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The wave characteristics of fractured-porous media can be utilized for
permeability identification; however, further research is necessary to enhance
the accuracy of this identification. A novel wave equation for fractured-porous
media is formulated, and theoretical analysis suggests its effectiveness in
accurately identifying reservoir permeability. The proposed methodology
establishes a wave equation for fractured-porous media using the volume
averaging method and employs finite difference method on staggered grids to
calculate wave field dispersion and attenuation, exploring the influence of fracture
network structure and confining pressure on the solution of the wave equation. By
analyzing the wave equation under various aspect ratios and confining pressure of
fractures, it is observed that these factors significantly affect velocity and
attenuation, providing valuable insights into seismic response in fractured-
porous media. Furthermore, the research findings reveal promising potential in
utilizing the new wave equations specific to fractured-porous media for
permeability identification purposes. By constructing a three-dimensional
fractured-porous network model, the wave equation for permeability
identification can examine the correlation between the parameters of the
equation and permeability, and establishes an association between fracture
parameters and permeability, paving the way for a novel approach to
permeability identification.
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1 Introduction

The permeability is one of the crucial parameters for evaluating reservoir storage
performance. Previous research has demonstrated that analyzing wave behavior in
fractured-porous media can improve the accuracy of identifying reservoir permeability.
The prediction of reservoir permeability using the wave equation in fractured-porous media
can be categorized into three distinct stages. In the initial stage, Biot (1956a, b), based on the
homogeneous porousmedia model and discovered that variations in permeability can lead to
frequency dispersion and attenuation of seismic wave, resulting in changes in seismic
velocity, which provided the foundation for subsequent related studies. In the subsequent
stage, Numerous fractured-porous media models (Schoenberg, 1980; Schoenberg, 1983;
Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995; Gurevich et al., 2009; Tang,
2011; Tang et al., 2012) on Biot’s theory have been developed to investigate the relationship
between permeability and seismic velocity in fractured-porous media. For instance,
Chapman (Chapman et al., 2002; Chapman et al., 2016) established a microscale porous
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model, yet failed to provide an expression for the permeability of the
porous media. Chichinina (Chichinina et al., 2007; Chichinina et al.,
2009) proposed an anisotropic model for horizontally layered
fractures that focused on P/S wave attenuation but did not
address the permeability in fracture system. Gurevich (Gurevich
et al., 2009), using a constructed fractured-porous media model,
observed significant variations in velocity due to changes in the
structures of pore and fracture, while changes in permeability
resulted in relatively minor alterations in wavefield velocity.
However, these studies did not explicitly explore the relationship
between velocity and microstructure or permeability of fractured-
porous media due to limitations in computer technology at that time.
In the third stage, researchers initiated the construction of fractured-
porous models incorporating microstructure, studying the
relationship between fractures and wavefield velocity as well as
reservoir permeability. For example, Du et al. (2011) studied an
equivalent media model for fractured porous rocks. Fractures are
modeled by constitutive relationship in terms of fracture-induced
anisotropy. Guo et al. (2018) used the branch function method to
construct finite-thickness fractures and examined the dispersion and
attenuation of P-wave propagation perpendicular to the fracture
surface. Lissa et al. (2019) explored the impact of fractures with
varying widths on seismic attenuation and velocity dispersion. Song
et al. (2020) investigated dispersion and attenuation of P-wave in
heterogenous porous media containing oriented fractures, revealing
that factors such as mechanical form of fractures and fluid flow
properties significantly influence attenuation sensitivity. Wei et al.
(2021) conducted research on a 3D fractured-porous network model,
presenting a calculation approach for permeability while uncovering
notable influences of aspect ratio on P-wave velocity and characteristic
frequency. Wang et al. (2022) studied the propagation law for
complex fractures in two-phase media through linear slip theory.

The prediction of reservoir permeability in fractured-porous
media using the wave equation still encounters numerous challenges
and difficulties. Firstly, it is imperative to enhance the
microstructure and multiscale characteristics of fractured-porous
media (Bai et al., 2021). Secondly, it is crucial to investigate the
influences of factors such as fractures, confining pressure,
permeability, and porosity on velocity as well as explore their
interactions in fractured-porous media. Only through these
efforts can we elucidate the relationship between wave properties
and permeability in fractured-porous media.

The present work proposes a novel fractured-porous model
and derives its wave equation based on volume averaging method,
investigating the influence of fracture network structure on the
solution of the wave equation and the relationship between
fracture aspect ratio and wave velocity as well as permeability.
This research possesses several distinctive features compared to
previous studies: firstly, the solutions of the wave equation under
different fracture aspect ratios and confining pressure conditions
are studied; secondly, by analyzing various parameter
combinations, such as velocity and attenuation, significant
effects of fracture aspect ratio and confining pressure on wave
behavior are revealed; thirdly, a proposed permeability
identification method based on the curves of velocity-fracture
parameters and velocity-permeability establishes correlations
between fracture parameters and permeability.

2 Elliptic cylindrical fracture model and
its fluid motion equation

Fractures exhibit a predominant extension direction, thus the
elliptic cylindrical model can be used to describe their extensibility.
The aspect ratio, defined as the ratio between the short and long radii
of the elliptical cylinder cross-section, governs the structure of this
model. As the aspect ratio approaches unity, it degenerates into a
conventional porous model; whereas for very small values of aspect
ratio, it accentuates more features of fracture structures. This flexible
elliptical cylinder model enables us to depict various characteristics
of fractures in reservoirs under different aspect ratios and provides
insights into fracture structures with varying extensibility.

The derivation of the fluid motion equations in elliptic
cylindrical fracture structure is presented below. The
incompressible Newtonian fluid within the microtubule space of
the elliptical cylinder satisfies the following equations (Landau and
Lifshitz, 1987).

The equation of fluid mass conservation:

∂ρf
∂t

+∇· ρf _U( )� 0 (1)

The equation of fluid momentum conservation:

∇ · s � ρf
∂U
∂t

+∇p (2)

Constitutive relationship of fluid mechanics:

s � η ∇ _U + ∇ _U( )T − 2
3

∇ · _U( )I[ ] (3)

where ρf represents the fluid density, s denotes the fluid stress
tensor, and p signifies the fluid pressure, U is the displacement of
fluid, _U represents the flow velocity, η stands for the fluid viscosity
coefficient, and D _U/Dt corresponds to the material derivative of
fluid velocity field with respect to time. Divergence is taken on both
sides of the fluid constitutive relation equation to obtain the fluid
dynamic equation: By applying divergence operator on both sides of
the constitutive equation for fluid, the equation of fluid dynamics is
yielded:

ρf
D _U
Dt

� −∇p + η ∇2 _U + 1
3
∇ ∇ · _U( )( ) (4)

The fluid velocity field is expressed as the combination of steady-
state and unsteady-state fields:

_U x, y, t( ) � _U0 x, y, z( ) + _U1 x, y, z, t( ) (5)
Under low-speed flow conditions, the compressibility of pore

fluid can be neglected when subjected to elastic waves (denoted as
∇ · _U� 0). Considering that the only non-zero velocity component
is along the axis of the elliptical cylinder and the flow velocity
depends solely on radial coordinate, therefore, D _U/Dt � ∂ _U/∂t is
obtained.

