignoring or incorrectly
classifying the minority class (Ma and He, 2013). To solve this
problem and boost the effectiveness of the ML models, this study
applied several solutions, such as the Tomek Links technique and the
Near Miss algorithm, to resample the data. The following
subsections go into further depth about these approaches. After
processing, the final dataset had 14,376 samples, comprising
7,188 landslide samples and 7,188 non-landslide samples.

2.2.1 Tomek Links technique
The Tomek Links technique is a data pre-processing technique

frequently utilized to improve the efficiency of ML algorithms. It is
based on the idea that a pair of samples near one other and belonging
to distinct classes are termed Tomek Links (Tomek, 1976). This
technique removes samples from the majority class for each pairing
while expanding the gap between the two categories. This can be
useful as noise and outliers often negatively affect the model’s
accuracy and reliability. This approach could be applied to any
ML issue, including classification, regression, and clustering.
Figure 4 depicts the resampling procedure of the Tomek Links
techniques.

2.2.2 NearMiss algorithm
The NearMiss algorithm is commonly employed to boost the

effectiveness of ML algorithms, especially for imbalanced datasets.

FIGURE 3
Several factor maps cause landslides.
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An imbalanced dataset is one in which the number of samples in one
category differs considerably from the number of samples in the
other. This frequently results in poor performance of ML
algorithms, as the minority class is often underrepresented and
may not be adequately learned by the model.

The NearMiss algorithm tackles this issue by selecting a subset of
samples from the majority group that is similar to samples from the
minority group based on a distance measure like Euclidean distance
(Zhang and Mani, 2003). The NearMiss algorithm has three
variants: NearMiss1, NearMiss2, and NearMiss3.
NearMiss1 chooses samples from the majority group nearest to
the minority group. NearMiss-2 and NearMiss-3 select samples
from the majority group that are furthest from the majority group
and closest to the minority group, respectively. Figure 5 depicts the
resampling procedure of the Near Miss algorithms.

2.3 ML algorithms

This study used 6 ML algorithms to classify areas as prone to
landslides or not prone to landslides based on a set of input features.
Each algorithm has its assumptions, strengths, and limits, and we
chose various algorithms to provide robust and reliable results. In

addition, the cross-validation technique was utilized to analyze the
performance of each algorithm and select the best-performing
algorithm based on a range of evaluation criteria, for instance,
PCC, recall, precision, and F1 score. Before using ML algorithms
to LSM, it is necessary first to gather a collection of labeled data, in
which both the input characteristics and the landslide susceptibility
(either “1″or “0″) are already established. ML models are then
trained using the aforementioned labeled data via appropriate
optimization algorithms.

2.3.1 LR
LR is a simple and popular classification method using linear

regression and the logistic function as its primary building blocks
(Cramer, 2002). In the context of LSM, LR is utilized to classify areas
as either prone or not prone to landslides based on a collection of
input features that are known to be associated with landslides. These
elements may include geological and topographic characteristics,
land use, land cover, and environmental factors like precipitation
and slope angle. The LR objective is to find the line that best matches
the data points and demarcates the two distinct groups of “landslide”
and “non-landslide”. The output is a probability that ranges between
0 and 1, which is utilized to categorize the data into one of the two
options. For instance, if the likelihood is higher than 0.5, the data is

FIGURE 4
Illustration of Tomek Links technique.

FIGURE 5
Illustration of NearMiss algorithm.
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classified as potentially affected by landslides. Still, if the probability
is lower than 0.5, the data is categorized as not having the potential
to be affected by landslides. Figure 6A briefly illustrates the LR
algorithm. The probability of the event occurring is expressed as:

p x( ) � 1

1 + e− β0+β1x1+β2x2+...+βnxn( ) (1)

Where β0, β1,. . . are the coefficients and x1, x2,. . . are the
predictor variables

