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Carbonate reservoirs exhibit complex pore structure, which significantly affects
the elastic properties and seismic response, as well as the prediction of physical
parameters. As one of the main factors impacting fluid prediction, pore structure
parameter directly involves in few inversion methods. In order to directly predict
pore structure parameter in inversion, a novel quantitative reflection coefficient
formula is proposed, that integrate Russell's poroelasticity theory with Sun's
petrophysical model. This formula separates fluid bulk modulus from porosity
and pore structure parameter, allowing for accurate determination of pore-fluid
distribution through Bayesian framework. Both theoretical model analysis and
multi-component digital core experiments of carbonates validate the importance
of pore structure parameter on fluid identification. The practical application of
carbonate reservoirs in Sichuan Basin demonstrates that the proposed fluid factor,
eliminating the prediction illusion caused by heterogeneity in porosity and pore
structure parameter within strata, provides more precise and reliable predictions
compared to the Russell fluid factor. Furthermore, the similarity between the
Russell fluid factor obtained directly from the Russell approximation and the
Russell fluid factor calculated indirectly from the proposed method confirms
the stability and accuracy of the new reflection coefficient formula.
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1 Introduction

With the advancement of exploration and development technology, the targets of
exploration and development are becoming increasingly intricate. There has been a
decline in reserves and grades of both oil and gas, with a growing proportion of low
porosity and low permeability. In terms of carbonate reservoirs, predicting reservoirs is
much challenging due to their deep burial depth and weak seismic responses. Moreover, they
exhibit strong heterogeneity and significant variations in physical properties and thickness
over short distances, as well as complex pore types. All these characteristics contribute to
heightened difficulty in identifying oil and gas within them. Therefore, one of the current
challenges in geophysics lies in effectively identifying fluids within target reservoirs with
complex porous media.

The effect of porosity and pore types on the effective elastic properties of reservoirs is
very critical in hydrocarbon prediction. A study conducted by Sun et al. (1997) showed that
the variations in the pore aspect ratio can lead to changes in wave velocity exceeding 2000 m/
s or more. Currently, significant advancements have been achieved in the research of pore
structure parameters. For example, Zimmerman (1986) and Kachanov et al. (1994)
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examined the influence of two- and three-dimensional pore shape
on elastic properties, respectively. Berryman (1999) derived
approximate analytical expressions for the elastic parameters of
dry/saturated fractured rock based on DEM theory. Jiang et al.
(2012) proposed a new petrophysical modeling method using the
Gassmann equation and Eshelby–Walsh ellipsoidal fracture theory
to extract a parameter characterizing variations in the pore structure,
thereby demonstrating its profound influence on the elastic
properties of the rock. Deng et al. (2015) provided an analytical
expression for the initial minimum aspect ratio of soft pores based
on poroelasticity theory and extended the “squirt flow”model based
on the characteristic aspect ratio by adding soft pores iteratively to
analyze the influence of complex pore distribution on the squirt flow
and its possible velocity dispersion characteristics. Wang et al.
(2016) established a pore-scale numerical simulation method for
elastic wave propagation in porous media based on the extraction of
the pore structure parameter from digital core images in view of the
complex pore structure and significant heterogeneity of carbonate
rocks, verified its reliability with natural core data, and quantitatively
analyzed the effect of carbonate pore structures on the propagation
velocity and the scattering attenuation of elastic waves. He et al.
(2012) proposed a unified expression by consolidating various
petrophysical models for porous media, including Pride,
Geertsma, and Keys-Xu, aiming to establish a more universal
application across different rock types. Subsequently, He et al.
(2018) further emphasized the significance of the pore aspect
ratio as a fundamental benchmark due to the ambiguous physical
definition and inconsistent quantitative representation of the pore
structure parameter. These studies collectively indicate that the
current research on the pore structure parameter primarily
focuses on small-scale cores and logs but lacks applicability for
fluid prediction at the seismic scale.

