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Agriculture is considered one of the primary elements for socioeconomic stability
in most parts of Sudan. Consequently, the irrigation water should be properly
managed to achieve sustainable crop yield and soil fertility. This research aims to
predict the irrigation indices of sodium adsorption ratio (SAR), sodium percentage
(Na%), permeability index (PI), and potential salinity (PS) using innovative machine
learning (ML) techniques, including K-nearest neighbor (KNN), random forest (RF),
support vector regression (SVR), and Gaussian process regression (GPR). Thirty-
seven groundwater samples are collected and analyzed for twelve physiochemical
parameters (TDS, pH, EC, TH, Ca+2, Mg+2, Na+, HCO3

−, Cl, SO4
−2, and NO3

−) to
assess the hydrochemical characteristics of groundwater and its suitability for
irrigation purposes. The primary investigation indicated that the samples are
dominated by Ca-Mg-HCO3 and Na-HCO3 water types resulted from
groundwater recharge and ion exchange reactions. The observed irrigation
indices of SAR, Na%, PI, and PS showed average values of 7, 42.5%, 64.7%, and
0.5, respectively. TheMLmodeling is based on the ion’s concentration as input and
the observed values of the indices as output. The data is divided into two sets for
training (70%) and validation (30%), and the models are validated using a 10-fold
cross-validation technique. The models are tested with three statistical criteria,
including mean square error (MSE), root means square error (RMSE), and
correlation coefficient (R2). The SVR algorithm showed the best performance in
predicting the irrigation indices, with the lowest RMSE value of 1.45 for SAR. The
RMSE values for the other indices, Na%, PI, and PS, were 6.70, 7.10, and 0.55,
respectively. The models were applied to digital predictive data in the Nile River
area of Khartoum state, and the uncertainty of the maps was estimated by running
the models 10 times iteratively. The standard deviation maps were generated to
assess the model’s sensitivity to the data, and the uncertainty of the model can be
used to identify areas where a denser sampling is needed to improve the accuracy
of the irrigation indices estimates.
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1 Introduction

Groundwater is one of the primary providers of irrigation water
for agriculture, offering a dependable and sustainable source of
irrigation water (Li et al., 2022). The utilization of groundwater
for irrigation offers various benefits, including dependability
and regularity. Unlike surface water, which can be impacted by
floods and droughts, groundwater is generally consistent and
can ensure a continuous supply of irrigation water (Mohammed
et al., 2022c). This is crucial in areas with insufficient or
unstable surface water supplies (Osta et al., 2022).
Additionally, groundwater can be used in combination with
surface water to create a more dependable and long-lasting
source of irrigation water (Mohamed et al., 2023). Farmers can
lessen their reliance on surface water and improve the
effectiveness of their irrigation systems by employing both
surface water and groundwater. However, aquifers need to be
managed and protected to ensure the long-term sustainability
of groundwater as a source of irrigation water (Docheshmeh
Gorgij et al., 2022). The eastern Nile River region is mostly
dependent on groundwater for irrigation because it is
agricultural terrain (Mohammed et al., 2023d). The high
reliance on groundwater for irrigation is due to the absence
of surface water transporting systems and the high cost of
delivering Nile water to agricultural lands (Farah et al.,
2000). As a result, and due to the expanding agricultural
lands and over-pumping of groundwater aquifers, the
groundwater quality for domestic and agricultural purposes
is declining (Eyankware et al., 2022). The quality of
groundwater for irrigation purposes is crucial since it
determines crop yields, soil fertility and permeability (El
Bilali et al., 2021). In order to produce crops sustainably,
this project aims to assess the suitability of groundwater for
irrigation using advanced computational artificial intelligence
(AI) systems.

Irrigational water qualitymight vary greatly based on the quantity
and quality of soluble salts. Other parameters, such as variations in
climatic conditions, may significantly influence the irrigational
groundwater (Sattari et al., 2018). For instance, groundwater quality
is poorer during the dry seasons compared to rainy seasons due to
delusion by groundwater recharge. Therefore, water quality evaluations
should be made during each irrigation cycle. Some physiochemical
parameters are present in all irrigation water, which can have major
impacts even with tiny concentrations. The type of salt present in the
water and its overall concentration affects the suitability of the irrigation
water. Salt can harm soil and plants regardless of its form or quantity.
Consequently, several water quality indices were proposed considering
different physiochemical parameters on groundwater or the impact of
the irrigational water on the soil (Wilcox, 1948; Richards, 1954; Doneen,
1964; Kelly and Reiter, 1984). For instance, sodium percentage (Na%)
and sodium adsorption ratio (SAR) determine the amount of sodium
relative to the other cations and thus detect the effect of the cation
exchange process on soil permeability (Chidambaram et al., 2022).
Permeability index (PI) directly measures the influence of a particular

water quality type on the soil (Kouadra and Demdoum, 2020), while
potential salinity (PS) indicates the suitability of irrigational water for
particular plants (Masoud et al., 2022). Usually, in assessing irrigational
water quality, these parameters are combined for comprehensive
evaluation. Irrigation indices are effective instruments for
determining whether groundwater is suitable for agricultural use.
However, the calculation of these indices is often lengthy and time-
consuming (Nouraki et al., 2021); therefore, AI techniques are proposed
to reduce the calculation time and avoid calculation errors (Nabiollahi
et al., 2021). Because AI models can evaluate vast amounts of data and
produce precise forecasts, their usage in irrigation water management
has increased recently (Yu et al., 2022; Masoudi et al., 2023).

