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Due to the unique high-altitude geological conditions of the railway in the cold
region, the problem of high ground stress in the construction process is very
prominent. In constructing high ground stress tunnels, accurately evaluating the
surrounding rock grades is important in rock mass engineering. Based on this,
based on a plateau tunnel under construction, this paper selects the classification
index of the surrounding rock, which can accurately reflect the geological
characteristics of high ground stress tunnel around the geological environment
elements of the surrounding rock of high ground stress tunnel. Based on the rapid
classification method of surrounding rock of the BP neural network, the
classification method of the surrounding rock suitable for high ground stress
tunnel is constructed, and the tunnel engineering data is introduced into the BP
neural network classification method of surrounding rock for training and testing.
It is found that the classification results of surrounding rock obtained by the
classificationmethod of surrounding rock of high ground stress tunnel are in good
agreement with the actual situation, which provides an important guarantee for
the accurate and rapid determination of the surrounding rock grade of high
ground stress tunnel and the safe and efficient construction of the tunnel.
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1 Introduction

Due to its unique high-altitude geological conditions, the problem of high ground stress
during the construction of railways in cold regions is very prominent. In the construction of a
high ground stress tunnel, the accurate evaluation of the surrounding rock level is an
important issue in rock engineering. At this stage, the method of tunnel rock classification
has been developed to the semi-quantitative or quantitative classification stage with multiple
indicators. Among them, the internationally standard methods are the RMR method
(Bieniawski, 1973), Q method (BartonLien and Lunde, 1974), GSI method (Sonmez and
Ulusay, 1999), and RMi method (PALMSTRÖM, 1995). The commonly used methods in
China are the national standard BQmethod (GB 50218-2014, 2015) and hydropower system
HC method (GB 50287-2006, 2006), while the classification method of surrounding rock of
highway and railway tunnels basically refers to the BQ method and local optimization is
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carried out according to the characteristics of highway and railway
tunnels. Regarding the use of surrounding rock grading methods,
GB50218-2015“Engineering Rock Mass Grading Standards”
(i.e., BQ method) suggests that when evaluating the surrounding
rock quality of tunnel engineering, a variety of surrounding rock
classification methods should be used to comprehensively compare
and finally determine the surrounding rock grade. However, at
present, the problems in the actual use of the above surrounding
rock grading methods are: 1) the geological characteristics such as
high geostress and rock burst prominently in high geostress tunnels
cannot be fully considered; 2) Some evaluation indicators and values
in the classification method mostly rely on subjective determination,
which is closely related to the geological identification skills of on-
site personnel, resulting in doubts about the reliability of the results;
3) The evaluation results of different surrounding rock classification
methods are often inconsistent, resulting in blindness in the
selection of actual identification results. The core reason for the
above problems is that the internal correlation of the evaluation
indicators of each method is not systematically summarized from
the core of the evaluation index of each surrounding rock
classification method, and the application conditions of each
method are not paid attention to.

With the development of artificial intelligence, the rapid
acquisition and identification of surrounding rock grading
evaluation indicators through artificial intelligence methods and
then overcoming the subjectivity of evaluation index assignment has
become a new development direction of surrounding rock grading.
In recent years, “artificial intelligence+” has also been initially
applied in the field of surrounding rock grading methods, mainly
including K-fold cross-verification (Wang et al., 2021), support
vector machine (Tian S. M. et al., 2021), machine learning and
reliability algorithm (Zheng et al., 2019), LIBSVM algorithm (He,
2019), two-dimensional cloud model and Apriori algorithm (Xue
et al., 2020), comprehensive decision cloud model (Zhou et al.,
2020), interval number comprehensive hierarchical cloud
optimization theory model (Lu, 2020), TSP and PCA-Bayes
method (Lv et al., 2020), normal cloud theory (Liang et al.,
2021), multi-factor extendable matter element method (Tian F. F.
et al., 2021), DE-BP model (Zhang et al., 2021), KNN method (Ma
et al., 2020), entropy weight method (Zhang, 2022) and BP neural
network algorithm (Zhou et al., 2005) are introduced into the
traditional surrounding rock grading work, aiming to reduce the
subjective blindness in the surrounding rock grading process and
improve the reliability of the surrounding rock grading results. In
addition, considering the complexity of on-site surrounding rock
information collection, the artificial intelligence image recognition
method is used to realize the acquisition, preprocessing, feature
extraction, classification design and classification decision of
surrounding rock information, which provides a reliable means
to greatly improve the collection efficiency of surrounding rock
information. Artificial intelligence image recognition technology has
gradually been applied to a certain extent (Liu et al., 2005; Yi et al.,
2021). However, it should be pointed out that there is still a lot of
space for the cross-application of “artificial intelligence+” in the field
of surrounding rock classification of underground engineering, and
it is still urgent to explore the applicability and integration of
artificial intelligence methods in the field of surrounding rock
information collection, identification, and post-processing.