In the past few decades, there has been significant
advancement in the fluid identification technology of seismic
reservoirs, from a “qualitative” approach based on seismic
amplitude anomaly in the 1980s to a “quantitative” method
relying on the fluid factor in the present stage. With the
development of a prestack seismic inversion, the fluid sensitive
terms have evolved from assessing the relative variation in elastic
parameters to presently recognizing physical parameters with
distinct petrophysical significance. Biot (1941) and Gassmann
(1951) both proposed the construction methods of the fluid factor
for porous fluid-saturated rocks. Russell et al. (2003) and Russell
et al. (2011) used the Biot–Gassmann theory to refine the
Aki–Richards approximation under saturated fluid conditions
and introduced the fluid factor, which can be directly involved
in seismic fluid detection. Yin et al., (2014) derived a seismic
reflection coefficient formula that incorporates porosity by
combining the Russell approximation with the Nur model. Du
et al. (2019) then extended this formula to PP–PS joint inversions,
which further improves the fluid prediction in heterogeneous
reservoirs but does not consider the pore structure parameter.
Zong et al. (2012) and Zong et al. (2015) established a direct
relationship among fluid factors and P- and S-wave moduli based
on the petrophysical model of porous elastic media to obtain a
new Zoeppritz approximation formula based on the P- and
S-wave moduli, which circumvents the issue related to
accurately determining density fluid factor calculation and has

been successfully applied in an exploration area in eastern China.
Sun, et al. (2015) proposed a novel fracture fluid factor that can
simultaneously detect fracture development and fluid properties
by combining P-wave anisotropic fracture prediction and Russell
fluid factor into the Cartesian coordinate system in order to
address the challenge of fluid identification in anisotropy,
which achieved promising application in igneous areas. Sun
et al. (2016) employed sequential Gaussian simulation and
Metropolis sampling algorithm based on Bayesian’s theoretical
framework to directly estimate the Russell fluid factor, which
enhanced the accuracy of fluid factor identification. Although
substantial developments have been made in recent years
regarding the algorithms of fluid prediction, the issue of fluid
prediction under non-homogeneous conditions still faces
challenges such as strong multi-solution and less precise
prediction. This can be attributed to the omission of pore
structure parameters in the widely used Gassmann fluid
equation for bidirectional media containing fluid, making it
complicated and challenging to accurately quantify the impact
of pore structure. Fan et al. (2019) and Zong et al. (2019)
introduced the squirt flow model into an inversion, along with
the relevant parameters of the pore structure, making an initial
step toward integrating the pore structure parameter in seismic
reservoir prediction. Li et al. (2021) also proposed a new method
combining the pore structure with the Bayesian non-linear
simultaneous inversion of physical parameters, further
improving the importance and involvement of the pore
structure in the reservoir prediction. However, the
aforementioned methods including pore structures can only be
obtained in an indirect way. In other words, traditional physical
parameters are first calculated, and then, specific petrophysical
theories are employed to derive the pore structure and other fluid
parameters. This approach does not directly incorporate the pore
structure parameter as the factor in the inversion process of
seismic reflection coefficient. Therefore, it is imperative to
further study the inversion method of the pore structure from
indirect to direct inversions in order to streamline the procedure,
while improving the inversion accuracy.

In order to mitigate the impact of complex pore structure on
fluid prediction in carbonate reservoirs, a novel inversion method is
proposed that integrates Sun’s petrophysical model and Russell’s
poroelasticity theory to derive a decoupled reflection coefficient
formula for fluid bulk modulus Kf, porosity ϕ, and pore structure
parameter γ. A two-layer theoretical geological model is used for
forward modeling simulation to verify the accuracy of the newly
derived formula and assess the impact of porosity ϕ and the pore
structure parameter γ on the seismic response. Then, an improved
decorrelation method is employed to eliminate correlations between
multiple parameters, ensuring stability and robustness during the
inversion process. In the practical application in a specific
exploration area within the Sichuan Basin, this study first
demonstrates through digital core experiments that the pore
structure parameter γ has great influence on elastic moduli.
Furthermore, the results based on the actual data show that the
fluid bulk modulus Kf as the proposed fluid indicator eliminates
the interference of the pore structure (ϕ and γ) and can provide
more accurate and reliable fluid distribution than Russell’s fluid
factor f.
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2 Methods

Establishing a direct mathematical relationship between
theoretical or empirical petrophysical models and expressions of
seismic reflection coefficients is the key to quantitative
characterization of fluid prediction involving the pore structure.