Groundwater and/or water quality studies have extensively used
AI and machine learning (ML) approaches (Ahmed et al., 2019; Abdel-
Fattah et al., 2021;Mohammed et al., 2022b, 2022a; DocheshmehGorgij
et al., 2022; Najafzadeh et al., 2022; Nasir et al., 2022; Nong et al., 2023).
This paper aims to introduce the application of AI techniques in
irrigation water management, with a focus on the prediction of
irrigation water indices. Recently, the use of AI techniques for the
prediction of irrigation indices has been growing due to the high non-
linearity and complexity of these indices (Pipia et al., 2019; Rahnama
et al., 2020; Sattari et al., 2020; Dimple et al., 2022; Trabelsi and Ali,
2022). For instance, Mokhtar et al. (2022) used support vector
regression (SVR) and random forest (RF) to model the irrigation
water quality of potential salinity, sodium percentage and
permeability index in Bahr El-Baqr, Egypt. They indicated the
robustness of these algorithms to support the decision-making
process for sustainable crop yield. Yahyaoui et al. (2023) conducted
a comparative study to examine the capabilities of several ML
algorithms, including K-nearest neighbor (KNN), support vector
machine (SVM) and decision trees in predicting irrigational water
quality indices (IWQI) in Cap-Bon, Tunisia. Their study revealed the
efficiency of KNN techniques over the others. Singh (2020) employed
SVM and Gaussian process regression (GPR) for the simulation of SAR
in three sub-watersheds in Iran. These studies demonstrated the
potential of AI and ML as a tool for predicting various water quality
indices in irrigation systems and highlighted the importance of such
predictions in improving water management practices and ensuring
sustainable agriculture. However, these studies rely only on the
prediction of the observed values without examining the capabilities
of AI techniques in detecting the spatial distribution of the predicted
indices. In this research, we proposed a geospatial prediction
methodology based on integrating geographical information systems
(GIS) with ML algorithms. Other techniques, such as Remote sensing
and geostatistics, are widely used for monitoring urban water supplies
and assessing their potential for future advancements (Liu et al., 2023).
In addition, an adaptive model was constructed for the purpose of
correcting water depth bias correction (Zhou et al., 2023).

This paper aims to examine the capability of several geospatial
AI algorithms, including KNN, RF, SVR, and GPR integrated with
GIS to predict the spatial distribution of irrigational water quality
indices of Na %, SAR, PS and PI. The results of this research improve
irrigation water management and the efficiency and sustainability of
agricultural production.
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2 Materials and methods

2.1 Study area

This study explores the suitability of groundwater for irrigation
purposes in the eastern Nile River area, Khartoum state, Sudan. The
study area lies between longitude 32° 30′ and 32° 47′ and latitude 15°
34′ and 15° 55′ (Figure 1). The area is characterized by a hot climate
in summer, cold and dry in winter, and associated with an annual

average precipitation of 115.7 mm/year in the fall season. The main
geomorphological features are the Nile and Blue Nile Rivers, which
bound the study area from the west. In general, the topography of
the study area is flat, with an elevation range from 227 m above
mean sea level (a.m.s.l) in the western and central parts to more than
497 m in the eastern part of the area (Figure 1).

Geologically, the area is located in the Blue Nile rift basin, where
three geological units dominate. Figure 2 illustrates the primary geological
units observed in the study area. The Pan African basement rocks of the

FIGURE 1
The primary geomorphological features are depicted by the research area’s location.

FIGURE 2
Geological map illustrates the main geological units in the study area.
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Precambrian age form the bottom of the Blue Nile basin (Idriss et al.,
2011; Mohammed et al., 2023e). These rocks are dominated by biotite
granite, gneiss, and schistmainly observed nearKhartoum’s northern and
eastern boundaries (Awad, 1994). The Precambrian basement rocks are
overlain by mudstone, sandy mudstone, conglomerates, and sandstone,
which have been consolidated by limestone, siliceous, and ferrous
minerals (Mohammed et al., 2023a). This rock accumulation is
known as Cretaceous Nubian Formation (Mohammed et al., 2023f).
This formation also comprises evaporite deposits formed in a braided
environment and dispersed throughout the Nile and Blue Nile Rivers
(Hussein, 1992). The recent deposit of Quaternary age is observed in the
surroundings of the Blue andNile Rivers and the eastern part of the study
area. This geological unit is also known as the Gezira formation and
comprises unconsolidated sand, gravel, and silts (Whiteman, 1971).

The Nubian sandstone, with an average thickness of 300m, serves as
a primary groundwater aquifer in the study area (Köhnke et al., 2017).
This aquifer is classified as highly productive, with an average
transmissivity of 700m2/day (Elkrail and Adlan, 2019; Mohammed M.
et al., 2023). Given that there is relatively minimal recharge from rainfall,
the Nile River and ephemeral streams are the primary sources of
groundwater recharge to the Nubian formation (Mohammed et al.,
2023c). As a result, groundwater levels range from 366.6 m in the
western parts near Nile River to 294m in the eastern part (Figure 3).
Consequently, groundwater flows mainly from the western to the eastern
part of the region.

2.2 Groundwater sampling

As part of the “zero thirsty” program administered by the
Sudanese government, the Khartoum State Water Corporation

collected 37 groundwater samples in December 2020. The aim of
the zero thirsty project was to avail a clean and sustainable water
supply in the Sudanese states. Khartoum state, as the most
populated, was part of this project in which the suitability of
groundwater for drinking purposes needs to be determined. The
groundwater samples were collected from public and privately
owned groundwater wells with a depth ranging from 100 to 250 m
(Mohammed et al., 2023f). The sampling protocol is followed
during the data collection. The groundwater wells are pumped for
30 min before the sample collection, and the samples are preserved
in a polyethylene bottle washed with deionized water. The
containers were transferred to the lab in an ice-filled box after
being packed securely. The groundwater samples were analyzed in
the labs of Groundwater and Wadies Directorate for eleven (11)
physiochemical parameters. The parameters include total
dissolved solids (TDS), hydrogen ion activity (pH), electrical
conductivity (EC), total hardness (TH), calcium (Ca),
magnesium (Mg), sodium (Na), bicarbonate (HCO3), chloride
(Cl), sulfate (SO4), and nitrate (NO3). EC, TDS, and pH was
determined shortly after sample collection using a portable
multi-parameter equipment. While for Cl, SO4, NO3, Ca, Mg,
Na, ion chromatography (IC) is used to analyze these parameters
by separating ions based on their charge and affinity to the
stationary phase.

Since groundwater fulfills the principle of electrical equilibrium,
the electrical balance (EB) between the major cations and anions in
meq/L is calculated using Appelo and Postma (2005) formula (Eq. 1)
to examine the accuracy of the hydrochemical analysis. In this
investigation, the EB for all the analyzed samples ranged between
+10 and −10, which indicates acceptable accuracy.