It can be seen that an efficient and accurate grading method for
surrounding rock that is fully suitable for the geological
characteristics of a high ground stress tunnel has not yet been
formed. Therefore, based on a tunnel under construction, this paper
selects the classification index of the surrounding rock, which can
accurately reflect the geological characteristics of a high ground
stress tunnel around the geological environment characteristics of
the surrounding rock of high ground stress tunnel. Based on the
rapid classification method of surrounding rock of the BP neural
network, the classification method of surrounding rock suitable for
high ground stress tunnel is constructed, and the tunnel engineering
data is introduced into the BP neural network classification method
of surrounding rock for training and testing. It is found that the
classification results of surrounding rock obtained by the
classification method of surrounding rock of high ground stress
tunnel are in good agreement with the actual situation, which
provides an important guarantee for the accurate and rapid
determination of the surrounding rock grade of high ground
stress tunnel and the safe and efficient construction of the tunnel.

2 Geological features of the plateau
tunnel

The cold region railway under construction in China is affected
by geological conditions such as topography and landform, passing
through several mountains above 3,000 m above sea level, with a
bridge-tunnel ratio of 94.76, of which ultra-long deep-buried tunnels
account for 62.6% of the length of the main line, which is a typical
plateau tunnel (Peng et al., 2020; Tian S. M. et al., 2021; Xie et al.,
2022). At present, many scholars have studied the geological
characteristics of plateau endowment along the cold region
railway; for example, Hong Kairong (Hong, 2020) believes that in
ultra-long deep-buried tunnels, high geostress, and rock bursts have
natural advantages. Academician Peng Jianbing proposed that the
railway in the cold region is facing strong geological tectonic
movement, the tectonic stress is very prominent, and the rock
burst formed by high ground stress and excavation disturbance
seriously affects the safety of tunnel construction and operation.
Academician Xie Heping (Hong, 2020; Xie et al., 2022) believes that
the surrounding rock of deep buried tunnels is widely present in
high geostress and complex coupled geological environments, which
derives the problem of rock burst with a more complex breeding
mechanism, and it is urgent to explore the surrounding rock grading
method that meets the geological environment such as high ground
stress and includes efficient determination of rock burst. Therefore,
based on the two plateau geological characteristics of high ground
stress and rock burst, this paper explores the surrounding rock
classification system suitable for plateau tunnels.

2.1 High ground stress

In the plateau tunnel, the high geostress factor of the rockmass is
an important factor affecting the stability of the surrounding rock.
The excessive stress of the surrounding rock may cause problems
such as collapse and rock burst, which seriously affects the safety of
the project (Xue et al., 2019; Yan et al., 2020). During the tunnel
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excavation, the stress environment of the rock mass will change, and
the initial stress of the rock mass will show a dynamic equilibrium
state with time. When this equilibrium reaches its limit, the rock
mass will become unstable (Duan et al., 2017; Tian et al., 2022).
Therefore, it is of great significance to accurately classify the in-situ
stress level and make a reasonable support plan for construction and
operation safety. At present, the widely used in-situ stress grading
method in China comes from the Code for Geological Investigation
of Hydroelectric Power Engineering (GB 50287–2016), which
divides the in-situ stress into four grades according to Table 1.

2.2 Rock burst

When underground engineering excavation is carried out in the
rock mass with high geostress, the excavation and unloading action
will cause a high concentration of the stress of the surrounding rock,
and the elastic strain energy will accumulate in the rock mass when
the stress stored in the surrounding rock exceeds its bearing
capacity, the elastic strain energy is released instantaneously, and
the surrounding rock is deformed and damaged, and the crushed
rock is thrown down, which poses a great threat to construction
safety (Gu et al., 2002; Tian Q. F. et al., 2021). However, the creation
of a rockburst has two necessary conditions (Shang et al., 2013).