2.1 Poroelasticity theory

First, one of the widely used quantitative formulas of seismic
response for fluid identification is Biot–Gassmann theory (Krief
et al., 1990), which elucidates the pore/fluid interaction in
homogeneous porous media and defines the functional
relationship between seismic velocity and fluid. Its corresponding
formula is shown as follows:

Ksat � Kdry + β2M, (1)
μsat � μdry � μ, (2)

where Ksat and Kdry represent the bulk moduli for the saturated
and dry porous rocks, μsat and μdry denote the shear moduli for

the saturated and dry porous rocks, β represents the Biot
coefficient, and M signifies the modulus of pressure that
drives water into strata without changing its volume. Russell
et al. (2003) derived the Gassmann formula based on the pore-
elasticity theory and found that the fluid/porosity term f was
related to multiple petrophysical parameters, including porosity,
which could be quantitatively characterized by saturated elastic
parameters:

f � β2M � 1 − Kdry/Ks( )[ ]2
ϕ/Kf( ) + 1 − ϕ( )/Ks[ ] −Kdry/Ks

2{ }, (3)

where Kf and Ks denote the bulk moduli of the fluid and saturated
rock frame and ϕ represents the porosity. Therefore, formula (2) can
be reformulated as follows:

Ksat � Kdry + f. (4)

In addition, by substituting the fluid factor f into Aki–Richard
approximation, Russell proposed a formula for the seismic response
that can directly obtain f by inversion (Russell et al., 2011) as
follows:

TABLE 1 Parameters of the two-layer strata model.

Kf (GPA) μ (GPA) Vp (m/s) Vs (m/s) ρ (kg/m3) ϕ (%) γ (−)

Layer 1 42.5 13.5 4,000 2,350 2,450 6 3

Layer 2 18 14.5 4,175 2,420 2,460 8 6.5

kf is fluid bulk modulus, μ is shear modulus, vp is P-wave velocity, vs is S-wave velocity, ρ is density, φ is porosity, γ is pore structure parameter.

FIGURE 1
Accuracy comparison of reflection coefficients among the Zoeppritz formula (×), Aki–Richard formula (+), and proposed formula of decoupling the
pore structure (○).
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Rpp θ( ) � 1 − cdry2

csat2
( ) sec2θ

4
[ ] Δf

f
+ cdry2

4csat2
sec2θ − 2

csat2
sin 2θ( ) Δμ

μ

+ 1
2
− sec2θ

4
( ) Δρ

ρ
,

(5)
where θ denotes the incidence angle, ρ signifies the density, and csat2

and cdry2 represent the velocity ratios of P and S wave in saturated
and dry rocks, respectively.

2.2 Reflection coefficient formula for
decoupling porosity and pore structure
parameter

Second, in terms of petrophysics, Sun (2000) proposed a
petrophysical model based on Biot theory, introducing the pore
structure parameter γ to effectively depict the effect of the
pore shape on seismic velocity. Given its inclusion of both
the pore structure parameter γ and porosity ϕ, Sun’s model
exhibits superior applicability for characterizing reservoirs
with a complex pore structure compared to conventional
petrophysical models:

Ksat � 1 − Fkϕ( )Ks + FkϕKf, (6)

Fk � 1 − 1 − ϕ( )γ
1 − 1 − ϕ( )γ[ ] Kf

Ks
+ 1 − Kf

Ks
( )ϕ, (7)

μsat � μs 1 − ϕ( )γ. (8)
It is worth noting that the pore structure parameter γ

represents the pore shape, particularly the aspect ratio α,
which does not fall within a numerical range from 0 to 1.
Through digital core simulation, Zhao et al. (2021a), Zhao
et al. (2021b) clarified their non-linear relationship: α< 0.08
when γ> 8 and 1> α> 0.3 when 2< γ< 3.

According to the derivation by Han et al. (2004), it can be
concluded that Ks ≫Kf when ϕ is extremely small (ϕ< 15%).