The fluid dynamics equations mentioned above can be solved by
the series expansion of Mathieu function in the elliptic cylindrical
coordinate system, thereby obtaining the velocity field and flow rate
in elliptic cylindrical space (Xiong et al., 2021). The expression for
the steady-state flow rate at both ends of the elliptical cylinder is:
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QU � −iπR2

ρfc

PU cos ωL/c( ) − PD

sin ωL/c( )( ) 2J1 KR( )
KRJ0 KR( ) −1( )

QD � −iπR2

ρfc

PU − PD cos ωL/c( )
sin ωL/c( )( ) 2J1 KR( )

KRJ0 KR( ) −1( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (6)

The expression describing the flow rate of the pulsating flow
field is as follows:

QUe� 2
a3

1 + a2
( ) −iπR2

ρfc

PU cos ωL/c( ) − PD

sin ωL/c( )( ) 2J1 KR( )
KRJ0 KR( ) −1( )

QDe� 2
a3

1 + a2
( ) −iπR2

ρfc

PU − PD cos ωL/c( )
sin ωL/c( )( ) 2J1 KR( )

KRJ0 KR( ) −1( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(7)
The flow rate of the elliptic cylindrical fractures is observed to

be dependent on various factors, including the length L of the
elliptical cylinder, pressures PU and PD at both ends, major radius
R and aspect ratio α of the elliptical cross-section, characteristic
frequency ω of non-steady flow field, and fluid density ρf. In
Equation 7, J0 and J1 represent zero- and first-order Bessel
functions respectively, K �

������
iωρf/η

√
, and c denotes the wave

velocity in fluid.
The elliptical curve representation is inadequate for accurately

depicting the tip of a genuine fracture. In order to precisely depict
the variation in the major axis direction radius R1 of actual fracture
under confining pressure, an improved method for calculating the
fracture permeability that not only considers the deformation of
wedge-shaped fractures under confining pressure (Mavko and
Nur, 1978), but also incorporates the relationship between
fracture radius and confining pressure (Xiong et al., 2021),
thereby reflecting the variation in flow rate of wedge-shaped
fractures with changing confining pressure.

Confining pressure signifies the force exerted by overlying
geological materials on a specific point within the Earth’s crust.
This pressure significantly affects permeability and elasticity of
porous media. Firstly, under elevated confining pressure, the
closure of pores and fractures within porous media leads to a
significant reduction in permeability, diminishing the capacity
for fluid flow. Secondly, confining pressure alters the elasticity of
the porous material, specifically impacting its bulk modulus.
This shift in elasticity has ramifications for the mechanical
behavior of the material and the propagation of stress-related
phenomena, including seismic waves.

In this study, it is assumed that flow conservation holds for
each node in the fractured-porous network, ensuring that inflow
equals outflow at every node. A flow conservation equation is
formulated for each node, resulting in a system of linear equations
with unknown variables representing the pressures at individual
nodes. The pressures at the inlet and outlet are considered as non-
homogeneous terms. By solving this system of equations to
determine the pressures at each node, the flow within the 3D
porous network can be accurately calculated. Furthermore, by
incorporating Darcy’s law, dynamic permeability prediction for
the 3D microtubule network in porous media can be effectively
conducted (Xiong et al., 2021).

3 Wave equation for fractured-porous
media

The volume averaging theorem, established by researchers like
Whitaker (Whitaker, 1966; Whitaker, 1967), Slattery (1967), and
Gray and Lee (1977), plays a pivotal role in connecting microscale
parameters to macroscale behaviors within porous media. It has
been widely applied in fields ranging from hydrogeology to
geophysics, providing a consistent framework for modeling
complex porous media systems. This theorem’s mathematical
rigor and practical relevance have been extensively validated
through real-world applications, underlining its significance. The
use of the volume averaging theorem is firmly grounded in this well-
established foundation of literature and research, reinforcing its vital
role in this work and aligning with the reviewer’s emphasis on its
importance. By introducing the volume average theorem, a
connection between the macroscopic behavior of fractured-
porous media and the microscopic parameters of the media is
established, which derives a macroscopic wave equation that
describes the wave behavior based on this theorem.

3.1 Volume average theorem of porous
media

The unit cell region Ω, filled with fluid in the porous media, is
considered. Its position x represents the “center” or “centroid”. In
the fluid-filled porous media of the 3D elliptical microtubule
network, the characteristic length of region Ω is denoted as Hh,
the micro and macro characteristic length are represented by h and
H, respectively. These three lengths are governed by the following
equation.

h≪Hh ≪H (8)
Here, the micro characteristic length h signifies the scale of

mineral grains or solid constituents within porous media, typically
in the micrometer range or smaller. Conversely, the macro
characteristic length H represents larger-scale features, often on
the order of hundreds of meters, and it characterizes the wavelength
scale. This hierarchical relationship, grounded in multiscale analysis
principles, allows us to effectively link micro-scale properties to
macro-scale behavior, forming a foundational element in our
modeling of fluid flow in porous media.

The volume of the unit cell Ω is denoted as V. The pore space
comprises two components: the volume Vs of the solid skeleton and
the volume Vf of fluid in porous media (i.e., the volume of the pore
space). Thus, V � Vs + Vf. Let ψf represent a physical quantity
associated with fluid in porous media, with its value outside of the
fluid defined as 0. The volume averaging method is applied to ψf

within the entire region Ω, as illustrated below.

〈ψf〉 � 1
V
∫

Ω
ψf x( )dV (9)

where 〈ψf〉 is characterized by the smoothness with respect to the
centroid x of region Ω. Another variable related to the volume
average is the volume-averaging eigenvalue, defined as follows:
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�ψf � 1
Vf

∫
Ω
ψf x( )dV (10)

According to the above definition, there is φ � 〈ψf 〉/�ψf .
According to the research conducted by Slattery (Slattery,

1967) and Whitaker (Whitaker, 1966) on the volume average
theorem, considering the physical variable ψf as an illustrative
example, the volume average term including the spatial derivative
is as follows:

∫
Ω
∇·ψfdV� ∇·∫

Ω
ψfdV + ∫

Σ
ψf · ndS (11)

The volume average term including time derivative is as follows:

∫
Ω
∂tψfdV � ∂t∫

Ω
ψfdV − ∫

Σ
ψfw · ndS (12)

where Σ represents the interface where solid and fluid come into
contact within the region Ω. It is typically specified that the normal
vector n points outward from fluid, and w denotes the velocity
vector of the interface between solid and fluid, which is generally
taken as zero vector.

3.2 Microscopic equation for fractured-
porous media

Assuming the skeleton is initially static and satisfies the
assumptions of linear elasticity and isotropy, its equation of
microscale momentum conservation can be expressed as follows.

ρs
∂2u
∂t2

� ∇·σ (13)

where ρs denotes the mass density of solid skeleton, and u represents
the displacement of solid skeleton, t refers to time and σ signifies
solid stress tensor.

The microscopic constitutive equation of solid is:

σ � Kse · I + G ∇u + ∇u( )T − 2
3
e · I[ ] (14)

where Ks stands for the bulk modulus of solid particle, G refers to
the shear modulus of solid skeleton, e denotes the first strain
invariant, and superscript T indicates transpose.

The previous sections present the mass conservation equation,
the momentum conservation equation and the constitutive equation
of fluid. The equation of fluid state is expressed in the following
form:

1
Kf

dp
dt

� 1
ρf

dρf
dt

(15)

where p represents fluid pressure and Kf signifies the fluid bulk
modulus. By combining the continuity equation and the state
equation of fluid, the expression of pressure term is obtained:

−p � Kf∇·u (16)

Assuming the presence of a porous media comprising a solid
skeleton and a fluid, with only one existing interface denoted as Σ,
which represents the contact between the fluid and the solid
skeleton. The boundary conditions employed to describe this

interface include the no-slip condition and fluid-solid equilibrium
condition of normal force, expressed as follows:

_U·n � _u·n
−p · n + s · n � σ · n (17)

where n denotes the outward normal vector of contact interface, and
s is the deviatoric stress in fluid.