(1) Lithologic conditions

Generally, in the brittle rock mass, the higher the strain energy
accumulated by the rock mass, the greater the possibility of rock
bursting. The lithological conditions can be judged by the uniaxial
compressive test of the rock block, and the judgment formula is
shown in Eq. 1.

n � Vε1

Vε2
(1)

Formula: Vε1 represents the strain energy accumulated before
the rock mass fails; Vε2 represents the strain energy consumed after
the rock block has failed.

(2) Stress conditions

There are two ways to determine the stress conditions that
produce rock bursts. First, the ratio of the maximum circumferential
stress of the chamber rock wall to the uniaxial compressive strength
of the rock mass is determined. The second is determined by the
ratio of the maximum principal stress of the rock mass in the natural
state to the uniaxial compressive strength of the rock mass (Liang

and ZHAO, 2022). Dolchaninov of the former Soviet Union
investigated the rock burst situation at the local Xiping mine and
came up with the identification method, as shown in Table 2 (Guo
and Liu, 2018). In the table, σθ represents the maximum
circumferential stress of the chamber; σc indicates the uniaxial
compressive strength of the rock.

In China, according to the statistics of a large number of
underground chamber engineering cases, it is found that when
the stress of the rock mass meets Eq. 2, rock bursts will occur.
And formed a corresponding rock burst classification table (Xu et al.,
2002) (Table 3).

σ1 ≥ 0.15 ~ 0.2( )σc (2)
where σ1 represents the maximum principal stress; σc indicates the
uniaxial compressive strength of the rock.

3 Integrated surrounding rock grading
system suitable for plateau tunnels

3.1 Hierarchical division

Based on the above geological characteristics of high geostress
and rockburst in plateau tunnels, the factors affecting the grade of
surrounding rock are divided into basic factors and additional
factors, and an integrated rapid grading system of surrounding
rock is formed. The classification index of basic factors was taken
from the RMR method and BQ method, and the in-situ stress and
rock burst were selected as the classification indicators of additional
factors, which mainly reflected the geological characteristics of the
plateau tunnel occurrence environment. The hierarchical division of
plateau tunnels according to this method is shown in Table 4.

3.2 Parameter selection

The parameter selection of the integrated surrounding rock
grading method of plateau tunnel should reflect the accuracy of
surrounding rock classification and the unique geological
characteristics of the plateau tunnel. Based on the study of
various grading methods and the attributes of plateau tunnels,
seven grading parameters were finally selected: RQD, rock mass
strength parameters, rock mass integrity coefficient, joint direction,
groundwater seepage, in-situ stress, and rock burst. Among them,
the rock mass quality index RQD, rock mass strength parameters,
rock mass integrity coefficient, joint direction, and groundwater
seepage mainly refer to the RMR grading method and BQ

TABLE 1 In-situ stress classification table.

The stress classification Maximum principal stress σmax/MPa Strength stress ratio of surrounding rock S0

Extremely stressful σmax>40 <2

High stress 20≤σmax<40 2–4

Moderate stress 10≤σmax<20 4–7

Low stress σmax<10 >7

Note: S0=Rb/σmax, Rb is the rock saturation uniaxial compressive strength(MPa).
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classification method. The in-situ stress and rock burst parameters
mainly refer to the Code for Geological Investigation of
Hydroelectric Power Engineering (GB 50287–2016) and the rock
burst grade classification table based on China’s engineering
experience.

Among all parameters, RQD, rock integrity coefficient (Kv),
groundwater seepage, in-situ stress, and rock burst are directly
calculated under their corresponding standards, and the rock
integrity coefficient (Kv) is calculated according to Eq. 3.
Groundwater seepage takes water inflow per 10m long tunnel;
The in-situ stress takes the maximum principal stress σ1 of the
surrounding rock; The ratio of the maximum circumferential stress
σθ of the rock burst chamber to the uniaxial compressive strength σc
of the rock. The strength and joint direction of the complete rock
were obtained according to the RMR method.