Additionally, in tight sandstone or carbonate with low porosity, γ
exhibits a significant influence on the seismic response, which
greatly contributes to heterogeneity. Therefore, formula (6) can
be simplified as follows:

Ksat � 1 − ϕ( )γKs + 1 − 1 − ϕ( )γ[ ]Kf. (9)

It can be found by comparing formula 9, 4that

f � 1 − 1 − ϕ( )γ[ ]Kf, (10)
Kdry � 1 − ϕ( )γKs. (11)

The exponential term in formula 10 poses challenges for
numerical analysis, and therefore, it can be expanded by the
Taylor series as follows:

f � 1 − 1 − γϕ + 1
2
γ γ − 1( )ϕ2 −/[ ]{ }Kf. (12)

The selection of different orders in approximation (12)
can be tailored to meet different accuracy requirements. To
achieve the decoupling of Kf from ϕ and γ by direct inversion,
formula 12 in the first-order approximation is substituted
into formula 5 to obtain a novel fluid prediction formula as
follows:

Rpp θ( ) � sec2θ
1
4
− cdry

2

4csat
2( ) ΔKf

Kf

+ sec2θ
4

− cdry
2

2csat
2sec

2θ + 2

csat
2sin

2θ( ) Δϕ
ϕ

+ 1
2
− cdry

2

4csat
2( )sec2θ − 1

2
[ ] Δγ

γ

+ cdry
2

4csat
2sec

2θ − 2

csat
2sin

2θ( ) Δfm

fm
+ 1

2
− 1
4
sec2θ( ) Δfs

fs
,

(13)
where fm � ϕμ represents the dry rock matrix term (Yin et al., 2014)
and fs � γρ denotes the structural density term.

FIGURE 2
Contribution of porosity ϕ and pore structure parameter γ to seismic reflection coefficients. (A) Effect of variation in ϕ on reflection coefficients when
γ � 5; (B) Effect of variation in γ on reflection coefficients when ϕ � 6%.
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3 Accuracy analysis

For verifying the rationality of the proposed reflection coefficient
in formula 13 for decoupling the pore structure parameter γ and
porosity ϕ simultaneously, a two-layer geological model based on the
logging data from carbonate reservoirs is designed to analyze its
accuracy. The model parameters are shown in Table 1. The exact

Zoeppritz formula, Aki–Richards approximation, and the proposed
formula are used to calculate the reflection coefficient, and their
comparison is shown in Figure 1. The reflection coefficient obtained
from the new formula exhibits good agreement with that from the
exact Zoeppritz formula for incidence angle below 35°, while
maintaining similar accuracy to the A&K approximation for
incidence angle above 35°. Therefore, Figure 1 shows that there is

FIGURE 3
Decorrelation example: (A) original data with correlation, (B) data with weak correlation, and (C) white data.

FIGURE 4
Synthetic seismic gathers without noise (A) and with noise of S/N=2 (B).
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no loss of computational accuracy in the proposed formula of
separating the pore structure despite the increase in input
parameters.

4 Importance of the pore structure

It should be noted that there are five terms to be solved in the
proposed approximation (13), including porosity ϕ and the pore
structure parameter γ. Since these two parameters are not
commonly used in a seismic inversion, it is necessary to confirm
their considerable influence on the AVO reflection coefficient.

A two-layer model with the same basic elastic parameters
(Vp � 4000m/s; VS � 2350m/s; ρ � 2450kg/m3) is built to reveal
the effect of the pore structure on the reflection coefficient by
varying only ϕ or γ, as shown in Figure 2. Figure 2A shows that
when γ is fixed at 5 and ϕ changes from 1% to 10%, the reflection
coefficient exhibits significant changes. Similarly, in Figure 2B, when

ϕ is fixed at 6% and γ changes from 2 to 8, corresponding to the
transition from micro-fractures to vugular pores in pore types,
noticeable variations in the reflection coefficient are observed.
The forward simulation results indicate that both ϕ and γ have a
considerable impact on the seismic response, akin to conventional
elastic parameters. Upon comparing Figure 2A with (b), it is
observed that at low values of ϕ, the seismic response of γ shows
similarities with that of ϕ. The consistent variation trend of
reflection coefficient in both figures suggests that an increase in
the complexity of the pore structure leads to a more pronounced
seismic response. Therefore, the influence of γ on the variation of
seismic reflection should not be neglected, necessitating the
consideration of both ϕ and γ as pivotal factors in fluid prediction.