3.3 Macroscopic integral equation of
fractured-porous media

Based on the volume integral theorem, the macroscopic
equation can be obtained by averaging the microscopic
momentum conservation equation for fluids over the entire volume:

∂2

∂t2
〈ρfU〉� −∇〈p〉+∇·〈s〉 + �p∇φ − ηφ2

κ
_U − _u)( (18)

where κ represents the permeability of porous media. Since fluid
does not undergo shear deformation, the fluid stress is equivalent to
the normal stress s. By volume-averaging the solid momentum
conservation equation and integrating it with the fluid-solid
equilibrium condition at boundaries, it is obtained as follows:

∂2

∂t2
〈ρsu〉� −∇·〈σ〉 − �p∇φ + ηφ2

κ
_U − _u)( (19)

The stress σ of solid skeleton can be decomposed into two
components: normal stress σs and shear stress σe. In terms of the
normal stress component of solid skeleton, Tuncay and Corapcioglu
(1996), Tuncay and Corapcioglu (1997) investigated the constitutive
relationship associated with volume change (solely induced by
compressive deformation), and derived the equations of solid
normal stress and fluid stress:

σs� − 1 − φ( )�ps � a11∇·�u + a12∇·�U (20)
s� −φ�p � a21∇·�u + a22∇·�U (21)

where ps represents the applied confining pressure on porous media,
and the respective equations for each constant in this expression are
provided below:

a11� − 1 − φ( )2Kf

φL1
− 1 − φ( )2Kf

L1 1 − φ( )Ks −Kb[ ] (22)

a12� − 1 − φ( )Kf

L1
(23)

a21� −φKs

L2
+ φKb

1 − φ( )L2
(24)

a22� − φ2Ks

1 − φ( )L2
(25)

L1� − 1 − φ( )Kf

φKs
− 1 − φ( )Ks

1 − φ( )Ks −Kb
(26)

L2� − φKs

1 − φ( )Kf
−1+ Kb

1 − φ( )Ks
(27)

where Kb denotes the bulk modulus of dry skeleton.
The equivalent bulk modulus of the porous unit with Nc

fractures, volume V, and Poisson’s ratio ] can be determined
(Mavko and Nur, 1978):
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1
K′ �

1
Ks

1 + 2π
3

1 − ]2( )
1 − 2]( )∑Nc

i�1

R1
2
i di

V
⎡⎣ ⎤⎦ (28)

where R1i refers to the radius of the elliptical principal axis of the
i−th fracture, and di stands for fracture extension length. In a cubic
unit cell with side length l, let M × N × L represent the spatial
dimensions of the fracture network, where M fractures are
distributed in the X direction, N fractures in the Y direction and
L fractures in the Z direction. The relationship among the main
radius of fracture networkmodel, porosity ϕ, aspect ratio of fractures
a, network scale and sample side length shows as follows (Xiong
et al., 2021):

R1 �
������������������
MN +NL +ML( )φl2

πa

√
(29)

Assuming that the shear stress in the porous media is solely
borne by the solid skeleton, disregarding any fluid-induced shear
deformation:

σe � G ∇u + ∇u( )T − 2
3

∇ · u( )I( ) (30)

Where G denotes the shear modulus of solid skeleton and I
represents the unit tensor. In the context of momentum transfer
between phases, it is essential to consider the fluid’s viscosity due to
its contribution to energy dissipation within the system.While fluids
exhibit viscosity, the mechanical shear response of porous media
primarily arises from the solid matrix.

In conclusion, the constitutive relationship between solid and
fluid can be summarized as follows:

〈σ〉 � a11∇·�u + a12∇·�U( )I + G ∇�u + ∇�u( )T − 2
3

∇ · �u( )I( )
〈s〉 � a21∇·�u + a22∇·�U( )I

⎧⎪⎪⎨⎪⎪⎩ (31)

The final form of the wave equation is derived by combining the
constitutive equation with the volume-averaged momentum
conservation equation:

〈ρs〉€u � G∇2u + a11
′ ∇e + a12∇ξ + C _U − _u( )

〈ρf〉€U � a21∇e + a22∇ξ − C _U − _u( )⎧⎨⎩ (32)

where, C � ηϕ2/κ, a11′ � a11 + 4G/3, G is the skeleton shear modulus.
The system of equations above represents the wave propagation

control equation for porous media saturated with single fluid at low
frequencies, wherein the unknowns are the displacements of solid and
fluid particles denoted as u andU. These equations exhibit hyperbolic
characteristics with dissipative terms due to momentum transfer.

By applying the divergence operator to both sides of the wave Eq.
32 and introducing uP� ∇·u and UP� ∇·U, the P-wave equations is
obtained:

〈ρs〉
∂2uP

∂t2
� a11

′ ∇2uP + a12∇
2UP + C

∂UP

∂t
− ∂uP

∂t
( )

〈ρf〉
∂2UP

∂t2
� a21∇

2uP + a22∇
2UP − C

∂UP

∂t
− ∂uP

∂t
( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (33)

By applying the curl operator to both sides of the wave Eq. 32
and introducing uS� ∇×u and US� ∇×U, the s-wave equations is
derived:

〈ρs〉
∂2uS

∂t2
� G∇2uS + C

∂US

∂t
− ∂uS

∂t
( )

〈ρf〉
∂2US

∂t2
� −C ∂US

∂t
− ∂uS

∂t
( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (34)

The propagation of elastic waves in isotropic porous media is
characterized by uniformity in all directions. Let the solution of the
wave equation be expressed in the following prescribed form:

uP � uP0e
i ωt−k·x( )

UP � UP0e
i ωt−k·x( ){ (35)

where uP0 and UP0 refer to P-wave amplitude, and k denotes wave
number, which is typically a complex quantity in nature; ω signifies
circular frequency, and i represents imaginary unit. After
substituting the above equations into the P-wave equation, the
subsequent expression can be derived:

−ω2 〈ρs〉 0
0 〈ρf〉

[ ] + k2
a11′ a12
a21 a22

[ ]+iω −C C
C −C[ ]{ } uP0

UP0
[ ]

� 0
0

[ ] (36)

The system of equations will have non-zero solutions only if the
determinant of the coefficient matrix is equal to zero, resulting in the
dispersion equation:

Z1X
2 + Z2X + Z3� 0 (37)

Z1 � 〈ρs〉 +
iC
ω

( ) 〈ρf〉 +
iC
ω

( ) + C2

ω2
(38)

Z2� −a11′ 〈ρf〉 − a22〈ρs〉 −
iC a11′ + a12 + a21 + a22( )

ω
(39)

Z3 � a11
′ a22 − a12a21 (40)

where X � ω2/k2. The analytical expression for P-wave velocity can
be obtained by solving the above equations:

Vp � VR
p + iVI

p (41)

VR
p � E2 + F2( )1/4 · sign cos

α

2
( ) ·

������������
1
2
+ E

2
������
E2 + F2

√
√

(42)

VI
P � E2 + F2( )1/4 · sign sin

α

2
( ) ·

������������
1
2
− E

2
������
E2 + F2

√
√

(43)

tan α � F

E
(44)

where the coefficients E and F are

E � 2 a11′ �ρf + a22�ρs( )�ρs�ρf+2 a11′ + a12 + a21 + a22( ) �ρs + �ρf( ) C2

ω2 ± 2�ρs�ρfA± 2 �ρs + �ρf( ) C
ωB

4�ρ2s �ρ
2
f+4 �ρs + �ρf( )2C2

ω2

(45)