(1) Rock mass strength parameters

The compressive strength of rock is one of the basic mechanical
properties, which has an important influence on the classification and
quality of rock. For a long time, the uniaxial compressive strength of
rocks has been used as a rock classification standard to evaluate rock
quality and stability. In addition, the point load test can also be used to
determine the uniaxial strength of the rock, and the point load test has
low requirements for the production of the rock. This is a fast, cost-
effective and effective on-site method for determining rock strength,
which has been widely used in rock mass grading, and can calculate
the strength of rock block point loads according to the
“Recommended Method for Determining Point Load Strength”
revised by the International Society of Rock Mechanics in 1985.
Table 5 shows the correspondence between the point load strength

index of rock mass strength parameters and the uniaxial compressive
strength of rock in the RMR surrounding rock grading method. Due
to the low strength of the tunnel rock mass, the uniaxial compressive
strength is selected as the input value of the rock mass strength.

(2) Rock mass integrity coefficient

The integrity of the rock mass mainly refers to the degree of
cutting of the rock mass by the structural surface, the size of the unit
block, and the bonding state between the blocks. Therefore, the
integrity of the rock mass is related to the geometric characteristics
and properties of the structural surface, that is, it is determined by
the density, number of groups, production elongation, opening,
roughness, undulation, filling situation, and filling properties of the
structural surface. The rock integrity coefficient can reflect the
structural characteristics of the rock mass. In the surrounding
rock grading method, the rock mass integrity coefficient is one of
the important parameters commonly used in the surrounding rock
grading. In engineering construction, the integrity coefficient of rock
mass is relatively easy to obtain and can be expressed by the square
of the ratio of the longitudinal wave velocity of the rock mass to the
longitudinal wave velocity of the rock block (Eq. 3). In addition, the
joint number Jv per unit volume of rock mass can also be used to
reflect the integrity of rock mass.

Kv � Vpm

Vpr
( )2

(3)

Formula: Kv is the rock mass integrity coefficient; Vpm is the
longitudinal wave velocity of the rock mass; Vpr is the longitudinal
wave velocity of the rock block.

TABLE 2 Table of circumferential stress criteria for Turchaninov rock burst.

Discriminant σθ≤0.3σc 0.3σc<σθ≤0.5σc 0.5σc<σθ≤0.8σc 0.8<σθ
Rock burst features No rock burst Probably a rock burst Appearance of rock shots and flaking Rock bursts and violent rock shots appear

TABLE 3 Rockburst classification table.

Rating by 0.3≤σθ/σc≤0.5 0.5≤σθ/σc≤0.7 0.7≤σθ/σc≤0.9 σθ/σc>0.9

Rockburst level Slight rockburst Medium rockburst Strong rock burst Violent rockburst

TABLE 4 Classification of surrounding rock of plateau tunnel.

Class a factor Class B factor Class C factor

A1 Fundamental factors B1 Rock quality factors C1 Rock mass quality index RQD

C2 Rock mass strength parameters

B2 Structural surface factors C3 Joint direction

C4 Rock mass integrity factor

B4 Groundwater factors C5 Groundwater seepage flow

A2 Additional factors B5 Highland environmental factors C6 In-situ stress

C7 Rock burst
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According to the different values of the rock mass integrity
coefficient, the surrounding rock can be divided into five grades, as
shown in Table 6.

(3) Joint direction

In the surrounding rock grading method of the tunnel, the
strike of structural surface joints and the direction of the tunnel
axis are also the factors affecting the surrounding rock grade.
This influencing factor is covered in commonly used grading
methods. According to the evaluation relationship between the
joint trend of the structural surface and the axis direction of the
tunnel, the values of the joint direction parameters are
determined according to Table 7 after referring to the RMR
grading method.

(4) Groundwater seepage

The development of groundwater reflects the environmental
status of rock mass accumulation because groundwater can soften
the surrounding rock, erode the filling of the surrounding rock
structure, reduce the supporting effect of the surrounding rock, etc.,
so groundwater is regarded as one of the main factors affecting the
stability of the surrounding rock. The groundwater seepage input
parameters are entered as a numerical value of the inflow of water
per 10 m long tunnel, as shown in Table 8.