5 Inversion for decoupling the pore
structure

5.1 Bayesian framework

The solution of the proposed method, as indicated by formula
13, involves five parameters to be solved for. This places higher
demands on the stability and accuracy of the inversion compared to
the traditional AVO method, which typically require only three
parameters. The proposed formula requires the association of M
(where M takes an integer greater than or equal to five) equations,
with each equation corresponding to an incidence angle. Assuming
that each seismic trace has M incidence angles and N sampling
points, let RKf � ΔKf/Kf, Rϕ � Δϕ/�ϕ, Rγ � Δγ/�γ, Rfm � Δfm

fm
, and

Rfs � Δfs/fs; consequently, formula 13 can be rewritten as follows:

App θ1( )
App θ2( )

..

.

App θM( )

Bpp θ1( )
Bpp θ2( )

..

.

Bpp θM( )

Cpp θ1( )
Cpp θ2( )

..

.

Cpp θM( )

Dpp θ1( )
Dpp θ2( )

..

.

Dpp θM( )

Epp θ1( )
Epp θ2( )

..

.

Epp θM( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RKf

Rϕ

Rγ

Rfm

Rfs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
Rpp θ1( )
Rpp θ2( )

..

.

Rpp θM( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(14)
where App(θi) � sec2θ(14 − cdry2

4csat2
) · IN×N, Bpp(θi) � (sec2θ4 − cdry2

2csat2

sec2θ + 2
csat2

sin 2θ) · IN×N, Cpp(θi) � (12sec2θ − 1
2 − cdry2

4csat2
sec2θ)

·IN×N, Dpp(θi) � (cdry2

4csat2
sec2θ − 2

csat2
sin 2θ) · IN×N, Epp(θi) � (12 −

1
4sec

2θ) ·IN×N, and IN×N denotes a unit matrix of N × N.

For simplicity of expression, formula 14 can be reformulated as
follows:

Gppm � dpp, (15)
where

Gpp �
App θ1( )
App θ2( )

..

.

App θM( )

Bpp θ1( )
Bpp θ2( )

..

.

Bpp θM( )

Cpp θ1( )
Cpp θ2( )

..

.

Cpp θM( )

Dpp θ1( )
Dpp θ2( )

..

.

Dpp θM( )

Epp θ1( )
Epp θ2( )

..

.

Epp θM( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

FIGURE 5
Inversion results from the synthetic data without noise (A) and
with noise of S/N=2 (B) (the green line indicates the low-frequency
data, the blue line indicates the model data, and the red line indicates
the inversion data).
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m � RKf Rϕ Rγ Rfm Rfs[ ]T, and dpp � [Rpp(θ1) Rpp(θ2)
/Rpp(θM)]T.

The solution of formula 15 provides the five parameters; however,
it suffers from severe ill-posedness in practical applications. Therefore,
based on the Bayesian framework, the issue of well-posedness can be
effectively improved by introducing the prior information of the
model parameters into the regularization of inversion. Thus, the
posterior probability density distribution of model parameters
P(m|dpp) is

P m
∣∣∣∣dpp( ) � P m( )P dpp

∣∣∣∣m( )
P dpp( ) , (16)

where P(m) signifies the prior distribution of the model parameters,
P(m)P(dpp|m) represents the likelihood function that characterizes
the noise distribution of seismic gathers, and P(dpp) denotes a

constant that can be ignored if the posterior probability distribution
function remains unchanged.

The prestack seismic gathers in actual data contain a certain level
of noise. Assuming that the noise is uncorrelated with a mean value
of 0, following the likelihood function of the Gaussian distribution,
thus, the likelihood function of noise can be expressed as follows:

P dpp

∣∣∣∣m( ) � 2π( ) LN Cnp

∣∣∣∣ ∣∣∣∣[ ]−1
2

· exp −1
2
dpp − Gppm( )TC−1

np dpp − Gppm( )[ ], (17)

where Cnp � σ2npI and σ2np represent the covariance and the mean
square error of P-wave noise, respectively.

The prior distribution of the model parameters can be either
univariate or multivariate. Considering that five involved
parameters, which have certain correlation, need to be obtained
by the proposed method, the selection of multivariate distribution

FIGURE 6
Core analysis. (A) Gray-scale slice of core using a CT scan; (B) digital core image (he light-colored component is dolomite, and the dark-colored
component is 93% quartz and 7% kaolinite).