EB%( ) � ∑cations −∑anions∑cations +∑anions
× 100 (1)

2.3 Irrigation indices

The quality of irrigation water and its suitability for various
crops are assessed using irrigation water quality indices (Mallik et al.,
2022). There are several different irrigation water indicators;
however, in this research, four indices are used for the
management of irrigation water, including sodium adsorption
ratio (SAR), sodium percentage (Na%), permeability index (PI),
and potential salinity (PS). The sodium adsorption ratio (SAR)
indicates the amount of sodium in water and how it could impact
crops and soil (Richards, 1954). Low SAR levels are often regarded as
acceptable for irrigation, whereas high SAR values can cause soil
dispersion and poor crop development. The overall amount of
sodium in the water is also determined by the sodium percentage
(Na %) (Wilcox, 1948). The capacity of irrigation water to infiltrate
into the soil is measured by the permeability index (PI), which highly
influences plant growth by affecting the absorption of water by
plants (Falowo et al., 2017). The total amount of dissolved salts in the
water is measured by potential salinity (PS) (Doneen, 1964). High PS
values can cause the soil to become salinized, which can harm crop
development. The following formulas with the physiochemical
parameters measured in meq/L can be used to determine the
irrigation indices.

FIGURE 3
The groundwater flow map shows the areal variation in
groundwater levels.
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SAR � Na+�������
Ca+2+Mg+2

2

√ (2)

Na+% � Na+

Ca+2 +Mg+2 +Na+
p 100 (3)

PI � Na+ + �������
HCO3

−√
Ca+2 +Mg+2 +Na+

p 100 (4)

PS � Cl− − SO4
−2 /2( ) (5)

2.4 Machine learning models

Four machine learning models were used in this study to predict
irrigation indices: KNN, GPR, SVR, and RF. The dataset was
separated into two parts: 70% for calibrating the machine
learning models and 30% for validating the models. The analysis
of the ML algorithms was conducted using the R Core Environment
version 4.2.1 (Team, 2009). Evaluations specific to each algorithm
are presented in separate sections, and the parameters used in the
model application process are presented in tables in the
following part.

2.4.1 K-nearest neighbors (KNN)
The KNN tries to identify the k-nearest instances in the training

set and assigns the instance to the label that occurs most frequently
within that k-subset. If the values are continuous, the target can be
calculated by computing the mean. Nearest-neighbor methods
utilize the observations in the calibration set that is closest in
input space to x to form Y (Hastie et al., 2009). The k-nearest
neighbor fit for Y is specifically defined as

Y x( ) � 1
k

∑
xi∈Nk x( )

yi, (6)

where Nk(x) is the neighborhood of x, defined as the k closest
points xi in the training sample. The concept of closeness is
predicated on a metric, which is considered to be the Euclidean
distance in this example. As a result, we locate the k observations
closest to x in input space and average their responses. For a more
in-depth explanation of the KNNmethod, please refer to Hastie et al.
(2009). In this study, the “train” function in the “caret” package
(Kuhn et al., 2020) of the R Core Environment software (Version
4.2.1) was utilized to implement the KNN algorithm. The optimal
number of kwas determined through a parameter searching process,
and the results for the irrigation indices models are presented in
Table 1.

2.4.2 Random forest (RF)
The RF (Breiman, 2001) is an enhanced version of bagging that

involves constructing a large number of uncorrelated trees and
combining their predictions. For a more detailed understanding
of the Random Forest method, one can consult Biau and Scornet,
(2016). The “randomForest” package by Liaw et al. (2002) was used
in this study. The optimal value of the parameter “mtry” was
determined through a parameter tuning process using the “train”
function in the “caret” package in the R Core Environment software
(Version 4.2.1). In this study, the default settings were used for the
other parameters (etc., ntree) in the “randomForest” package. The
optimal number of mtry was determined through a parameter
searching process and the results for the irrigation indices models
are presented in Table 1.

TABLE 1 Machine learning algorithm parameters used to model irrigation indices.

Algorithms Irrigation indices Tuning hyperparameter

K nearest neighbors (KNN)

SAR k = 2

Na % k = 8

PI k = 4

PS k = 8

Gaussian process regression (GPR)

SAR sigma = 0.061

Na % sigma = 0.049

PI sigma = 0.395

PS sigma = 0.119

Random forest (RF)

SAR mtry = 6

Na % mtry = 6

PI mtry = 6

PS mtry = 6

Support vector regression (SVR)

SAR epsilon = 0.1, sigma = 0.003, cost (C) = 18.86

Na % epsilon = 0.1, sigma = 0.07, cost (C) = 18.27

PI epsilon = 0.1, sigma = 0.015, cost (C) = 767.97

PS epsilon = 0.1, sigma = 0.07, cost (C) = 539.10
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2.4.3 Gaussian process regression (GPR)
In this study, GPR (Rasmussen et al., 2006) was employed to

examine the relationship between water quality parameters and
spatial distribution of irrigation indices. GPR was used for both
inference and mapping purposes. GPR aims to reconstruct the
underlying signal f by removing the contaminating noise ε. For a
deeper understanding of the GPR method, can refer to the
publication by Rasmussen et al. (2006) and Ballabio et al. (2019).
The Gaussian radial basis function (RBF) kernel is one of the most
popular kernels used in Gaussian Process Regression, and it can
model non-linear relationships between the input variables and the
target variable. By using the “gaussprRadial” method in the “train”
function of the “caret” package, the GPR algorithm was
implemented using the Gaussian RBF kernel in the R Core
Environment software (Version 4.2.1). The parameter of the GPR
models were optimized by using a repeated 10-fold cross-validation
method to prevent overfitting and presented in Table 1.

2.4.4 Support vector regression (SVR)
The SVR is a machine-learning technique that utilizes kernels to

map the input space to a high-dimensional feature space, allowing
for non-linear mapping (Drucker et al., 1996). The goal of SVR is to
reduce both prediction errors andmodel complexity simultaneously.
The optimization problem is solved using Lagrange multipliers and
results in a set of support vectors that define the boundary. The
prediction for a new data point is then made based on the support
vectors and their weights. In this study, the SVR method was
implemented using the “e1071” package (Meyer et al., 2020) in
the R Core Environment software (Version 4.2.1). The model’s
parameters, including the choice of kernel function and the value of
parameter c, were determined through a parameter tuning process
using a random search method. The optimal values for these
parameters are reported in Table 1. For a more detailed
understanding of the SVR method, one can consult Hastie et al.
(2009).