(5) In-situ stress

In-situ stress is the stress present inside the earth’s crust. In-situ
stress is mainly composed of two parts, one is the gravity caused by
the weight of the upper rock, and the other is the tectonic stress
transmitted by the surrounding massif. During the excavation of the
tunnel, not only the self-weight stress of the surrounding rock will
change, but also the tectonic stress. Compared with low altitudes, the
surrounding rock of the plateau tunnel has a higher in-situ stress
distribution and even has the risk of rock burst, which has a huge
impact on the safety of rock mass. Therefore, it is necessary to take
the in-situ stress factor into account for the surrounding rock
classification of the plateau tunnel. To ensure the convenience
and rapidity of classification, the maximum principal stress σ1 of
the surrounding rock is taken as one of the classification parameters
of the surrounding rock. The parameter inputs for the stress are
shown in Table 9.

(6) Rock burst

During the excavation of the plateau tunnel, due to the high in-
situ stress in the rock mass, the strain energy accumulated by the
surrounding rock mass may be released suddenly and violently,
resulting in the destruction of the surrounding rock like an
explosion. Severe rock bursts can damage tunnels, damage
machinery and equipment, and even cause casualties. In the

TABLE 5 Rock mass strength parameters by RMR grading method.

Point load strength index >10 4–10 2–4 1–2 Uniaxial compressive
strength is used for low-

strength rocks

Intact rock strength (MPa) Uniaxial compressive strength >250 100–250 50–100 25–50 5–25 1–5 <1

Rating Value 15 12 7 4 2 1 0

TABLE 6 Table of rock mass integrity coefficients.

Jv(strip/m2) <3 3–10 10–20 20–35 >35

Kv >0.75 0.75–0.55 0.55–0.35 0.35–0.15 <0.15

Degree of completeness complete More complete More broken broken Extremely broken

TABLE 7 Table of section direction parameters.

Joints are trending or tendencies Very advantageous Advantageous General Unfavorable Very unfavorable

Input parameters 15 10 7 4 0

TABLE 8 Groundwater conditions classification table (RMR).

Classification parameters Range of values

Groundwater conditions Water inflows per 10m long tunnel(L/min) 0 <10 10–25 25–125 >125

Joint water pressure/maximum principal stress 0 <0.1 0.1–0.2 0.2–0.5 >0.5

General Conditions Completely dry Slightly damp moist Seepage Rush of water
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plateau area, the occurrence of rock bursts has an important impact
on the stability of the surrounding rock and the way the supporting
structure is supported. Therefore, this paper takes the risk of rock
burst as one of the influencing parameters of the surrounding rock
grade of the plateau tunnel. To make the parameters be recognized
by the BP neural network system, the comprehensive evaluation
results of rock bursts are converted into dimensionless values
between 0 and 1, as shown in Table 10.

4 Construction of surrounding rock
classification method based on BP
neural network

The area where the plateau tunnel is located has complex
engineering geological conditions, and there is often a nonlinear
mathematical relationship between the parameters affecting the
surrounding rock grade. In the stage of exploration and design,
due to the limitation of exploration funds and the level of
exploration personnel, the classification results of surrounding
rock are not accurate enough. In engineering practice, the grade
of surrounding rock is generally determined by experienced
exploration personnel. With the development of artificial
intelligence, neural network technology has gradually
improved. The constructed neural network does not need to
assume the influence relationship between the parameters. After
multiple iterations, the nonlinear relationship between the input
vector and the output vector can be accurately mapped. It is
reliable to use the neural network to determine the surrounding
rock grade. In this chapter, BP neural network is used to establish
a surrounding rock classification system suitable for plateau
tunnels.

4.1 BP neural network model construction
and layer number determination

The design of BP network mainly includes the input layer,
hidden layer, output layer and transfer function between layers.
Most general neural networks predetermine the number of layers of
the network, and the BP network can contain different hidden
layers. However, it has been proved theoretically that the two-layer
BP network can achieve any nonlinear mapping without limiting the
number of hidden layer nodes. In the case of relatively few pattern
samples, fewer hidden layer nodes can realize the hyperplane
division of pattern sample space. This BP neural network

training uses a number of single-layer network layers. The
structure model of the neural network is shown in Figure 1.