F � 2 a11′ + a12 + a21 + a22( )�ρs�ρfC
ω − 2 a11′ �ρf + a22�ρs( ) �ρs + �ρf( ) C

ω ± 2 �ρs + �ρf( ) C
ωA[ ]± 2�ρs�ρfB

4�ρ2s �ρ
2
f+4 �ρs + �ρf( )2C2

ω2

(46)

A � x2 + y2( ) 1
4 · sign cos

θ

2
( ) ·

������������
1
2
+ x

2
������
x2 + y2

√√
(47)

B � x2 + y2( ) 1
4 · sign sin

θ

2
( ) ·

������������
1
2
− x

2
������
x2 + y2

√√
(48)
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tan θ � y

x
(49)

x � a11
′ �ρf + a22�ρs( )2−4 a11

′ a22 − a12a21( )�ρf�ρs
− a11

′ + a12 + a21 + a22( )2C2

ω2
(50)

y� 2 a11
′ �ρf + a22�ρs( ) a11

′ + a12 + a21 + a22( )C
ω

−4 a11
′ a22 − a12a21( ) �ρf + �ρs( )C

ω

(51)

where sign(x) refers to the application of the sign of x, and
�ρs� < ρs > , �ρf� < ρf > .

In general, for a given frequency ω, Eq. 37 yields two complex
roots (for wave number k there are four roots, but only two possess
physical significance due to the requirement of continuous decrease
in wave amplitude during propagation; thus, the imaginary part of k
must be greater than 0), which implies that within a porous elastic
media containing two immiscible fluids, two types of P-waves will
propagate.

According to the method of plane wave analysis, the plane
harmonic S-wave propagating along the z-direction can be
expressed as:

uS � uS0e
i ωt−k·x( )

US � US0e
i ωt−k·x( ){ (52)

where uS0 and US0 refer to S-wave amplitude. After substituting the
above equations into the S-wave equation, the subsequent
expression can be derived:

−ω2 〈ρs〉 0
0 〈ρf〉

[ ] + k2
G 0
0 0

[ ]+iω C −C
−C C

[ ]{ } uS0

US0
[ ] � 0

0
[ ]
(53)

The system of equations will have non-zero solutions only if the
determinant of the coefficient matrix is equal to zero, resulting in the
dispersion equation:

Y1X + Y2� 0 (54)
Y1 � 〈ρs〉〈ρf〉 −

iC

ω
〈ρs〉 + 〈ρf〉( ) (55)

Y2� − iC
ω

− 〈ρf〉( )G (56)

whereX � ω2/k2. Thus the analytical expression for S-wave velocity
can be solved as:

X � E′ + F′i (57)

E′� − �ρ2f�ρsG + C2

ω2 �ρs + �ρf( )G
�ρs�ρf( )2 + C2

ω2 �ρs + �ρf( )2 (58)

F′ � �ρf�ρsG − �ρf �ρs + �ρf( )G
�ρs�ρf( )2 + C2

ω2 �ρs + �ρf( )2 · Cω (59)

In general, for a given frequency ω, Eq. 54 yields only one
complex root (for wave number k there are two roots, but only one
possess physical significance due to the requirement of continuous
decrease in wave amplitude during propagation; thus, the imaginary
part of k must be greater than 0), which implies that the single
S-wave form will propagate within porous elastic media containing a
single fluid.

4 Finite difference numerical method
for wave equation of fractured-porous
media

4.1 Staggered grid differencemethod for the
first-order wave equation

Firstly, the wave equation in terms of displacement is
transformed into the velocity-stress formulation. Subsequently,
finite difference scheme is implemented on the staggered grid.
Finally, by considering seismic source and boundary conditions,
snapshots of wave field in porous media with non-uniform
saturation distribution are computed.

By using vf � _U and vs � _u, the macroscopic equation for fluids
and solid are rewritten as

〈ρf〉 _vf� ∇·〈s〉 − ηφ2

κ
vf − vs( ) (60)

〈ρf〉 _vs� ∇·〈σ〉 + ηφ2

κ
vf − vs( ) (61)

In the equation provided above, the brackets in 〈 · 〉 denoting
the volume average is omitted in the macro-scale equations for the
sake of simplicity. Thus, the wave equation in velocity-stress
format is:

_vs � 1
ρs
∇·σ + C

ρs
vf − vs( )

_vf � 1
ρf

∇·s − C

ρf
vf − vs( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (62)

Here C � ηφ2

κ . By applying the time derivative to both sides of the
constitutive equation, the governing equation for the fractured-
porous model can be obtained:

_σ ij � a11 _e + a12 _ξ( )δij + 2G _εij − 1
3
_e · δij( )

_sij � a21 _e + a22 _ξ( )δij
⎧⎪⎪⎨⎪⎪⎩ (63)

It should be noted that the stress tensor exhibits symmetry,
resulting in a total of 9 unknowns, namely, σxx, σxy, σxz, σyy, σyz,
σzz, sxx, syy and szz, which are all associated with stress and
therefore necessitate updates using constitutive relations. In the
case of fluids, it satisfies the condition of sxx � syy � szz, thereby
reducing the number of unknowns to 7. Henceforth, the
components of fluid stress will no longer be differentiated, and s
is employed to represent sxx, syy and szz instead.

The wave equation is represented in its component form by a set
of 6 equations, while the constitutive equation is expressed through
7 equations, resulting in a total of 13 equations that correspond to
the number of unknowns. It is assumed that both stress and velocity
are initialized as zero at t=0. In the Cartesian coordinates, set
x � iΔx, y � jΔy, z � kΔz and t � nΔt, where Δx, Δy and Δz
denote spatial step lengths and Δt represents the time step length. As
depicted in Figure 1, the staggered grid configuration is utilized
wherein vsx and v

f
x represent the x-direction velocity components for

solid and fluid particles respectively, with analogous formulations
for the y and z direction components.
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The staggered grid differencing operators, denoted as Dh in
space and Dt in time, are introduced as follows: (Sun, 2009):

Dhf
n
i+1/2,j,k �

θ1fn
i+1,j,k − θ2fn

i,j,k + θ3fn
i+2,j,k − θ4fn

i−1,j,k
Δh (64)

Dtf
n+1/2
i,j,k � fn+1

i,j,k − fn
i,j,k

Δt (65)

Here, the notation fn
i,j,k represents the function to be discretized

at spatial grid points i, j, k and time grid n. θi (i � 1,2,3,4) are the
coefficients. Δh and Δt represent the spatial and time grid sizes,
respectively. For uniformly spaced grid, Δx� Δy� Δz� Δh,
θ1 � θ2� 9/8, θ3 � θ4� −1/24, and thus the difference format with
fourth-order accuracy in space and second-order accuracy in time is
obtained.