2.4.5 Parameter optimization of the models
The KNN, GPR, SVR, and RF algorithms require the setting of

several user-defined hyper-parameters. To find the optimal values
for these parameters, the “caret” package (Kuhn et al., 2020) via R
software (Team, 2009) was employed in this study. This tuning
process computed a 10-fold cross-validation and random search
method to determine the optimal values (Table 1). Subsequently,
Kriging method is used to visualize and model the predicted
parameters. It offers a valuable tool for generating spatially
continuous maps that accurately represent the distribution of a
irrigational indices across an area. It is particularly effective when
data is sparse or irregularly distributed and when capturing spatial
trends and correlations is crucial for analysis.

2.5 Models performance and spatial
uncertainty

In this study, the accuracy of the predicted and observed data
was evaluated using three widely metrics: root mean square error
(RMSE), mean absolute error (MAE), and coefficient of
determination (R2). To accurately reflect the overall accuracy of

the machine learning models, only the evaluation metrics for the
validation set are calculated.

MAE � ∑n
i�1 Oi − Pi| |

n
(7)

RMSE �
������������∑n

i�1 Oi − Pi( )2
n

√
(8)

R2 � ∑n
i�1 Oi − Oave( ) Pi − Pave( )�������������������������∑n
i�1 Oi − Oave( )2 Pi − Pave( )2

√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦2 (9)

where Oi and Pi are, respectively, the observed and predicted values,
with their average values represented by Oave and Pave, respectively,
and n is the sample size in validation set. Most previous studies have
aimed to enhance the performance of data-based models in
estimating irrigation indices. However, the overall spatial
uncertainty of the models used for modeling irrigation indices
has not been assessed yet. Therefore, uncertainty was calculated
as the standard deviation of the predictions of irrigation indices in
each pixel over 10 iterations, which represents the spread of
predicted values around the mean in each pixel (Yigini et al., 2018).

3 Results and discussion

3.1 Hydrochemical investigation

A number of eleven parameters are used to investigate the
hydrochemical characteristics of the groundwater samples. The
concentration of the parameters resulting from the
hydrochemical analysis is illustrated in Table 2, while Table 3
summarizes the descriptive statistics of the analyzed parameters.
The comparison of between the concentration of the parameters and
the standard of the World Health Organization (WHO) (Edition,
2011) indicated that the maximum concentration of most
parameters exceeded the permissible limit. The amount of the
TDS ranged from 190.2 to 1742 mg/L, with the highest
concentration observed in S27. TDS is considered the most
important parameter in studying groundwater salinity (Freeze
and Cherry, 1979; Mohammed et al., 2022c). Since groundwater
with TDS higher than 1,000 mg/L is considered as brackish water
(Carroll, 1962), 8% of the samples were classified as brackish, while
the remaining percentage is considered freshwater. The pH of
groundwater samples varied between 6.5 and 8.59 with a mean
value of 7.6, denoting that most of the groundwater samples are
neutral to alkaline, with one sample (S17) above the acceptable limit
of WHO (Edition, 2011). The range of the EC content in
groundwater samples is from 317 to 2,620 μS/cm. Three samples,
including S2, S6, and S27, exceeded the EC standard limit of
1,500 μS/cm. The concentration of TH ranged from 124 to
890 mg/L. The maximum concentration is recorded in S6, and
the minimum is in S29. According to Sawyer and McCarty
(1967) classification, 78.3% of the groundwater samples are
considered hard water (TH 150–300 mg/L), while the remaining
21.6% are very hard water (TH > 300). With an average value of
47 mg/L, the Ca+2 concentration ranged from 11 to 101 mg/L. while
for Mg+2 concentrations ranged from 5.8 mg/L in the S12 location to
82.6 mg/L in the S16. Na+ concentration varied between 10 and
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TABLE 2 The findings derived from the hydrochemical study conducted on the gathered groundwater samples.

Sample no. TDS
(mg/L)

pH EC
(μS/cm)

TH
(mg/L)

Ca+2

(mg/L)
Mg+2

(mg/L)
Na+

(mg/L)
HCO3

−

(mg/L)
Cl−

(mg/L)
SO4

−2

(mg/L)
NO3

−

(mg/L)