In Figure 1, X is the input layer vector, and the input vector
is\mathrm{X} = (x1, x2, x3, . . ., xn); W is the hidden layer vector, and
the hidden layer vector is\mathrm{W} = (w1, w2, . . ., wm)T; Y is the
output layer vector, and the output vector is \mathrm{Y} = (y1, y2,
. . ., ym)T. The connection weight matrix from the input layer to the
hidden layer node is represented by wij, and the connection weight
from the hidden layer to the output layer node is represented by wjk.
In the network model of Figure 1, the output vector of the hidden
layer is shown in Eq. 4, and the output vector of the output layer is
shown in Eq. 5:

xj � f ∑n
i�1
wij · xi + θj⎛⎝ ⎞⎠ (4)

yk � f ∑q
j�1
wjk · xj + θk⎛⎝ ⎞⎠ (5)

In the formula: xi is the input value of the input layer i node; i =
1,2 , . . ., n; xj is the output value of the hidden layer j node; j = 1,2,
. . . , l; yk is the output value of k nodes in the output layer; k = 1,2, . . .,
m; wij is the connection weight between the input layer and the
hidden layer nodes; wjk is the connection weight between the hidden
layer and the output layer nodes; θj is the threshold of hidden layer
nodes; θk is the threshold of the output layer node.

4.1.1 The number of nodes in the input layer
The input layer acts as a buffer memory, which receives

external input data, so the number of nodes depends on the

TABLE 9 Stress parameter input table.

Stress input parameters(MPa) σ1<10 10≤σ1<20 20≤σ1<40 σ1>40

In-situ stress rating Low stress Moderate stress High stress Extremely stressful

TABLE 10 Rockburst parameter input table.

Rockburst input parameters <0.3 0.3–0.5 0.5–0.7 0.7–0.9 >0.9

Rockburst grading No rock burst Slight rockburst Medium rockburst Strong rock burst Violent rock burst

FIGURE 1
Neural network structure model diagram.
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dimension of the input vector. Through the analysis of the
influencing factors of the stability of the surrounding rock of
the tunnel, combined with the engineering data, seven
influencing factors of rock mass quality index RQD, rock
uniaxial saturated compressive strength, rock mass integrity
index, joint direction, groundwater seepage flow, ground stress
and rock burst are selected as the input nodes of the network.

4.1.2 The number of nodes in the output layer
The number of nodes in the output layer depends on two

aspects, the output data type and the data size required to
represent the type. When the BP network is used for pattern
classification, the output results of different patterns are
represented in binary form, and the number of nodes in the
output layer can be determined according to the pattern to be
classified. If the total number of patterns to be classified is m, there
are two methods to determine the number of nodes in the output
layer.

1) The number of nodes is the total number of patterns to be
classified m. At this time, the output of the jth pattern to be classified
is (Eq. 6):

Oj � 00 · · · 010 · · · 00[ ]
j

(6)

That is, the jth node output is 1, and the rest of the output is 0.
The rejection is represented by the output of all 0, that is, the input
pattern does not belong to any of the patterns to be classified.

2) The number of nodes is logm2 . The output of this method is the
binary encoding of m output modes. According to the existing
research data, the tunnel surrounding rock is divided into five
grades. The output layer takes five neurons corresponding to five
grades of surrounding rock classification (I, II, III, IV and V). Type I
surrounding rock is represented by (1,0,0,0,0), type II surrounding
rock is represented by (0,1,0,0,0), type III surrounding rock is
represented by (0,0,1,0,0), type IV surrounding rock is
represented by (0,0,0,1,0), and type V surrounding rock is
represented by (0,0,0,0,1).

4.1.3 Number of hidden layer nodes
A two-layer BP network with infinite hidden layer nodes can

realize any nonlinear mapping from input to output. However, for
the mapping from finite input mode to output mode, there is no
need for infinite hidden layer nodes, which involves the problem of
how to select the number of hidden layer nodes. The complexity of
this problem makes it difficult to find a good analytical formula so
far. The number of hidden layer nodes is often determined
according to the experience of predecessors and their
experiments. It is generally believed that the number of hidden
layer nodes is directly related to the requirements of solving the
problem and the number of input/output units. In addition, too
many hidden layer nodes will lead to too long learning time, while
too few hidden layer nodes, poor fault tolerance, and low ability to
identify unlearned samples, so many factors must be integrated into
design.