FIGURE 7
Impact of the pore structure parameter γ on bulk modulus K (A) and shear modulus μ (B) of different mineral components.
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can effectively mitigate the ill-conditioning issue. While Gaussian
distribution only provides consistent weighting coefficients, which
may impact the sparsity of inversion results, Cauchy distribution can
yield non-consistent weighting coefficients with sparsity effects and
greater geological significance. Therefore, the multivariate Cauchy
distribution is adopted as the prior distribution for the model
parameters, with its specific formula given as follows:

P m( ) �∏N
i−1

2 ψ
∣∣∣∣ ∣∣∣∣−1

2

π2 1 +mTΦim( )2,Φi � DT
i ψ

−1Di, (18)

where ψ signifies the correlation matrix, which can be obtained by
maximum expectation estimation. Di denotes the matrix of
5N × 5N, and its expression is as follows:

Di[ ]xy �

1
1
1
1
1
0

if x � 1 and y � i
if x � 1 and y � i +N
if x � 1 and y � i + 2N
if x � 1 and y � i + 3N
if x � 1 and y � i + 4N

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (19)

By substituting formulas 17, 18 into Formula 16, the posterior
probability density of model parameters can be obtained as follows:

P m
∣∣∣∣dpp( )∝∏N

i−1

2 ψ
∣∣∣∣ ∣∣∣∣−1

2

π2 1 +mTΦim( )2

· exp −1
2
dpp − Gppm( )TC−1

np dpp − Gppm( )[ ]. (20)

After the algebraic transformation of Formula 20, the objective
function F(m) should be as follows:

F m( ) � dpp − Gppm( )T dpp − Gppm( ) + τ∑N
i�1
ln 1 +mTΦim( ), (21)

where τ determines the sparsity of inversion results, with larger
values leading to sparser outcomes. Conversely, if τ is set too small, it
may result in a distorted inversion.

5.2 Decorrelation method

The statistical correlation between elastic parameters is widely
recognized as a major factor contributing to the instability of the
prestack inversion. The proposed method involves five parameters,
out of which three parameters (fluid bulk modulus Kf, porosity ϕ,
and pore structure parameter γ) are further decomposed by the fluid
factor f, resulting in a closer relationship among them, thus leading
to a substantial increase in inversion instability. Evidently, relying
solely on the prior probability distribution scheme is insufficient for
eliminating the parameter correlations. To address this issue, an
improved decorrelation method (Wang et al., 2017) is adopted to
obtain parameters with the lowest possible correlation, which uses
the variance matrix and two linear transformations based on Chen’s
previous work (Chen et al., 2007) to convert relevant data into
“white data.”

The decorrelation method is illustrated using a three-
parameter dataset as an example, since it involves five
parameters in the proposed inversion, which is not convenient
for figuring. As shown in Figure 3A, the sequences x, y, and z
exhibit significant correlation, and their covariance matrix is
expressed as follows:

FIGURE 8
Factor analysis of affecting reservoir identification (reservoirs in the red boxes are controlled by porosity ϕ, and those in blues ones are controlled by
the pore structure parameter γ).
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Σ �
σ2x σxy σxz
σxy σ2y σyz
σxz σyz σ2z

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (22)
where σ2x, σ

2
y, and σ

2
z represent the variance of x, y, and z, respectively,

and σxy, σxz, and σyz denote the covariance of the three parameters.
The singular value decomposition of the covariance matrix is

FIGURE 9
Inversion profile of fluid bulk modulus Kf (A), porosity ϕ (B), pore structure parameter γ (C), and Russell fluid factor f indirectly (D) and directly (E).
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Σ � vLvT, (23)
where v signifies the eigenvector matrix and L denotes the eigenvalue
matrix. Upon applying v−1 to d � [x, y, z]T, the resulting sequences
x′, y′, z′ are shown in Figure 3B. However, despite this
transformation, the newly obtained data d′ � [x′, y′, z′]T still
have a weak correlation. To achieve further decorrelation, we
apply s−1 � %%

L
√ −1 to d′, resulting in d″ � s−1d′. Figure 3C shows

that d″ � [x″, y″, z″]T can be referred to as “white data,” where
x″, y″, z″ are almost completely unrelated.