S1 329 7.4 479 269 65 23 10 260 12.8 33 8.35

S2 988 7.8 1,648 316 53.6 43.7 137.9 382 50 174 3

S3 427 7.5 618 166 11 33.5 144.7 451.4 11.4 46 0.88

S4 362.6 7.4 518 185 38.4 22.4 45.9 281.6 23.9 23 6.16

S5 626 7.5 1,253 545 87.5 78.3 138.8 500 60 227 4.4

S6 1,267 7.2 1,810 890 52 51 161 620 86.6 89.7 0.04

S7 959 7.5 1,370 310 40 21 115 335 119 174 24.2

S8 694.4 7.7 929 260 57.6 28.2 123 292.8 91.5 152 7.48

S9 303 7 552 220 60 16.3 25.8 180 36 38 14.5

S10 330 7.7 620 224 60 29 45 270 16 30 0.0012

S11 359 7.4 598 148 30.4 17.3 74.7 212 24 53 3.5

S12 600.6 7.8 858 190 66.4 5.8 124.3 378.2 82.5 86 5.72

S13 411.6 7.5 588 230.6 48.64 26.5 88.4 396.5 11.4 37 13.64

S14 724.9 7.7 1,318 300 44 45.6 147.5 340 120 100 2.8

S15 483 7.4 690 232 27.2 39.8 67.9 219 61 112 14.5

S16 1,050 7.9 1,500 380 16 82.6 332.8 414.8 193 320.5 0.07

S17 452.2 8.59 646 256 54.4 29.2 54.9 280.6 16.3 38 1.32

S18 438.2 7.14 626 226 20.8 42.3 36.1 353.8 35.5 37 0.88

S19 375 7.5 650 232 52.8 24 46.5 276 18 41 1.4

S20 331 8.5 474 192 48 17.5 26.2 231 11.4 35 3.52

S21 354 7.4 590 208 40.3 25.4 37.2 248 8 28 1.2

S22 322 7.2 585 200 38.4 25 46.8 250 12 27.9 3

S23 339.5 7.4 485 254 56 27.7 37 414.8 12.8 98 9.24

S24 326 7.6 593 216 48 23 48.4 280 12 34 1

S25 330.8 7.3 601.5 234 35.2 35 37.6 226 23 52 3.2

S26 483 7.4 690 232 27.2 39.8 67.9 219 61 112 14.5

S27 1,742 8.3 2,620 404 75.2 52.5 640 414.8 153.4 650 9.24

S28 214.4 8 357.3 134 24 17.8 19.8 142 9 14 5.3

S29 190.2 7.9 317 124 27.2 13.44 24.1 130 20 13 3.7

S30 292 8.3 417 186 32 25.8 17.6 231.8 120.7 4 0.1

S31 222 7.4 370 160 39.2 14.88 14.4 186 4 3 7.3

S32 265 7.4 540 150 35 36 60 260 62 50 0.003

S33 569 7.7 1,036 400 101 35 32.4 235 136 58.8 4.5

S34 529 7.9 757 319 94.9 19.9 107.7 416 35.5 51 70

S35 413 7.2 590 186 32 21.4 78.1 317 25.6 47 3.96

S36 590 7.58 1,071 264 41.6 38.4 114.3 326 44 120 6.16

S37 304.9 6.5 554.4 156 38.4 14.4 41.9 98 80 33 10.5
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640 mg/L, with S1 showing the lowest concentration and S27 the
highest. Only 5.4% (S16 and S27) exceeded theWHO-allowable level
(Edition, 2011). The HCO3

− concentration ranges from 98 to
620 mg/L, with an average of 302. Eleven samples had HCO3

−

concentration higher than the WHO recommendations. Since the
Cl− concentration ranges from 4 to 193 mg/L, all groundwater
samples exhibit Cl− contents below guidelines. The concentration
of SO4

−2 in groundwater samples ranges from 3 mg/L in S31 to
650 mg/L in S27. Samples in the study area had NO3

− contents
ranging from 0.0012 to 70 mg/L. S34 shows the highest
concentration, whereas S10 shows the lowest. Only one sample
(S34) had NO3

− levels that were above WHO standards.
The regional distribution of these factors is depicted in Figure 4.

The majority of the parameters demonstrate a consistent pattern as
the concentration progressively increases from the western to the
eastern region of the research area. Unlike most of the parameters
HCO3

− and Ca+2, the most significant concentration is situated in
the western region of the research area, which is likely an indication
of the impact of Nile water infiltration, which is likely to be highly
concentrated with HCO3

− and Ca+2 (Mohammed et al., 2022b). The
change in the hydrochemical facies is also studied with the aid of
Chadha (1999) diagram. In this diagram, the difference between
major cations (Ca+2 +Mg+2) - (Na+ + K+) and anions [HCO3 - (SO4

−2

+ Cl−)] is used to detect the groundwater types (Figure 5).
Consequently, four groundwater facies are revealed as Na-Cl, Ca-
Mg-SO4/Cl, Na-HCO3, and Ca-Mg-HCO3.Most of the groundwater
samples (67.5%) fall in Ca-Mg-HCO3 water type, which indicates
the influence of groundwater recharge on groundwater chemistry.
The locations of these samples are within the influence of the Nile
River, which is 12 km (Farah et al., 2000). The groundwater type
gradually changes from the western to the eastern parts of the study
area from Ca-Mg-HCO3 to Na-HCO3 water type. This change is
likely due to ion exchange or the replacement of Ca+2 and Mg+2 with
Na+. As a result, 16.2% of groundwater samples are identified as Na-
HCO3 water type. 8.1% of the samples are classified as Ca-Mg-SO4/
Cl resulting from reverse anion exchange in which HCO3

− is
replaced by Cl− in groundwater. The continuation of cation and
reverse anion exchange leads to the Na-Cl facies (Abdelsalam et al.,

2016). In this study, 8.1% are classified as saline water. The
hydrochemical attributes of groundwater in the eastern Nile
River region are predominantly governed by the processes of
groundwater recharge and ion exchanges.

3.2 Irrigation indices

Agricultural activities are one of the primary proficient in central
Sudan, and groundwater is considered a primary source for irrigation.
The quality of groundwater used for irrigation is highly influencing soil
fertility and crop growth; as a result, the suitability of irrigational water
must be assessed. In this research, four indices are used to evaluate the
quality of groundwater for irrigation, including SAR, Na+ %, PI and PS.
The estimated indices of the groundwater samples utilized in this study
are presented in Table 4.

3.2.1 SAR
The SAR ranged from 0.27 to 13.8. The classification of

groundwater samples is represented in Figure 6A (USSL diagram).
Groundwater is divided into four groups based on SAR: excellent with
SAR < 10 (S1); good [SAR ranges from 10 to 18 (S2)]; doubtful, in
which SAR ranges from 18 to 26 (S3); and unsuitable with SAR > 26
(S4) (Richards, 1954). In general, SAR is influenced by the
concentration of Na+ relative to the other cations such as Ca+2,
Mg+2 and K+ (Rawat et al., 2018). In practice, groundwater is
usually classified by conjugation of SAR with EC, since irrigation
water with high salinity stimulates the ion exchange process and thus
affects the adsorption of water by plants. Salinity. Based on EC,
groundwater is classified as water with low (C1), medium (C2), high
(C3), and very high (C4) salinity hazard. As a result, 59.4% of the
groundwater samples are associated with low SAR (S1) and medium
salinity hazard (C2). This class is considered excellent for irrigation
purposes. 35% of the samples are projected in S1C3 class with low
alkali and high salinity hazard. This class might not affect the soil
permeability however, high salinity may influence the growth of
salinity-sensitive plants and thus reduces the crops yield. One
sample (S16) is plotted in S2C3 class with medium alkali and high

TABLE 3 The descriptive statistics of the measured parameters compared to WHO guidelines (Edition, 2011).

Parameter Unit Min Mean Maximum WHO guidelines

TDS mg/L 190.2 536.7 1742 1,000

pH — 6.5 7.6 8.59 6.5–8.5

EC μS/cm 317 842 2,620 1,500

TH mg/L 124 272 890 500

Ca+2 mg/L 11 47 101 200

Mg+2 mg/L 5.8 31.5 82.6 150

Na+ mg/L 10 103 640 200

HCO3
− mg/L 98 302 620 350

Cl− mg/L 4 53.7 193 250

SO4
−2 mg/L 3 99.9 650 200

NO3
− mg/L 0.0012 8.7 70 50
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salinity hazards. S27 is classified as unsuitable for irrigation since it is
associated with high alkali and high salinity hazards (S4C4). This
persistent use of this sample for irrigation will damage the soil
permeability by incorporating Na+ within the soil particles and
affect the growth of plants.