Utilizing the staggered-grid finite difference, the discretization
of unknown variables in the first-order velocity-stress equation
occurs at distinct grid points, leading to the subsequent finite
difference equations for velocity update:

Dtv
s
x
n−1/2
i,j+1/2,k �

1
ρs

Dxσxx
n
i+1/2,j+1/2,k +Dyσxy

n
i,j+1,k +Dzσxz

n
i,j+1/2,k+1/2( )

+ C

ρs
vfx

n−1/2
i,j+1/2,k − vsx

n−1/2
i,j+1/2,k( )

(66)
Dtv

s
y
n−1/2
i+1,j,k �

1
ρs

Dxσxy
n
i+1,j,k +Dyσyy

n
i+1/2,j+1/2,k +Dzσyz

n
i+1/2,j,k+1/2( )

+ C

ρs
vfy

n−1/2
i+1/2,j,k − vsy

n−1/2
i+1/2,j,k( )

(67)
Dtv

s
z
n−1/2
i+1/2,j+1/2,k+1/2 �

1
ρs

Dxσxz
n
i+1,j+1/2,k+1/2 +Dyσyz

n
i+1/2,j+1,k +Dzσxz

n
i+1/2,j+1/2,k+1( )

+ C

ρs
vfz

n−1/2
i+1/2,j+1/2,k+1/2 − vsz

n−1/2
i+1/2,j+1/2,k+1/2( )

(68)

Dtv
f
x

n−1/2
i,j+1/2,k �

1
ρf

Dxs
n
i+1/2,j+1/2,k −

C

ρf
vfx

n−1/2
i,j+1/2,k − vsx

n−1/2
i,j+1/2,k( ) (69)

Dtv
f
y

n−1/2
i+1/2,j,k

� 1
ρf
β2Dys

n
i+1/2,j+1/2,k −

C

ρf
vfy

n−1/2
i+1/2,j,k

− vsy
n−1/2
i+1/2,j,k

( ) (70)

Dtv
f
z

n−1/2
i+1/2,j+1/2,k+1/2 �

1
ρf

Dzs
n
i+1/2,j+1/2,k+1

− C

ρf
vfz

n−1/2
i+1/2,j+1/2,k+1/2 − vsz

n−1/2
i+1/2,j+1/2,k+1/2( )

(71)
The finite difference equations for stress update are as follows:

Dtσxx
n
i+1/2,j+1/2,k �a11′ Dxv

s
x
n+1/2
i+1,j+1/2,k + a11

* Dyv
s
y
n+1/2
i+1/2,j+1,k

+ a11
* Dzv

s
z
n+1/2
i+1/2,j+1/2,k+1/2 + a12 Dxv

f
x

n+1/2
i+1,j+1/2,k(

+Dyv
f
y

n+1/2
i+1/2,j+1,k

+Dzv
f
z

n+1/2
i+1/2,j+1/2,k+1/2)

(72)
Dtσyy

n
i+1/2,j+1/2,k � a11

* Dxv
s
x
n+1/2
i+1,j+1/2,k + a11

′ Dyv
s
y
n+1/2
i+1/2,j+1,k

+ a11
* Dzv

s
z
n+1/2
i+1/2,j+1/2,k+1/2

+ a12 Dxv
f
x

n+1/2
i+1,j+1/2,k +Dyv

f
y

n+1/2
i+1/2,j+1,k

+Dzv
f
z

n+1/2
i+1/2,j+1/2,k+1/2( )

(73)
Dtσzz

n
i+1/2,j+1/2,k � a11

* Dxv
s
x
n+1/2
i+1,j+1/2,k + a11

* Dyv
s
y
n+1/2
i+1/2,j+1,k + a11

′ Dzv
s
z
n+1/2
i+1/2,j+1/2,k+1/2

+ a12 Dxv
f
x

n+1/2
i+1,j+1/2,k +Dyv

f
y

n+1/2
i+1/2,j+1,k +Dzv

f
z

n+1/2
i+1/2,j+1/2,k+1/2( )

(74)
Dtσxy

n
i,j,k � G Dyv

s
x
n+1/2
i,j+1/2,k +Dxv

s
y
n+1/2
i+1/2,j+1,k( ) (75)

Dtσxz
n
i,j+1/2,k+1/2 � G Dzv

s
x
n+1/2
i,j+1/2,k+1 +Dxv

s
z
n+1/2
i+1/2,j+1/2,k+1/2( ) (76)

Dtσyz
n
i+1/2,j,k+1/2 � G Dzv

s
y
n+1/2
i+1/2,j,k+1 +Dyv

s
z
n+1/2
i+1/2,j+1/2,k+1/2( ) (77)

Dts
n
i+1/2,j+1/2,k � a21Dxv

s
x
n+1/2
i+1,j+1/2,k+1/2 + a21Dyv

s
y
n+1/2
i+1/2,j+1,k

+ a21Dzv
s
z
n+1/2
i+1/2,j+1/2,k+1/2

+ a22 Dxv
f
x

n+1/2
i+1,j+1/2,k +Dyv

f
y

n+1/2
i+1/2,j+1,k

+Dzv
f
z

n+1/2
i+1/2,j+1/2,k+1/2( )

(78)

FIGURE 1
The schematic diagram of finite difference staggered grid.
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where a11* � a11 − 2G/3, a11′ � a11 + 4G/3.The notations σxxni,j,k,
σyyni,j,k, σzz

n
i,j,k, σxy

n
i,j,k, σyz

n
i,j,k, σxz

n
i,j,k represent the solid stress at

spatial grid points i, j, k and time grid n. sni,j,k is the discretized fluid
stress. vsx

n
i,j,k, v

s
y
n
i,j,k

, vsz
n
i,j,k are discretized solid velocity. vfx

n

i,j,k, v
f
y
n

i,j,k,
vfz

n

i,j,k are discretized fluid velocity.
The selection of spatial step size should be based on the

dispersion curve in order to determine the propagation velocity
of seismic waves at a specific frequency. By calculating different
types of wavelengths given the frequency, it is necessary to have at
least 2–4 spatial grids within each wavelength, thus determining the
appropriate spatial step size. The time step size should be
determined by starting from the stability condition of the
difference scheme and selecting a relatively small value to ensure
that an unstable solution does not occur.

The seismic source is applied to the principal stresses σxx, σyy
and σzz in three directions of the solid phase, as well as the fluid
stress s. The source function is based on Gaussian curve:

f t( )� −2ξ 1 − 2ξT2( )e−ξT2
(79)

where ξ � F2
0/0.1512 represents pulse width, T � t − ts serves as

time-shift parameter and ts� 1.5/F0. The Higdon absorbing
boundary conditions (Higdon, 1986; Higdon, 1987) are employed
as the boundary conditions. Taking the second-order Higdon
absorbing boundary condition as an illustration, the wave field at
the boundary satisfies the following equation:

∏2
j�1

cos αj
∂
∂t

− c
∂
∂x

( )⎛⎝ ⎞⎠u� 0 (80)

where αj denotes the incident angle of absorption, and c refers to the
propagation velocity of incident wave. The above formula is capable
of effectively attenuating incident waves with angle of ± αj.
Following discretization on the difference grid, the differential
operator form of the absorbing boundary condition is presented
as follows:

B Ex, E
−1
t( ) � ∏2

j�1
βj

I − E−1
t

Δt( ) 1 − a( )I + aEx[ ] − c
Ex − I

Δx( ) 1 − b( )I + bE−1
t[ ]{ }
(81)

where βj � cos αj represents a positive number, and Δx signifies the
spatial step size in the x direction on the boundary grid, and I
denotes the identity operator, and ExI � Ex, aI � a. The parameters
a and b represent the weighted average coefficients for spatial and
temporal dimensions, respectively. Different values of a and b
correspond to distinct differential weighting methods.