2.3.2 GNB
GNB classification algorithm is based on Bayesian probability

theory and follows a Gaussian normal distribution, making it
suitable for continuous data classification tasks. It is a
straightforward and commonly adopted approach, mainly when
the dataset is large. The method assumes that the input
characteristics are independent of one other, called the “naive”
assumption. This indicates that the probability of each factor is
computed independently without considering the probabilities of
the other characteristics. Through the use of the maximum
likelihood estimate, it is possible to learn the possibility of the
input characteristics given the various classes. The output is the
likelihood that the data belong to each category, and the prediction is
taken from the type with the highest probability. GNB can be
sensitive to the assumptions of independence and normalcy of
the features, even though it is a straightforward and efficient
classification method that performs well on a wide range of
datasets. Figure 6B briefly illustrates the GNB algorithm. Given a
feature vector X � (x1, x2, ..., xn), the probability that a sample
belongs to class Ck is given by:

P Ck X|( ) � P X Ck|( )P Ck( )
P X( ) (2)

2.3.3 KNN
KNN is an ML algorithm used for classification tasks. The core

of this technique is rooted in the principle of instance-based
learning, wherein the categorization of a new data point is
established based on its similarity to prior data points within the

training dataset (Cover and Hart, 1967). The technique uses a
distance metric, for instance, Euclidean or Manhattan distance, to
estimate the distance from the new data point to all points. The K
closest points to the latest data are then selected, where K is a value
determined by the user. The new data point is assigned to the
category with the highest frequency among the K nearest points.
KNN is a prevalent choice for classification jobs because of its
simplicity and performance on various input formats. Figure 7A
briefly illustrates the KNN algorithm. The distance between two
points x and y in the Euclidean space is:

d x, y( ) � ���������������������������������
x1 − y1( )2 + x2 − y2( )2 + . . . + xn − yn( )2√

(3)

2.3.4 SVM
SVM is a powerful and versatile classification algorithm that

works by finding the hyperplane that maximally separates various
classes in the feature space (Cortes and Vapnik, 1995). The
fundamental of SVM is finding a decision margin that maximally
divides the data points into multiple classifications. A set of support
vectors defines the decision boundary, the data points in the training
dataset nearest to the hyperplane. The relative position of the
support vectors determines the hyperplane position. The SVM
output is a score that indicates the likelihood of the data
belonging to one class or the other. SVM is a powerful and
effective classification technique suited for a wide range of
datasets, although it can be computationally expensive when the
training set is large. Figure 7B briefly illustrates the SVM algorithm.
The decision function is:

f x( ) � 〈ω, x〉 + b (4)
Where ω is the normal vector to the hyperplane and b is the

offset.

2.3.5 RF
RF is a classification algorithm incorporating numerous DT

predictions to make more accurate and robust predictions (Tin
Kam, 1998; Breiman, 2001). A DT is a tree-shaped model in which
each node represents an individual characteristic, each branch a

FIGURE 6
Illustration for (A) LR algorithm and (B) GNB algorithm.
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particular choice, and each leaf node a distinct category or value. RF
generates a collection of DT by bootstrapping a sample of the data
and randomly picking a sample of the input data for every split. This
means that each DT is constructed by drawing from a distinct
sample of the data and a unique subset of the input variables. In

classification tasks, RF determines the final classification by taking
the unweighted average of the predictions made by individual DTs
and selecting the most commonly predicted category. RF is a robust
and efficient method resistant to overfitting and can be used on
various datasets. Figure 8A briefly illustrates the RF algorithm. The
classification decision is made by majority voting:

YRF � f YT1,YT2, ...,YTn( ) (5)
Where YTi is the prediction of the ith tree.