3.2.2 Na+%
The principle of Na% is almost similar to that of SAR in which

the percentage of Na+ relative to the cations of Ca+2 and Mg+2 is
measured. Na+ is incorporated into the clayminerals sheets while the
other cations are removed, which affects the infiltration of water to

FIGURE 4
The areal variation of the analyzed parameters used for groundwater quality evaluation.
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the plants root. The exchange results in two types of soils, saline soils
formed when Na+ reacted with Cl− while the alkaline soil when Na+

reacted with HCO3
− in the irrigation water (Eyankware et al., 2022).

In this study, Na+%varied between 7.8% and 77.3%. On the basis of
Na+%, groundwater is classified as excellent for irrigation (Na+% less
than 20%), good (20%–40%), acceptable (40%–60%), doubtful
(60%–80%), and unsuitable (Na+% greater than 80%)
(Khodapanah et al., 2009). The groundwater samples are plotted
in Wilcox (1948) diagram (Figure 6B). Accordingly, 64.8% of the
groundwater samples are projected in the excellent class zone. This
class is associated with low salinity and alkali hazard. 21.6% of the
samples are classified as good for irrigation with relatively high
salinity and low alkali hazard. The permissible water class included
10.8% of the groundwater samples with high alkali hazard and
relatively low salinity. The groundwater in this class is mostly
influenced by the rock type. Only one sample is described as
doubtful for irrigation purposes, and this sample is highly
influenced by salinity.

3.2.3 PI %
PI is used to show the influence of irrigation water on the soil

and thus evaluate the suitability of water for irrigation. PI is based on
the concentrations of the alkali ions in the groundwater. In this
research, PI ranged from 35.9% to 93.5%. Generally, based on PI,
groundwater is categorized into three classes as class I (PI greater

than 75%), class II (PI ranges from 25% to 75%), and class III (PI less
than 25%) (Singh et al., 2020). The groundwater samples in class I
and Class II are excellent and good, while in class III are unsuitable
for irrigation. In this investigation, 18% of the groundwater samples
are projected in class I and classified as excellent for irrigation, while
82% of the samples are classified as good for irrigation.

3.2.4 PS
PS varied from −2.4 to 3.4, with a mean value of 0.5. In general,

groundwater with PS greater than 5 is considered injurious to
unsuitable for irrigation, PS between 3 and 5 is regarded as good,
while PS less than 3 considered excellent for agricultural purposes
(Raghunath, 1987). The negative values of PS have resulted from
high concentration of SO4

−2 compared to Cl−. This situation is
mainly due to the dissolution of sulphate minerals along the
groundwater flow path. Mohammed et al. (2022b) calculated the
saturation indices of groundwater in the study area and indicated
that gypsum (CaSO4) is precipitated in most groundwater samples.
This is likely to be the cause of high SO4

−2. Based on the obtained
values of PS, most groundwater samples are classified as excellent to
good for irrigation, with some samples exhibiting negative values of
PS. Even though the PS rated the majority of the samples as
satisfactory for irrigation, a thorough examination of the water
quality parameters is necessary to determine the suitability for
irrigation. In some cases, some ions might have greater than

FIGURE 5
Chadha diagram showing the hydrochemical facies of the groundwater samples.
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reference values which leads to changing soil characteristics or
influencing plant growth (Maia and Rodriguesda, 2012). As a
result, it can be indicated that the groundwater samples with too
low negative values can be considered injurious for irrigation since a
high concentration of SO4

−2 is remarkably affecting plant growth
(Papadopoulos, 1986).

In conclusion, evaluating groundwater use for agricultural
purposes is comprehensively achieved by considering several
combined indices. It can also be said that the use of a certain
type of water depends on the type of plant and its tolerance to
salinity or its sensitivity to a certain parameter. The type of soil,
whether it is acidic or alkaline, is also influencing plant growth. The
quantity of water that a particular plant needs for growth may be
related to one index rather than the other. For example, a low
permeability index reduces the amount of water that can be
absorbed by the plant and thus may affect the growth of plants.

3.3 Computational intelligence results

3.3.1 Model performance in prediction of irrigation
indices

In this study, the SAR, Na%, PI, and PS values were estimated
using the KNN, GPR, RF, and SVR models, and the performance of
each model was evaluated based on the R2, MAE, RMSE, and testing
stages, as shown in Table 5. In general, the developed models, except
for SVR did not provide adequate modeling of the SAR parameter in
groundwater and did not produce satisfactory SAR estimates based
on the performance criteria used. However, the results for SAR
estimation showed that the SVR model was the best performer, with
the highest R2 value of 0.83 and the lowest error performance values,
including MAE=0.76 and RMSE = 1.45, in the validation phase
(Table 5). For clarity, the prediction of SAR parameter by the best-
performingmodel, which is the SVR, will be shown in scatter plots as
seen in Figure 7. The results of the modeling for the Na% parameter
in groundwater showed that the SVR model was the best performer
among the models tested, with the highest R2 value of 0.84 and the
lowest error performance values including MAE = 5.16 and RMSE =
6.70 in the validation phase. The RF model was the second-best
performer, with an R2 value of 0.79 and error performance values of
MAE = 4.72 and RMSE = 7.71 in the validation phase. The scatter
plots of the Na% parameter prediction by the best-performing
models, the SVR and RF, are shown in Figure 7. The other
models tested did not provide adequate modeling of the Na%
parameter and did not produce satisfactory Na% estimates based
on the performance criteria used.

The results of the analysis showed that all the machine learning
algorithms used in the modeling process performed below an R2

value of 0.70 for the PI indicator in the validation set. The SVR
algorithm was found to be the best performer for the PI parameter,
with the lowest values for both RMSE (7.10) and MAE (5.33) in the
validation phase. The results indicate that the SVR algorithm
performed best in predicting the PS parameter in groundwater,
with the highest R2 value of 0.73 and the lowest error performance
values, including RMSE = 0.55, in the validation phase. Other
developed models did not perform well in modeling the PS

TABLE 4 The observed irrigation indices of the groundwater samples used in
this study.