Taking the left boundary as an example, fn
i,j,k represents the

physical variable of the wave field at the time t � nΔt and at the point
x � iΔx and i� 0 (i.e., the left boundary in the x direction). Upon
implementation of the boundary processing, it must satisfy the
condition of zero reflection for the reflected wave, thereby
enabling calculation of fn

i,j,k through utilization of the absorption
boundary difference formula:

fn
i,j,k� − 1

B9
B1f

n−2
i+2,j,k + B2f

n−2
i+1,j,k + B3f

n−2
i,j,k + B4f

n−1
i+2,j,k + B5f

n−1
i+1,j,k(

+B6f
n−1
i,j,k + B7f

n
i+2,j,k + B8f

n
i+1,j,k) (82)

Given the initial conditions, the wavefield’s physical variables at
each node are known at time t� 0. Since only the wave field values of

two time steps are available, first-order absorbing boundary
conditions can be employed to address the boundary reflection at
time t� Δt. Following simplification, the solution can be obtained

fn
i,j,k� − 1

A4
1

A1
1f

n−1
i+1,j,k + A2

1f
n−1
i,j,k + A3

1f
n
i+1,j,k( ) (83)

where each coefficient refers to as follows:

pj � cΔt/βjΔx, A1
j� − pjb + a( ), A2

j � pjb + a−1,
A3

j � a − pj 1 − b( ), A4
j � 1 − a( ) + pj 1 − b( ),

B1 � A1
1A

1
2, B2 � A1

1A
2
2 + A2

1A
1
2, B3 � A2

1A
2
2,

B4 � A1
1A

3
2 + A3

1A
1
2, B5 � A1

1A
4
2 + A2

1A
3
2 + A3

1A
2
2 + A4

1A
1
2,

B6 � A2
1A

4
2 + A4

1A
2
2, B7 � A3

1A
3
2 andB8 � A3

1A
4
2 + A4

1A
3
2.

Therefore, the calculation of the wavefield value at the node x �
iΔx and i� 0 (i.e., the left boundary in the x direction) with first-
order absorbing boundary requires three layers of data: the wavefield
value F1 � fn�0

i�0,k of the previous time step’s boundary layer (i.e., t� 0
and x� 0); the wavefield value F2 � fn�0

i�1,k of the first layer inside the
previous time step’s boundary (i.e., t� 0 and x� Δx); and the
wavefield value F3 � fn�1

i�1,k of the first layer inside the current
time step’s boundary (i.e., t� Δt and x� Δx).

The proposed method can be employed to implement absorbing
boundary processing for other physical variables on boundaries
within the wavefield region. Due to the directional nature of wave
velocity on different boundaries, the wave velocity c in the absorbing
boundary operator can have either a positive or negative sign. For
instance, on the left and upper boundaries, reflected waves
propagate in the positive direction along the coordinate axis, thus
requiring a positive sign for c; otherwise, it necessitates a
negative sign.

4.2 Comparison of wave velocity and
attenuation between finite difference and
plane wave analysis

To validate the effectiveness of the finite difference method for
the wave equation in fractured-porous network, the core sample
saturated oil shown in Table 1 is selected. Based on the finite
difference in the staggered grid, the numerical solutions of the
wave equation is obtained to generate wavefield snapshots,
followed by the analysis of wavefield velocity and attenuation.

The parameters of the differential grid are presented in Table 2.
The calculation space range is 250m × 250m, and the wave

propagation time is measured to be 0.055 s. The seismic source is
positioned at the center of the calculation area. Figure 2 displays the
calculated snapshot of solid particle velocity, with spatial
coordinates representing its extent. The analysis findings reveal
distinct fast P-wave within this snapshot. Moreover, due to waves
propagating in various directions, a phase reversal in velocity occurs
at the midpoint of the wavefield. Additionally, faint outlines of
S-wave are discernible but exhibit weaker amplitude; however, slow
P-wave are challenging to observe due to significant dissipation.

Wavefield information is computed using parameters
corresponding to various aspect ratios, and the obtained results
are compared with the dispersion and attenuation outcomes derived
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from plane wave analysis. The aspect ratio “a” ranges from 0.1 to
1.0 in increments of 0.1, resulting in a total of 10 values. In this study,
the proposed method is employed to calculate the dry skeleton
modulus and permeability (under steady flow conditions), which are
subsequently substituted into both the numerical solution of the
wave equation and the analytical solution of the plane wave analysis.
The values of dry skeleton modulus and permeability for different
aspect ratios are shown in Figure 3.

The procedure for computing the dispersion and attenuation of
fast P-wave based on seismic data is outlined as follows: Firstly, in
the calculation process of the wave field snapshot, two receivers are
strategically positioned to measure particle velocity and stress

amplitude at distinct locations. Let A(x1) denote the recorded
amplitude value at position x1, while A(x2) represents the
corresponding value at position x2. The separation between these
receivers is denoted as Δs � |x2 − x1|. Secondly, obtain multiple sets
of waveform graphs, correlate the waveforms at these two positions,
determine the time difference Δt, and thereby derive the velocity
value v� Δs/Δt. Additionally, the quality factor Q �
πf(x2−x1)

v [ln(A(x1)A(x2))]−1 is determined by employing the amplitude
attenuationmethod (Gong, et al., 2009), which calculates by the ratio
of amplitudes at two different distances (or different times), where f
represents the source frequency. The two receivers in this example
are positioned horizontally at the same elevation as the seismic
source. The first receiver is located 25 m to the left of the source, with
a separation distance of 10 grid cells or 25 m between them.

The theoretical solutions of dispersion and attenuation, along
with the numerical results obtained from the finite difference
method, are compared in Figures 4, 5. It can be observed from
these figures that the fast P-wave velocity calculated using the
proposed finite difference scheme exhibits excellent agreement
with the theoretical solution based on plane wave analysis.
Additionally, a consistent trend is observed for the inverse
quality factor. These computational findings provide validation
for the efficacy of the proposed method.

4.3 Influence of confining pressure on
P-wave velocity

The confining pressure exerted on the porous media has a direct
impact on Kb, thereby influencing the values of wave velocity. For
quantitatively investigating the influence of confining pressure on
wave velocity, the rock physics parameters used in the calculation
are the same as those in Table 1, in which the seismic wave frequency
is fixed at 100 Hz, the aspect ratio is 0.15, the confining pressure
changes from 103 Pa to 109 Pa. The seismic velocities can be obtained
by substituting the corresponding Kb under different confining
pressures, and the results show in Figures 6, 7.

The calculation results demonstrate that the wave velocity
increases with the applied confining pressure, owing to the
concurrent rise in dry skeleton modulus Kb. Additionally, a
similar relationship is observed between wave velocity and
confining pressure, as well as between dry skeleton modulus Kb

and confining pressure, with their respective curves exhibiting
analogous trends. Moreover, the changing trend of slow P-wave
is similar to that of fast P-wave. The crucial point to emphasize here
is that the frequency of seismic waves exerts minimal influence on
the relationship curve between confining pressure pc and wave
velocity, particularly within the relatively low-frequency range, as
exemplified by this case where the frequency is set at 100 Hz. If any
value within the frequency range of 100–104 Hz is considered, it can
be observed that the curves remain the same, which can be inferred
from the dispersion curve maintaining a horizontal shape in the low
frequency range.

Based on this case study, it can be inferred that the velocities of
fast P-waves and slow P-waves exhibit a gradual increase as the
confining pressure increases. This observed trend remains consistent
across different frequencies of seismic waves, particularly at
relatively low frequencies (<104 Hz).

TABLE 1 Parameter table of porous media.

Parameter Value Parameter Value

Porosity ϕ 0.284 Number of network nodesm 5

Confining pressure pc 30 MPa Number of network nodes n 5

Solid particle modulusKs 36 GPa Number of network nodes l 5

Poisson’s ratio v 0.25 Unit size 3.0 ×
10−3 m

Young’s modulus E 20 GPa

TABLE 2 Parameter table of finite difference simulation.