2.3.6 XGB
XGB is a well-known gradient-boosting technique that may be

applied to classification and regression applications (Chen and
Guestrin, 2016). It is based on DT and is meant to form an
ensemble of DTs to make predictions based on data that has not
been seen before. An optimization approach that minimizes the loss
function generates a set of decision trees in XGB. This means the
DTs are formed to reduce the gap between the observed and
estimated values. XGB is a robust and efficient technique for
classification and regression work. It is a popular algorithm
because of its strong performance on a diverse range of data
formats and its capacity to deal with categorical and numerical
characteristics. Figure 8B briefly illustrates the XGB algorithm.
Given a differentiable loss function L(y, F(x)), where y is the
actual value and F(x) is the prediction, the prediction model is
updated iteratively:

Ft x( ) � Ft−1 x( ) + η∑n

i�1f i x( ) (6)

Where fi(x) is the prediction of the ith base leaner (typically a
DT), and η is the learning rate.

2.4 Hyperparameter tuning and model
validation

This study employed the grid search strategy for hyperparameter
tuning, a widely used approach that can effectively enhance the

FIGURE 7
Illustration for (A) KNN algorithm and (B) SVM algorithm.

FIGURE 8
Illustration for (A) RF algorithm and (B) XGB algorithm.
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accuracy and reliability of the resulting LSMs. As its applicability to
small to medium-sized datasets, this method trains and evaluates an
ML algorithm for each set of hyperparameters defined within a
specified grid. For each model, the Python scikit-learn library
facilitates the implementation of the grid search method.

The final processed dataset for this study contained 14,376 samples,
with a balanced distribution of landslide and non-landslide instances
(7,188 each). By maintaining a balanced dataset, potential model bias is
mitigated, and the generalizability of prediction tasks is improved. The
dataset is separated into training and testing subsets, representing 80%
and 20% of the total dataset. Thus, the training set includes
11,500 samples (5,750 landslides and 5,750 non-landslides), while
the testing set consists of 2,876 samples (1,438 landslides and
1,438 non-landslides). A 5-fold cross-validation is performed
throughout the grid search procedure to fine-tune the models. This
ensures that the findings are not overly optimistic and can be
generalized to unseen data. The selected parameters for each ML
model used in the grid search are detailed in Table 1.

2.5 Performance measures

Assessing algorithm performance is a crucial stage in using ML
algorithms for LSM. It helps to identify the most accurate and
reliable algorithm for a given study and can provide valuable insights
into the strengths and limitations of the algorithms. This study used
various evaluation criteria, including PCC, precision, recall, and F1
score. PCCmeasures how well the model correctly classifies the data,
whereas recall estimates the proportion of true positive (TP)
predictions over total observed positive events. Precision
measures how well the model avoids false positives (FP), and the
F1 score is the harmonic average of precision and recall. We
estimated these evaluation metrics using a confusion matrix,

which compares each case’s predicted and actual values. A
confusion matrix comprises four main components: TP, FP, true
negatives (TN), and false negatives (FN). In this case, TP and RN
stand for the number of samples rightly categorized as positive and
negative. In contrast, FP and FN refer to the number of samples
wrongly classified as positive and negative. The following is a
description of these criteria.

Pr ecision � TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 score � 2*Pr ecision*Recall
Precision + Recall

(9)

PCC � TP + TN
TP + FP + TN + FN

(10)

PV � TP + FP( ). TP + FN( ) + FN + TN( ). FP + TN( )
TP + FP + TN + FN( )2 (11)

KC � PCC − PV
1 − PV

(12)

Where PCC means the percentage of correct classification (or
accuracy), PV implies the probability of random agreement, and KC
represents the Kappa coefficient.

3 Results

3.1 Comparison of six ML algorithms

To compare the performance of 6 ML algorithms for LSM in
Inje County, South Korea, we use several evaluation metrics,

TABLE 1 Parameter settings of each ML model used in the grid search.

Algorithm Parameter Value range Optimal value

LR C 0.01, 0.1, 1, 10, 100 10

max_iter 100, 1,000, 10000 100

KNN n_neighbors [2, 30] 6

weights uniform, distance distance

GNB var_smoothing [0, 1] 0.0029

SVM C 0.1, 1, 10, 100 100

kernel linear, poly, rbf, sigmoid rbf

gama scale, auto scale

RF n_estimators 50, 100, 200 100

max_depth 10, 50, 100 50

max_features auto, sqrt auto

XGB n_estimators 50, 100, 200 100

max_depth 10, 50 10

max_features auto, sqrt, log2 sqrt

TABLE 2 Performance statistics of six models.