Hao Zhe and Liu Bin gave the approximate range of the optimal
number of hidden layer nodes and optimized the selection according
to the system error within this range to obtain the most suitable

number of hidden layer nodes. The reference formula for
determining the number of hidden layer nodes is (Eqs 7–9):

n1 �
									
n +m + C

√
(7)

n1 ≥ log2n (8)
n1 ≥ k/ m + n( ) (9)

In the formula: n1 is the number of hidden layer nodes; k is the
number of samples; n is the number of input nodes; m is the number
of output nodes; C is constant 1–10.

The value of the number of hidden layer nodes between 4 and
13 is appropriate. To accurately determine the number of nodes in
the hidden layer, this paper uses the trial and error method to
observe the working performance of the neural network, and finally
determines that the value of the neural network is 11.

4.2 Training programs and samples

4.2.1 Training program
BP neural network is divided into two parts: training and

testing. In the training process, the neural network calculates the
output of the input learning samples according to the set initial
conditions. The weights and thresholds of the network are
corrected by the error between the predicted value and the
true value. The neural network improves the connection
strength between each neuron by continuous learning, and the
error between the expected value of the data and the training
value of the data will gradually decrease. In the test process, given
a new input value of the neural network, the neural network
calculates a new classification result.

After the BP neural network of surrounding rock classification
of the plateau tunnel is created, the model is trained by using the data
in Table 14 until the relative error is less than the set value. The
specific operation process is as follows.

(1) Import the data samples to be trained into the BP neural
network;

(2) Let the network group the samples and randomly generate a
certain proportion of training samples and test samples;

(3) Calculate the output of each neuron node in the hidden layer
and the output layer;

(4) Calculate the error between the expected output of the data and
the actual output of the network;

(5) Adjust the connection weights of the output layer and the
hidden layer in the order from the high level to the low level;

(6) Repeat the process of (3)-(5) until the error meets the
requirements.

4.2.2 Training samples
The training samples of the BP neural network are obtained

from the tunnel site survey data and test data. For some missing
data, the rock mass environment of the surrounding measuring
points is supplemented according to the principle of analogy
method. A total of 30 sets of typical data are selected as the
training of neural networks. The specific data are shown in
Table 11.
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4.3 Analysis of training results

The trained neural network has been repeatedly verified and tested.
When the number of hidden layers in the network is 11, the network
performs best. The 30 groups of samples were divided into three parts:
training set, the validation set, and test set. The training set accounted
for 70% of the total sample, that is, 20 groups; validation set accounted
for 15% of all samples, namely, 5 groups; the test set accounted for 15%
of all samples, namely, 5 groups.

The training method adopts the conjugate gradient method. The
comparison between the prediction results of the surrounding rock
grade of the network training and the actual results is shown in
Figure 2. As shown in Figure 3, the network has gone through
20 iterations. When the network is iterated to the 14th time, the
verification error reaches the minimum value of 0.06, which is less
than 10–1, and the training error of the network is small enough.
The network error histogram is shown in Figure 4. It can be seen
from the figure that the error is normally distributed. Most of the

TABLE 11 Neural network training sample data table.