According to the aforementioned method, one of the covariance
matrices Cr of RKf, Rϕ, Rγ, Rfm, and Rfs can be decomposed as

Cr � vuuvT. (24)
The covariance matrix can be extended to two 5N × 5N sparse

eigenvector matrix V and eigenvalues matrix U by considering N
time samples. Therefore, the transformation observed in Eq. 21 can
be represented as follows:

F m( ) � dpp − Gpp
′m′( )T dpp − Gpp

′m′( ) + τ∑N
i�1
ln 1 +m′TΦim′( ),

(25)
where G′ � GVU and m′ � U−1V−1m. The reflection coefficients of
Kf, ϕ, γ, fm, and fs can be obtained by using the iterative reweighed
least-squares to solve the objective function (25), followed by
obtaining the five parameters through the trace integral.

6 Synthetic data test

The proposed inversion of decoupling porosity ϕ and pore
structure parameter γ involves a total of five parameters, and

thus, it is imperative to verify its feasibility and anti-noise
capabilities. A set of well data from carbonates in the actual
working area of the Sichuan Basin was selected for testing
purposes. First, prior to inversion, the measured data underwent
the Backus averaging process (Backus et al., 1968) which
transformed the data from log scale to seismic scale, followed by
time–depth conversion to convert it from depth domain to time
domain. Second, the reflection coefficients of the well data at various
sampling times and angles (5°–60°) are obtained by forward
simulation based on the exact Zoeppritz equation, subsequently
convolved with a 30 Hz Ricker wavelet to generate synthetic seismic
data, as shown in Figure 4A. Third, Gaussian random noise with the
signal-to-noise ratio (S/N) of 2 was added to the synthetic record, as
shown in Figure 4B.

Figures 5A, B show the inversion results without and with
noise, respectively, displaying the three direct inversion
parameters of fluid bulk modulus Kf, which characterize
reservoirs, porosity ϕ, and pore structure parameter γ.
Additionally, the Russell fluid factor f is calculated indirectly
using formula 10 or (12) following the proposed inversion. In the
absence of noise, both the direct and indirect inversions yield
consistent results with well curves. However, due to a weaker
seismic response than the fluid bulk modulus Kf, porosity ϕ, and
pore structure parameter γ exhibit slightly lower resolution. At
S/N = 2, the direct inversion results (Kf, ϕ, and γ) show a slight
decrease in accuracy compared to noise-free conditions, while
errors became more apparent in indirect inversion’s f due to
error accumulation from indirect calculation. Nevertheless, even
with added noise during the inversion process, the inversion
results still maintain a similar trend as observed in the well data,
indicating a good stability of the proposed method for practical
applications.

FIGURE 10
Magnified partial profiles of fluid bulk modulus Kf (A) from Figure 9A and Russell fluid factor f (B) from Figure 9E.
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7 Actual data application

The well data from an exploration area in the Sichuan Basin is
utilized to validate the feasibility and applicability of the proposed
prestack inversion technique for decoupling both pore structure
parameter γ and porosity ϕ simultaneously. The target reservoir
comprises dolomitic gas-bearing carbonate with low porosity but an
intricate pore structure, which constitutes one of the influential
factors affecting fluid prediction.

7.1 Digital core analysis

Before fluid detection, component analysis and simulation of
different pore shapes were conducted on a total of seven cores from
three wells in various formations to construct multi-component
digital core models for evaluating the influence of the pore
structure in this working area. Figure 6A shows a gray-scale slice
obtained through a CT scan depicting the actual core. Based on the
analysis of the actual core, the multi-component digital core was
constructed, as shown in Figure 6B. The digital core comprised two
dominant minerals: dolomite (light-colored) and quartz (dark-
colored), and the dark-colored component also containing 7%
kaolinite. As numerous previous studies have demonstrated the
effect of porosity ϕ on elastic parameters, such as those by Han
et al. (2004) and Yin et al. (2014), the effect of the pore structure
parameter γ on elastic parameters within different components in the
digital cores is solely focused on being discussed. The relationship
between pore structure parameter γ and saturated bulk modulusK or
shearmodulus μ of the digital core is shown in Figures 7A, B. TheK of
each mineral component is greatly affected by γ when γ> 4, with the
K of dolomite experiencing a change of over 40% and quartz
approximately 32%, in particular. However, the effect of γ on μ is
negligible and can be disregarded, as all three mineral components
vary by less than 10%when γ> 7. However, in the simulation of filling
oil or gas, the measured fluid bulk modulus Kf remains constant
regardless of variations in the three mineral components or changes in
the pore structure parameter γ. Therefore, if fluid identification does
not take the impact of the pore structure parameter γ into account, its
prediction results will exhibit significant multi-solution possibilities
and uncertainties.