Metrics LR GNB KNN SVM RF XGB

PCC 0.869 0.870 0.921 0.918 0.939 0.941

F1 Score 0.865 0.857 0.918 0.915 0.939 0.940

KC 0.738 0.739 0.843 0.836 0.878 0.881

FIGURE 9
Performance of six algorithms in terms of classification.
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including PCC, F1 score, and KC. The results of these evaluations are
presented in Table 2 and Figures 9, 10 below.

All algorithms generally have relatively high PCC, F1 score, and
KC values, indicating that they all performwell overall. However, the
performance of the various models differs slightly. RF and XGB
algorithms had the highest PCC values, with 0.939 and 0.941,
respectively. These models can correctly classify landslide-prone
areas with a high percentage, indicating that they can detect zones
with an increased susceptibility to landslides. Regarding the F1 score
metric, these models can balance the precision and recall well, as the
corresponding values for RF and XGB were 0.939 and 0.940,
respectively. This is important as it will reduce the number of
FNs and FPs. The KC metric also revealed a strong agreement
between the predictions of these models and actual observations,
and the models are not just labeling all areas as landslide-prone. The
best values for this metric were 0.878 and 0.881, belonging to RF and
XGB algorithms.

In contrast, the PCC and F1 score values of the LR andGNBwere
lower than those of the other algorithms (0.869 and 0.87,
respectively), and their KC values were also lower (0.738 and
0.739, respectively), which indicated that they might not perform
as well as the other models. This might be because these models are
simple, and they may be incapable of capturing the complex
relationships between the input variables and the landslide
sensitivity, as well as other models such as RF or XGB. It is
worth noting that the KNN and SVM algorithms also performed
pretty well, with PCC, F1 score, and KC values of 0.921, 0.918, and
0.843 for the KNN, and 0.918, 0.915, and 0.836 for the SVM,
respectively. These models were capable of recognizing regions
with a high risk of landslides. However, they are not as good as
RF and XGB regarding balancing the precision, recall, and
agreement between the model predictions and the observations.

Figure 10 illustrates the classification performance for the
landslide class of the ML models corresponding to the PCC,
precision, and recall criteria. Similar to the previous evaluation,
the LR and GNB models had lower accuracy and recall values, with
the earlier having scores of 0.894 and 0.947, while the latter had
numbers of 0.837 and 0.783, respectively. The KNN and SVM
algorithms depicted a similar pattern, with precision and recall
scores of 0.956 and 0.884 for KNN and corresponding numbers

for SVM of 0.947 and 0.886, respectively. XGB had the highest
precision value of 0.953 compared to other models, indicating its
proficiency in identifying TPs and having a low FP rate. On the other
hand, RF had the highest recall value of 0.929, demonstrating its
ability to identify TP and low FN rates.

3.2 Robustness and sensitivity analysis

To offer a more thorough assessment of the robustness of RF
and XGB models, an analysis of the confusion matrix and feature
importance was performed and shown in Figure 11, Figure 12.

Figure 11 illustrates the confusion matrix details for both
models. Out of 2,876 samples, the RF model yielded 1,365 TNs,
1,336 TPs, 73 FPs, and 102 FNs. In contrast, the XGBmodel resulted
in 1,373 TNs, 1,332 TPs, 65 FPs, and 106 FNs. Regarding PCC, both
the RF and XGB exhibited remarkable performance, registering
classification accuracies of 93.9% and 94.1%, respectively. The
precision and recall metrics underscore their efficacy, with RF
showing 94.8% and 92.9%, respectively, whereas XGB showcased
95.3% and 92.6%.