Sample serial
number

Input parameters Desired
output

RQD Rock compressive
strength

Integrity
index

Joint
direction

Groundwater Ground
stress

Rock burst
parameters

1 20 39 0.7 7 15 27 0.65 4

2 34 23 0.43 7 11 29 0.43 5

3 23 4 0.51 10 12 22 0.30 5

4 12 47 0.22 5 18 69 0.38 5

5 38 54 0.57 7 23 34 0.69 4

6 41 81 0.36 5 21 10 0.67 4

7 41 52 0.35 5 10 26 0.37 4

8 18 28 0.32 5 64 28 0.45 5

9 16 47 0.48 7 20 38 0.76 5

10 42 86 0.37 7 11 41 0.51 5

11 39 12 0.75 7 53 34 0.62 5

12 34 84 0.63 10 0 36 0.34 3

13 26 15 0.27 7 24 23 0.56 5

14 27 15 0.51 10 59 36 0.67 5

15 43 6 0.42 5 0 12 0.85 4

16 19 28 0.65 3 10 40 0.93 5

17 11 15 0.31 5 6 28 0.32 5

18 29 32 0.67 7 19 26 0.48 4

29 13 47 0.36 5 76 59 0.49 5

20 21 14 0.44 5 15 15 0.45 5

21 44 45 0.39 3 11 30 0.84 5

22 28 7 0.66 5 65 26 0.47 5

23 12 42 0.65 7 58 54 0.32 5

24 10 27 0.73 5 24 65 0.49 5

25 46 40 0.71 10 18 34 0.69 4

26 36 51 0.6 5 23 21 0.48 4

27 48 35 0.48 5 0 35 0.41 4

28 24 28 0.7 5 18 22 0.66 5

29 30 10 0.51 5 74 11 0.44 5

30 57 36 0.51 10 9 29 0.43 3
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data differences are concentrated around the zero error line. There
are 25 samples with training errors less than 0.25, and there are
5 training samples with errors less than 0.55. The maximum error of
the training sample is 0.54.

Figure 5 shows the correlation between the regression R-value
measurement output and the target. The R-value of 1 indicates that
the target value has a good correlation with the output value, and the
R-value of 0 indicates that the target value does not correlate with the
output value. It can be seen from the figure that the correlation
R-value of the training samples is 0.97, the correlation R-value of the
validation set samples is 0.93, the correlation R-value of the test set
samples is 0.74, and the correlation R value of all samples is 0.89.

5 Engineering applications

Applying the plateau tunnel surrounding rock classification
system, the actual surrounding rock classification application was
carried out on the actual tunnel pile number K300-3K279 section.
The comparison results between the tunnel surrounding rock
classification and the commonly used surrounding rock
classification methods are shown in Table 12. According to the
data of Table 12, it can be found that among the 12 samples, there are
6 grade IV surrounding rocks and 6 grade V surrounding rocks
determined by the plateau tunnel surrounding rock classification

FIGURE 2
Comparison of network training results.

FIGURE 3
Training times.

FIGURE 4
Network error histogram.

FIGURE 5
Network performance correlation diagram.

Frontiers in Earth Science frontiersin.org09

Shuguang et al. 10.3389/feart.2023.1283520

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1283520


system; there are 1 grade III surrounding rock, 7 grade IV
surrounding rock and 4 grade V surrounding rock determined by
BQ method. Through the application of the Kangding No.2 tunnel
project, it is found that the surrounding rock classification results
obtained by the plateau tunnel surrounding rock classification
system are in good agreement with the actual site. Due to the
particularity of plateau tunnels, the construction often adopts
conservative support methods, and the surrounding rock
classification results obtained by the BQ method cannot meet the
requirements of engineering support.

6 Conclusion

In this paper, the applicability of common surrounding rock
classification methods is evaluated based on the geological
characteristics of plateau tunnels. Based on this, a rapid
classification method of surrounding rock based on the BP
neural network is constructed. Then, the engineering data of a
plateau tunnel are introduced into the BP neural network
surrounding the rock classification system for training and
testing. The main conclusions are as follows:

When carrying out the surrounding rock classification work in the
plateau tunnel environment, the commonly used surrounding rock
classification methods have the following problems: The evaluation
index of the RQD surrounding rock quality classification method is
single; There is a deviation between the surrounding rock grade
determined by the coefficient correction method in the BQ method
and the actual surrounding rock grade, and the classification result is
sensitive to the uniaxial compressive strength of the rock, and the rock
burst problem in the high stress area is not fully considered. The RMR
method does not consider the in-situ stress of rock mass and the
potential rock burst problem. The Q system method has strong
subjectivity and a single evaluation index for in-situ stress.

Combined with the characteristics of plateau tunnels, seven
classification parameters are proposed: rock mass quality index
RQD, rock mass strength parameters, rock mass integrity
coefficient, joint direction, groundwater seepage, in-situ stress,
and rock burst parameters as the classification indexes of plateau
tunnel surrounding rock.

The rapid classification method of surrounding rock based on the
BP neural network is constructed by taking seven parameters of rock
mass quality index RQD, uniaxial saturated compressive strength of
rock, rock mass integrity index, joint direction, groundwater seepage
flow, ground stress, and rock burst as input nodes of the network. The
actual engineering case of a tunnel is introduced into the hierarchical
model as a training sample. The overall correlation of the trained
network model reaches 89, and the network performance is good.
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