Well no. SAR Na+ % PI % PS

S1 0.27 7.8 44.6 0.02

S2 3.3 48.7 68.9 −0.4

S3 4.8 65.3 93.5 −0.15

S4 1.4 34. 71.7 0.43

S5 2.5 35.6 52.5 −0.66

S6 3.7 50.5 73.5 1.51

S7 3.6 57.1 83.9 1.54

S8 3.3 50.5 71.2 1

S9 0.75 20.4 51.7 0.62

S10 1.1 26.5 55 0.13

S11 2.6 52.3 82.3 0.12

S12 3.9 58.7 85.7 1.43

S13 2.5 45.3 75.3 −0.06

S14 3.7 51.6 70.6 2.34

S15 1.9 38.6 63.5 0.55

S16 7.3 65.3 77 2.11

S17 1.4 31.6 60.1 0.06

S18 1.1 25.5 64.8 0.61

S19 1.3 30.3 62.2 0.08

S20 0.82 22.7 61.7 −0.04

S21 1.1 28.1 63.1 −0.06

S22 1.4 33.7 67.2 0.04

S23 1 23.9 62.7 −0.65

S24 1.4 32.7 66.1 −0.01

S25 1 25.8 56.3 0.1

S26 1.9 38.6 63.5 0.55

S27 13.8 77.3 84.6 −2.4

S28 0.74 24.3 67.4 0.1

S29 0.94 29.7 71 0.42

S30 0.55 16.9 60.1 3.4

S31 0.49 16.3 62 0.08

S32 1.6 35.4 63 1.23

S33 0.7 15 35.9 3.22

S34 2.6 42.2 65.7 0.47

S35 2.6 50 83.7 0.23

S36 3 48.4 71 −0.007

S37 1.4 36.8 62.5 1.91
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parameter and did not produce satisfactory PS estimates based on
the performance criteria used. The prediction of the PS parameter by
the best performing SVR model will be shown in scatter plots in
Figure 7. The box plots of the predicted irrigation indices using

different machine learning models are shown in Figure 8. According
to the one-way ANOVA analysis performed in the validation set and
the results of the Tukey’s test (with a significance level of p < 0.05),
there was no statistically significant difference in the estimation of
irrigation indices among the different models. However, this
suggests that among the compared models, the SVR model
provides the best performance in terms of the estimation of
irrigation indices (Table 5 and Figure 7).

3.3.2 Spatial prediction of irrigation indices
A continuous digital map of SAR (Figure 9), Na % (Figure 10),

PI (Figure 11) and PS (Figure 12) for the study area was produced
from the results of the four different machine learning models using
the predictor variables raster stack of the training dataset.

The spatial distribution of SAR concentrations in groundwater
are predicted with all four models for the eastern Nile River region,
Khartoum state, Sudan (Figure 9). In general, all four models show
similar patterns for the spatial SAR distribution that only differ
locally from each other. The western parts of the study area are
associated with low values of SAR, likely due to the influence of
groundwater recharge on groundwater samples. The highest values
in the southern and central parts are generally due to the high
mineralization of groundwater samples due to the dissolution of
halite minerals within the Nubian formations (Abdelsalam et al.,
2016; Mohammed et al., 2023b). The values of predicted SAR
recorded in the KNN model ranged from 0.71 to 7.98, while in
the SVR model they ranged from 0.61 to 9.40. The GPRmodel had a
range of 1.08–6.51, and the RF model had a range of 0.56–7.42
(Figure 9). Overall, the minimum estimated SAR values were
comparable among all models, except for the GPR. However, the
maximum values varied among the models. The maximum
uncertainty was the smallest in the RF model, ranging from

FIGURE 6
Classification of groundwater samples based on (A) SAR and (B) Na+%.

TABLE 5 Machine Learning Algorithms assessments criteria of validation set
for water quality parameters, root mean square error (RMSE), mean absolute
error (MAE), and r squared (R2) values.

Water quality parameters Model MAE RMSE R2

SAR

KNN 0.86 1.82 0.73

SVR 0.76 1.45 0.83

GPR 1.14 2.31 0.57

RF 0.82 2.00 0.67

Na %

KNN 7.02 9.74 0.66

SVR 5.16 6.70 0.84

GPR 9.01 11.33 0.54

RF 4.72 7.71 0.79

PI

KNN 7.05 9.38 0.41

SVR 5.33 7.10 0.66

GPR 7.05 9.67 0.38

RF 6.04 8.67 0.50

PS

KNN 0.43 0.85 0.37

SVR 0.43 0.55 0.73

GPR 0.54 0.82 0.41

RF 0.43 0.71 0.55
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0.004 to 0.31, while in all other models, the uncertainty varied from
0.01 to 3.71. Uncertainty in the SAR estimation was particularly high
in areas with low sampling density, but SAR prediction uncertainty
was higher in the southeast of the study area.

The results of the spatial distribution prediction for Na % using
all four models in the eastern Nile River area, Khartoum state,
Sudan, are presented in Figure 10. The performance of eachmodel in
predicting the Na % concentrations in groundwater can be
compared based on the accuracy and uncertainty of the maps
produced. The maps can be used to identify areas where the
concentrations are high or low and to understand the spatial

distribution patterns of Na % in groundwater. The variation of
Na+ % shows a similar trend to that of SAR as the central and
southern parts depict high concentrations relative to the rest of the
study area. The results of the predicted sodium percentage (Na%)
from the KNN, SVR, GPR, and RF models are presented in
Figure 10. The range of Na% values predicted by the KNN
model was between 22.21 and 56.83, while the SVR model had a
range of 22.48–71.24. The GPR model had a range of
29.45–57.40 and the RF model had a range of 18.10–61.72.
Overall, the highest estimated Na% values were similar across all
models, except for the SVR model. The minimum values, however,

FIGURE 7
Scatter plots of observed irrigation indices and estimated irrigation indices by different machine learning models for the validation period.
Abbreviations: KNN, k-nearest neighbors; GPR, Gaussian process regression; SVR, support vector regression; RF, random forest.
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differed among the models. The RF model had the smallest
uncertainty range, between 0.05 and 2.12, while in all other
models, the uncertainty varied between 0.05 and 27.60. The
uncertainty of Na% estimation was particularly high in areas
with low sample density, with higher uncertainty observed in the
southeast, east, and northwest regions of the study area.