7.2 Fluid prediction

Reservoir analysis is initially performed on the well data, using the
samewell in the anti-noise experiment, as shown in Figure 8. Among the
three logged carbonate gas-bearing reservoirs (highlighted by red and
blue boxes in Figure 8), Russell fluid factor f exhibited conspicuous
manifestation solely within the second reservoir, and fluid bulk modulus
Kf demonstrated consistent characteristics in all the three reservoirs.
According to Eqs 3, 10, Russell fluid factor f serves as an integrated
indicator of fluid within the saturated porous rock, whereas fluid bulk
modulusKf acts as a fluid indicator independent of porosity ϕ and pore
structure parameter γ. Therefore, by analyzing the curves of ϕ and γ, it
becomes discernible as to which factor affects the prediction outcomes:
The red-boxed reservoir is primarily influenced by ϕ, whereas the blue-
boxed one is affected by γ. Notably, the third reservoir represents a thinly

interbedded formation controlled by both ϕ and γ, thereby indicating its
highly heterogeneous nature.

Second, both the proposed inversion and Russell’s f inversion
are calculated for fluid prediction. Additionally, f indirectly
obtained from the results of the proposed inversion by formula
10 is also obtained for comparison, as shown in Figure 9. The
outcomes of fluid bulk modulus Kf (Figure 9A), porosity ϕ

(Figure 9B), and pore structure parameter γ (Figure 9C) closely
match the data from the test well. Moreover, the profile of direct f
(Figure 9E) coincides with that of indirect f (Figure 9D), indicating
the stability and reliability of the proposed inversion. The result of
Kf (Figure 9A), which is decoupled from ϕ and γ, exhibits a more
pronounced distribution pattern in reservoirs compared to that of f.
Notably, between them, there exists a significant disparity in fluid
prediction for the third reservoir—the thin interbedded gas-bearing
formation. By magnifying the red box near the well in Figures 9A,
E,as shown in Figure 10, it can be observed that Kf (Figure 10A)
displays better consistency with verified gas production tests within
the thin interbedded gas reservoirs than f does (Figure 10B), which
shows that after eliminating the influence of ϕ and γ through
inversion, the prediction of Kf accurately reflects reservoir
distribution.

8 Conclusion

The pore structure parameter γ, like porosity ϕ, is one of the
dominant factors affecting fluid prediction in heterogeneous
reservoirs. By combining Russell’s poroelasticity theory and Sun’s
petrophysical model, a new reflection coefficient formula is proposed,
which decouples fluid bulk modulus Kf from porosity ϕ and pore
structure parameter γ, thus eliminating the interference of the pore-
related factors on reservoir prediction. Theoretical experiments
demonstrate that the proposed inversion retains comparable
computational accuracy to the conventional A&K approximation and
has good anti-noise ability under the condition of five involved
parameters. Both theoretical model and digital core analyses reveal
that the pore structure parameter γ can have a significant impact on
the prediction of heterogeneous reservoirs with low porosity. In the
example from the Sichuan Basin, compared with Russell fluid factor f,
fluid bulk modulus Kf from the proposed inversion method provides
more accurate and distinct reservoir distribution in carbonate gas-bearing
strata. However, there are still two prerequisites for the application of the
proposed inversion. First, as a less commonly used parameter, the pore
structure parameter γ needs to be obtained from sufficient logging data in
the working area under generally industrial process. The method used to
obtain the pore structure parameter γ in this paper is the empirical
method proposed by Zhang et al. (2018a), Zhang et al. (2018b), which is
still inadequate in terms of efficiency and verifiability. Second, in order to
ensure the robustness of the proposed inversion method with five
parameters, high-quality seismic data are also indispensable.
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