Feature importance is a metric of how much each factor
contributes to the predictions made by the model. According to
the data presented in Figure 12, the variable considered to be of
the utmost significance in both the RF and the XGB models was SD
(soil depth), which had a value of 0.246 and 0.285, respectively. This
means that soil depth was the most influencing variable when
determining landslide susceptibility in the research region. The
second most significant variable in the RF algorithm was CU, with
a value of 0.133, followed by TWI, with 0.144. In the case of the XGB
model, the CA variable was the second most important variable,
followed by the TWI variable, which had values of 0.144 and 0.125. BR
was the component with the lowest importance score in both models,
with a value of 0.032 in RF and 0.038 in XGB models.

3.3 LSM of Inje area

The LSM generated by the RF and XGB algorithms were
displayed in Figure 13, Figure 14, respectively. These maps were
based on the likelihood of landslides occurring for each grid cell,
which ranges from 0 to 1. As seen in these Figures, the LSM is
segmented into five levels following the categorization used by the
National Institute of Forest Science in South Korea. Among them,
level 4, with a range of probability [0.5–0.7], and level 5, with a range
of probability [0.7–1.0], are considered the most dangerous warning
levels. The visualized results of the two algorithms revealed a slight
difference in the landslide probability estimation for grid cells. This
distinction was particularly noticeable when comparing level 1
(0–0.1) and level 3. In contrast, there was not much difference
between the other levels, notably levels 4 and 5, each with a
significant possibility of landslides.

3.4 Current approach for LSM in South Korea

The current approach for LSM in South Korea focuses primarily
on using statistical techniques, particularly logistic regression

FIGURE 10
Classification performance of six models in terms of landslide
class.
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analysis, to identify the association between input factors (Woo
et al., 2014). The following equations are used to calculate the
probability of a landslide hazard at a specific site. The LSM for
the Inje area was developed from these equations, as shown in
Figure 15.

X � −2.596 + 0.069*SL − 0.022*CL + 0.011*CU
+0.734*TWI − 0.594*TD + 0.006*SD
+AZ + BR + FC (13)

P � eX

1 + eX
(14)

According to Lee et al. (2015), this methodology achieved an
average accuracy of approximately 75.2%. When comparing this
method to theML approach presented in Section 3.1, the accuracy of
ML models was about 92% on average, which was a significant
improvement over the process that is currently being used. The PCC
and F1 scores of the 6 ML models range from 0.869 to 0.941 and
0.857 to 0.940, respectively. Among the six algorithms, RF and XGB
performed best, with accuracy and F1 values of [0.939–0.941]. The
results of this study indicated that using ML algorithms for LSM can
lead to more accurate and higher-resolution LSMs. It is essential to
point out that one of the benefits of adopting anML technique is that

it is capable of handling complicated interactions between input
variables and landslide susceptibility. These types of relationships
may be difficult to capture using statistical methods. Additionally,
the use of ML algorithms provides a valuable alternative to the
current statistical approach in South Korea.

4 Discussion

The ability of ML algorithms to enhance LSM in contexts such as
Inje County, South Korea, has been substantiated in this study. The
RF and XGB models performed particularly well in correctly
identifying landslide-prone areas, while KNN and SVM

FIGURE 11
Confusion matrix for RF and XGB.

FIGURE 12
Variable importance of RF and XGB.

FIGURE 13
LSM using RF algorithm.
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performed well. Nonetheless, algorithm selection for such
applications should be based on performance metrics and factors
like ease of implementation, model interpretability, and inherent
limitations (Zhou et al., 2021; Liu et al., 2023).

The poorer performance exhibited by LR and GNB resonates
with prior literature on their inherent limitations. For instance, LR

assumes a linear relation between predictor and response variables,
which often is not true in complex natural phenomena like
landslides (Pham et al., 2016). Additionally, its sensitivity to
outliers and imbalanced datasets hampers its ability to capture
intricate non-linear associations (Akinci and Zeybek, 2021).
Similarly, while GNB’s simplicity and computational efficiency
are well acknowledged, its assumption of input independence
often leads to its suboptimal performance, consistent with our
findings and those of Azarafza et al. (2021).