Grid parameters Value

Spatial step in each direction Δh 2.5 m

Time step 2.0 × 10−6s

Calculated spatial steps 100

Calculated time steps 27,500

Center frequency 100 Hz

FIGURE 2
The wave field snapshot of oil-bearing fractured-porous media
(The velocity of solid particle).
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5 Permeability prediction based on
wave equation of fractured-porous
media

The propagation of waves in porous media containing fluids
gives rise to phenomena such as dispersion and attenuation, wherein
both the wave velocity and amplitude exhibit frequency-dependent
changes. The dispersion and attenuation curves of the wavefield are
influenced by rock physical properties including porosity,
permeability, fluid properties, and solid skeleton bulk modulus.
Among these factors, we specifically investigated the sensitivity of
dispersion and attenuation curves to variations in permeability. If
alterations in permeability can be discerned on dispersion/
attenuation curves, it becomes feasible to estimate these changes

through observation and calculation of these curves or even
determination of numerical values for permeability using a
template method.

5.1 Permeability prediction of permeability
based on dispersion and attenuation

According to the wave equation and plane wave analysis,
expressions for dispersion/attenuation of the wave field has been
yielded. The dispersion and attenuation curves of the wave field are
then calculated based on rock physics parameters under different
permeability. A set of solid skeleton parameters and fluid parameters
is selected as presented in Table 3 (Johnson, 2001; Lo, et al., 2005).

FIGURE 3
Dry skeleton modulus (Kb) and permeability (κ) corresponding to different aspect ratios (a).

FIGURE 4
Comparison between theoretical solution and numerical
solution of fast P-wave velocity under different aspect ratios.

FIGURE 5
Comparison between theoretical solution and numerical
solution of fast P-wave attenuation under different aspect ratios.
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The calculated dispersion/attenuation curves are depicted in
Figures 8, 9.

In the example, various porous network structures of different
scales (4 × 4 × 4, 5 × 5 × 5, 6 × 6 × 6, 7 × 7 × 7 and 8 × 8 × 8) were
employed within a unit cube with a side length of l. As the density of
fractures and pores increased, the connectivity between pores
became denser, leading to a gradual reduction in permeability
(from 3.5888 to 0.22417 Darcy). Different permeability
corresponded to distinct shapes of fast P-wave dispersion curves
for diverse-scale porous network structures. Figure 8 demonstrates
that as permeability changes, the dispersion curves shift, with a
discrepancy in P-wave velocity reaching up to 40 m/s at identical
frequency in this case study. Figure 9 illustrates how fast P-waves’
attenuation curve varies with permeability, indicating an observable
shift in the position of attenuation peaks.

In conclusion, the permeability can be modified by adjusting the
porous network structure (pore density), based on rock physical
parameters such as porosity, fluid parameters, and solid skeleton
bulk modulus. Different permeability conditions result in noticeable
and regular changes in the wavefield curves of dispersion and
attenuation. Therefore, it is possible to calculate the variation
pattern of dispersion and attenuation with respect to
permeability when rock physical parameters are known.
Consequently, changes in permeability can be inferred by
measuring the movement of dispersion/attenuation curves.

5.2 Influence of fracture aspect ratio on
permeability

By utilizing the curves of permeability and bulk modulus for
different fracture aspect ratios within a fully saturated elastic model,
dispersion curves for P- and S-wave velocities, along with prediction
for attenuation, are successfully derived. Subsequently, by obtaining
the permeability and P/S-wave velocities in porous media with
varying fracture aspect ratios, the plot can be drawn, illustrating
the relationship between P/S-wave velocity and permeability.

The graphical analysis of seismic attributes is presented in
Figure 10, illustrating the calculation results. For sandstone, the
calculated parameters are as follows: density of 2,650 kg/m3, bulk
modulus of 37 GPa, shear modulus of 44 GPa, Poisson’s ratio of
0.08, and Young’s modulus of 94.5 GPa. When determining wave
velocity, a fixed frequency of 30 Hz is employed.

The permeability gradually decreases as the aspect ratio of
fractures decreases under a given porosity condition, as observed
from Figure 10. The data points on the graph move from bottom
right to top left, and with approaching zero aspect ratio, there is a
rapid increase in the distance between data points.

From the calculation results, it is evident that there exists a
significant variation in the velocity ratio of P- and S-wave under
different fracture/pore aspect ratios, indicating a substantial impact
of aspect ratio on this velocity ratio. The influence of aspect ratio on
the velocity ratio arises from two aspects: 1) the effect of varying
aspect ratios on the bulk modulus of rock skeleton; 2) the effect of
varying aspect ratios on permeability. These two influences are
closely intertwined, and when assessing the feasibility of
predicting permeability using seismic attributes, both aspects
need to be simultaneously considered rather than isolating one-
sided effects.

5.3 Identification of permeability change
based on velocity ratio-impedance template

As aspect ratio have effects on both bulk modulus and
permeability, their contributions to the velocity ratio are
intertwined, making it impossible to separately examine the
influence of permeability on wave velocity. To further analyze the
relationship between wave velocity ratio and permeability, the
fracture aspect ratio parameter is held constant while varying
only the numerical value of permeability, then calculate data for
the velocity ratio-impedance template.

FIGURE 6
Variation of fast P wave velocity with confining pressure.

FIGURE 7
Variation of slow P wave velocity with confining pressure.
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To facilitate comparison with previous examples, the aspect
ratio is standardized to 1 and the corresponding permeability values
from those examples (1.2 × 10−5 D, 1.8 × 10−4 D, 0.036D, 0.2D,
0.47D) are adopted. Figure 11 illustrates the velocity ratio-
impedance template.

From Figure 11, it is evident that when the aspect ratio remains
constant (in this case, 1) and only the permeability varies, there is a
significant reduction in the range of variation observed in the
velocity ratio. Simultaneously, there is also a substantial decrease
in the range of impedance changes. Within the same range of
permeability variations as considered in previous calculations,
discerning changes in permeability solely from the velocity ratio
becomes nearly impossible. Hence, it can be concluded that
alterations in bulk modulus resulting from variations in aspect
ratio are primarily responsible for considerable changes observed
in velocity ratio, while modifications in permeability due to changes
in aspect ratio have relatively minor impacts on velocity ratio.

In order to ascertain the extent of permeability changes that can
be discerned in the velocity ratio-impedance template, the variation

TABLE 3 Rock physical parameters.

Parameter Value Parameter Value

Porosity ϕ 0.284 Number of nodes m 5

Confining pressure pc 30 MPa Number of nodes n 5

Solid particle modulus Ks 36 GPa Number of nodes 1 5

Poisson’s ratio v 0.25 Unit size 3.0 × 10−3 m

Young’s modulus E 20 GPa Aspect ratio of fracture a 0.15

Skeleton density ρs 2,650 kg/m3 Solid shear modulus G 1.74 GPa

Density of fluid (oil) ρf 762 kg/m3 Fluid (oil) viscosity η 0.00144 Pa s

Fluid (oil) bulk modulus Kf 0.57 GPa

FIGURE 8
Variation of fast P-wave dispersion curves with permeability.

FIGURE 9
Variation of fast P-wave attenuation curves with permeability.