We employed four models (KNN, SVR, GPR, and RF) to predict
the spatial distribution of PI concentrations in groundwater in the
Eastern Nile River area of Khartoum state, Sudan (Figure 11).
Results indicated that all four models generated similar patterns
of PI distribution, albeit with some local differences. The lowest PI is
indicated in S33 location in the southwestern part of the study area
however these samples showed low SAR and Na+%. This can be
explained by two factors. The groundwater recharge from Nile River
which increase the HCO3

− concentration in the groundwater
samples and therefore reduce the PI. Alternatively, it might be
affected by clay nature of the quaternary deposits. The soil
properties including compaction and organic contents may also
influence the soil permeability (Khalaf and Hassan, 2013). In this
case, the SAR and Na+ will eventually be increased due to the
ongoing ion exchange reactions. The predicted values of PI obtained
from the four models ranged from 53.34 to 85.50, with the highest
estimated values being recorded in the SVR model and the lowest in
the RF model (Figure 11). The RFmodel exhibited the lowest level of
uncertainty in its predictions, with a range of 0.07–2.25, while in the

other models, the uncertainty ranged from 0.06 to 14.75. The
uncertainty in PI predictions was higher in areas with low
sampling density and in the central and northwest regions of the
study area.

The prediction of PS concentrations in groundwater using four
models (KNN, SVR, GPR, and RF) in the eastern Nile River area,
Khartoum state, Sudan is presented in Figure 12. In general, all
models show similar spatial patterns of PS distribution, with only
minor differences in some areas. The values of predicted PS recorded
by the KNN model range from −0.17 to 2.16, by the SVR model
from −1.30 to 2.11, by the GPRmodel from −0.38 to 1.60, and by the
RF model from −0.36 to 2.09. Although the maximum estimated PS
values are comparable among all models, the minimum estimated
values vary, with the exception of the GPR model. The maximum
uncertainty was the lowest in the RF model, ranging from 0.004 to
0.10, while in all other models, the uncertainty varies from 0.006 to
1.66. Areas with low sampling density had high uncertainty in PS
estimation, and areas in the central, southeast, and northeast had
higher PS prediction uncertainty.

Overall findings indicate that the four models have similar
capabilities in predicting the spatial distribution of irrigation
indices in groundwater. However, as these models use different
mathematical basis, small differences in their predictions can
still exist. These differences may be due to the different
weightings given to the input variables, the type of algorithm

FIGURE 8
Box plot showing the distribution of the predicted indices using different ML algorithms.
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used, and other factors. In this study, the GPR model had
difficulty accurately spatially predicting the minimum and
maximum values for all irrigation indices. This means that
the GPR model, which is based on a normal distribution,
may have trouble accurately representing data points that are
significantly different from the average or have extreme values,
known as outliers. This suggests that in datasets with outliers,
the GPR model may not perform as well compared to other
models. This suggests that the GPR model might not be suitable
for modeling datasets with outliers or data that do not follow a
Gaussian distribution. As supported by our results, it could be
beneficial to consider other models such as RF or SVR, that can
handle these types of datasets better. The findings of this study
support the difficulty of the GPR model in representing the
minimum and maximum values in the data set when outliers

are present. This highlights the limitations of the GPR model,
especially in the context of datasets with varying data
distribution and outliers, such as the groundwater data in
the eastern Nile River region, Khartoum state, Sudan.
Additionally, it might be worth exploring ways to transform
the data to make it more Gaussian-like before using the GPR
model to see if this improves the model’s performance. Overall,
the models can provide useful information for understanding
the spatial distribution of irrigation indices in groundwater, but
further validation and analysis are needed to determine the
most accurate and reliable model for this purpose. This means
that the overall distribution of irrigation indices in the study
area, as predicted by the four models, is similar but with some
slight variations in specific locations. Overall, the models
produce similar results, indicating that the distribution of

FIGURE 9
Mean and standard deviation maps of the predicted SAR derived
from 10 times different machine learning models on a 100 m × 100 m
grid-map.

FIGURE 10
Mean and standard deviation maps of the predicted Na (%)
derived from 10 times differentmachine learningmodels on a 100 m×
100 m grid-map.
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irrigation indices values in the study area is relatively
consistent.

In this study, an approach was presented to assess the
sensitivity of the model to the available data (rasters of
predicted variables) and the uncertainty of the model (Figures
9–12). Complex areas like the study area, with deltas and adjacent
uplifting regions, often have strong multifactor interactions, non-
linearity, and non-stationary relationships, leading to highly
heterogeneous groundwater properties spatially. However, the
uncertainty maps (Figures 9–12) present some conflicting results
in revealing the spatial variation of irrigation indices with limited
predictive variables and several water samples. To provide insight
into the reliability of the irrigation indices estimates, areas with
high standard deviation values should be emphasized. Other
researchers have also noted the significance of uncertainty

maps in mapping irrigation indices for local areas with high
groundwater heterogeneity or small sample sizes (Taşan et al.,
2022). It should be acknowledged that the representation and
application of uncertainty maps in machine learning predictions
still require improvement.

4 Conclusion

In this research, four computational machine learning (ML)
algorithms (KNN, SVR, GPR, and RF) integrated with GIS were
used to evaluate the suitability of groundwater for irrigation
purposes based on four irrigational indices (SAR, Na%, PI, and
PS). This approach is followed to overcome the limitations of the

FIGURE 11
Mean and standard deviation maps of the predicted PI derived
from 10 times different machine learning models on a 100 m × 100 m
grid-map.

FIGURE 12
Mean and standard deviation maps of the predicted PS derived
from 10 times different machine learning models on a 100 m × 100 m
grid-map.
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conventional assessment of groundwater quality parameters. Based
on the modeling results, the conclusions can be summarized as
follows:

• The initial analysis revealed that the groundwater samples are
dominated by Ca-Mg-HCO3 and Na-HCO3 water types
resulted from groundwater recharge and ion exchange
processes.

• The observed irrigational indices indicated that the majority of
the groundwater samples (60%) are excellent agricultural
purposes. The remaining samples are mostly influenced by
high salinity resulted from rock-water interactions.

• The GIS-based statistical approach allows the estimation of
groundwater irrigation indices derived only from spatially
mapped physiochemical parameters. The use of machine
learning models is trained with a point data set of
groundwater physiochemical parameters with exclusively
spatial predictors.

• All four model types resulted in reasonable to good predictions
for the spatial distribution of irrigation indices in
groundwater. However, the SVR algorithm showed the best
performance in predicting the irrigation indices, with the
lowest RMSE value of 1.45 for SAR. The RMSE values for
the other indices, Na%, PI, and PS, were 6.70, 7.10, and 0.55 in
the test data set, respectively.

• The determination of the actual contributing area of the
monitoring sites through a process-based representation of
the groundwater flow conditions could probably improve
the predictive performance of the models. However, the
inclusion of locally specific groundwater flow conditions is
challenging on even larger scales due to a lack of
information.
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