The comparable performance of KNN and SVM echoes prior
works. KNN, though simple in its construct and devoid of data
distribution assumptions, suffers when processing power is limited,
given its requirement to compute distances between every training
and new data point. The sensitivity of KNN to the choice of ‘K’ has
been reported by studies such as Sameen et al. (2020). SVM’s
strength lies in its ability to grapple with high-dimensional data
and intricate non-linear predictor-response relationships (Yao et al.,
2008). However, SVM’s sensitivity to kernel function choices and
the regularization value, as corroborated in our study, is a limitation
noted by Huang and Zhao (2018).

According to the findings of this research, the 2 ML
algorithms most useful for LSM are RF and XGB. Both
algorithms have the advantage of being capable of handling
high-dimensional data and non-linear correlations between
input characteristics and output. RF’s resilience to data noise
and outliers has been highlighted by Dou et al. (2019), whereas
XGB’s speed and robustness to missing data are mentioned in
Biswas et al. (2022). However, the potential computational
intensiveness of RF and the sometimes opaque results of XGB,
as observed in our study, are consistent with the findings of
Merghadi et al. (2020). Despite these limitations, both these
models hold promise for LSM, and the choice between them
should be reasonable, considering data characteristics and the
study’s objectives.

Adopting the ML-based approach for LSM holds substantial
practical implications for regions like South Korea. Enhanced
predictive accuracy not only aids in more effective resource
allocation for disaster prevention but also offers a robust
foundation for policymaking at both local and national scales.
Proactively identifying high-risk zones, authorities can prioritize
infrastructure development, design better evacuation strategies, and
optimize disaster response protocols. This research thus paves the
way for an integrated, data-driven approach to landslide
management, potentially safeguarding communities and
infrastructures against the devastating impacts of unforeseen
landslides.

Despite the promising outcomes of this research, it is crucial
to recognize its limitations. Data availability restricted our
study to a specific timeframe and region, potentially affecting
broader generalizations. Moreover, while the chosen ML
algorithms offer advanced predictions, their complexity could
pose challenges in real-time applications or when adapting to
other regions with distinct geological characteristics. Future
research could explore integrating diverse datasets for better
model training and investigating simpler yet efficient
algorithms. Additionally, cross-regional studies would be
invaluable in assessing the universal applicability of the ML-
based LSM approach.

FIGURE 14
LSM using XGB algorithm.

FIGURE 15
LSM using LR analysis.
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5 Conclusion

The application of 6 ML algorithms for LSM in Inje County,
South Korea, has revealed distinct efficiencies among the algorithms.
RF and XG perform particularly well in accurately classifying
landslide-prone areas, balancing precision and recall, and having
PCC values up to about 94%. The KNN and SVM models with a
PCC score of roughly 92% also performed well in correctly
classifying landslide-prone areas. The two models, LR and GNB,
have the lowest efficiency, corresponding to a PCC value of only
about 87%. Despite this, the results demonstrate that the ML
approach is superior to the existing statistical approach with
logistic regression, which has an accuracy of about 75.2%.

This study provides a valuable starting point for further research
into usingML techniques for LSM in South Korea and other regions.
The RF and XGBmodels are highly recommended for LSM usage in
South Korea. However, it is essential to consider the trade-offs
between the performance and simplicity of implementation and
interoperability. The efficiency of algorithms differs from location to
region for various reasons, including geomorphology, land uses, and
other factors.

The broader implications of this finding can potentially reshape
disaster management policies in South Korea. A shift from
traditional models to ML-based LSMs can facilitate more
accurate predictions, allowing authorities to pre-emptively
address and mitigate landslide risks in vulnerable zones. This
study will substantially impact the understanding of landslide
risk in Inje County. It will be valuable in developing effective
mitigation techniques for landslides in the place.
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