FIGURE 10
Relationship between P-wave velocity and permeability of 3D
water-bearing fracture network.
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pattern of velocity ratio as permeability ranged from 1 millidarcy to
100 darcies has been investigated. Figure 12 illustrates that when
permeability exhibits a wide range of variability (0.001–100 Darcy),
there is a significant amplification in the magnitude of impedance
(from 0.32 to 130,000 kg/s.m2). Hence, during substantial
fluctuations in permeability, corresponding variations in
impedance become more pronounced. However, it should be
noted that the numerical value for velocity ratio change remains
exceedingly small (0.00041), rendering it inadequate for
independently distinguishing alterations in permeability.

The following analysis investigates the patterns observed
under different aspect ratios, replicating the aforementioned
calculations for aspect ratios of 0.5 and 0.05. Figures 13, 14
demonstrate that as the aspect ratio decreases, there is a

significant reduction in the range of variation in wave
impedance, decreasing from 130,000 kg/s.m2 at a� 1 to 11 kg/
s.m2 at a� 0.05. However, concurrently with the decrease in
aspect ratio, there is a continuous increase in the wave
velocity ratio, escalating from 0.00041 to 0.0023.

From the analysis of the calculation results above, it is evident
that when considering rocks with identical physical parameters and
varying only in permeability, there is minimal variations observed in
the velocity ratio of P- to S-wave at the frequency of 30 Hz.
Consequently, identifying changes in permeability becomes
exceedingly challenging. In scenarios where there exists a
significant alteration in permeability (e.g., from 1 millidarcy to
100 Darcy), porous networks with the large aspect ratio exhibit a
relatively extensive range of impedance variation. However, even

FIGURE 11
Variation of velocity ratio with impedance in 3D water-bearing
fracture network.

FIGURE 12
Variation of velocity ratio with impedance in 3D water-bearing
fracture network (the permeability changing from 0.001 to 100 Darcy
and the aspect ratio of 1).

FIGURE 13
Variation of velocity ratio with impedance in 3D water-bearing
fracture network (the permeability changing from 0.001 to 100 Darcy
and the aspect ratio of 0.5).

FIGURE 14
Variation of velocity ratio with impedance in 3D water-bearing
fracture network (the permeability changing from 0.001 to 100 Darcy
and the aspect ratio of 0.05).
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within low porosity and low permeability rocks, the dispersion
degree of data points on the velocity ratio-impedance template
remains insufficient for isolating the impact of permeability
changes, thereby presenting substantial challenges.

5.4 Identification of permeability change
based on attenuation-young’s modulus

The variation patterns of P-wave attenuation and Young’s
modulus in relation to different permeability have been carried
out, revealing a significant range of relative changes in attenuation.

Figure 15 illustrates the variations in P-wave attenuation-Young’s
modulus resulting from alterations in permeability within water-
bearing porous sandstone.

The following conclusions can be inferred from the attenuation-
Young’s modulus template:

(1) The relative change in P-wave attenuation is quite noticeable. As
the permeability increases, the attenuation value gradually
increases, exhibiting an approximately linear growth trend.

(2) With the increase in permeability, Young’s modulus also
gradually increases, and it grows more rapidly at higher
permeability.

FIGURE 15
Template of P-wave velocity attenuation-Young’s modulus in 3D
water-bearing fracture network (The permeability changing from
0.001 to 100 Darcy and the aspect ratio of 1.

FIGURE 16
Sensitivity comparison of seismic attributes changing with
permeability in 3D water-bearing fracture network (The permeability
changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the
frequency of 30 Hz).

FIGURE 17
Sensitivity comparison of seismic attributes changing with
permeability in 3D oil-bearing fracture network (The permeability
changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the
frequency of 30 Hz).

FIGURE 18
Sensitivity comparison of seismic attributes changing with
permeability in 3D gas-bearing fracture network (The permeability
changing from 0.001 to 100 Darcy, the aspect ratio of 1 and the
frequency of 30 Hz).
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(3) If accurate data on P-wave attenuation can be obtained, the
velocity attenuation-Young’s modulus template can be utilized
to analyze and identify changes in permeability within reservoir
when permeability changes significantly in a wide range.

(4) In cases of low porosity and low permeability where there is
limited variation in permeability, the distribution range of data
points on the velocity attenuation-Young’s modulus template is
also narrow, posing challenges for identifying changes in
permeability.

5.5 Sensitivity analysis of seismic parameters
changing with permeability

In order to identify seismic attributes that exhibit high
sensitivity to variations in permeability, the comprehensive
sensitivity analysis on various seismic attribute parameters has
been conducted. During the calculations, five permeability values
were uniformly selected ranging from 0.001 Darcy to 100 Darcy,
while keeping other rock physics parameters constant. The
individual sensitivities of the velocity ratio of P- to S-wave,
P-wave impedance, wave velocity, shear modulus, Young’s
modulus, and attenuation of P- and S-wave velocities towards
changes in permeability were separately evaluated. The parameters
investigated in our study have distinct physical meanings in the
context of fractured-porous media. The velocity ratio of P- to
S-wave (Vp/Vs) serves as an indicator of fluid-filled zone. P-wave
impedance (Z) and wave velocities (Vp and Vs) provide insights
into rock density and elastic properties. Shear modulus (μ) and
Young’s modulus (E) are mechanical properties that describe rock
resistance to deformation, with lower values indicating increased
deformability under stress. Lastly, attenuation parameters (Qp and
Qs) quantify the energy loss of seismic waves, with higher
permeability associated with greater attenuation, crucial for
detecting fluid-saturated zones. These parameters collectively
help in characterizing subsurface formations, fluid dynamics,
and rock behavior in fractured-porous media, aiding in
hydrocarbon exploration and reservoir assessment.

Herein, the sensitivity s is defined as s(x) � (xmax − xmin)/�x ,xmax

and xmin represent the maximum and minimum calculated values of
the seismic attributes respectively, while �x denotes their average value.
Figures 16–18 present comparative charts illustrating the sensitivity of
each attribute for sandstone containing water, oil or gas.

The comparative analysis reveals that the sensitivity of seismic
attributes, such as velocity ratio, P-wave impedance, wave velocity,
shear modulus, and Young’s modulus, to changes in permeability is
relatively low. Conversely, the attenuation of P-wave and S-wave
velocities exhibits a comparatively high sensitivity. The additional
calculation and analysis for the aspect ratio of 0.5 are conducted,
finding that the sensitivity of seismic attributes to changes in
permeability remains consistent with the casewhere the aspect ratio is 1.

6 Conclusion

In this paper, an improved wave equation of fractured-porous
media is proposed. Through this research, the significant influence
of fracture aspect ratio and confining pressure on wave properties

is unveiled, and a novel method for permeability identification
based on the curves of velocity-fracture parameters and velocity-
permeability is proposed, while numerical simulation methods are
refined. The research findings demonstrate that fracture aspect
ratio and confining pressure exert a substantial impact on wave
properties such as velocity and attenuation; there exists a
correlation between fracture parameters and permeability,
which can be utilized to predict permeability by utilizing the
curves of either velocity-fracture parameters or velocity-
permeability. These discoveries offer fresh insights into the
wave behavior of fractured-porous media, providing a
theoretical foundation and innovative approaches for
permeability prediction. Moreover, the methodologies and
concepts presented in this study can also be applied to seismic
rock physics research in various fields, thereby further advancing
related areas’ development. Nevertheless, certain limitations
persist in this study including the complexity of fluid flow
within porous media as well as challenges associated with
accurately describing the actual motion state of pore fluid. In
future research, these challenges will continue to be addressed to
enhance models and methods, enhancing accuracy and
applicability in permeability identification.
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