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Previous studies demonstrated that seismic attenuation and anisotropy can
significantly affect the kinematic and dynamic characteristics of wavefields. If
these effects are not incorporated into seismic migration, the resolution of the
imaging results will be reduced. Considering the anisotropy of velocity and
attenuation, we derive a new pure-viscoacoustic wave equation to simulate P
wave propagation in transversely isotropic (TI) attenuating media by combining
the complex dispersion relation andmodified complexmodulus. Compared to the
conventional complex modulus, the modified modulus is derived from the
optimized relationship between angular frequency and wavenumber, which
can improve the modeling accuracy in strongly attenuating media. Wavefield
comparisons illustrate that our pure-viscoacoustic wave equation can simulate
stable P wavefields in complex geological structures without S-wave artifacts and
generate similar P wave information to the pseudo-viscoacoustic wave equation.
During the implementation, we introduce two low-rank decompositions to
approximate the real and imaginary parts and then use the pseudo-spectral
method to solve this new equation. Since the proposed equation can simulate
decoupled amplitude attenuation and phase dispersion effects, it is used to
perform Q-compensated reverse-time migration (Q-RTM). Numerical
examples demonstrate the accuracy and robustness of the proposed method
for pure-viscoacoustic wavefield simulations and migration imaging in
transversely isotropic attenuating media.
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1 Introduction

Attenuation and anisotropy are fundamental properties of the Earth. They usually have a
profound influence on wave propagation and reverse-time migration (RTM). Generally, the
attenuation-induced amplitude reduction and phase variation can cause poor illumination
and reflector position shifts in migrated images (Zhu et al., 2014; Sun and Zhu, 2018; Yang
and Zhu, 2018; Xing and Zhu, 2019; Yang et al., 2021). The velocity anisotropy can
significantly change the travel time, resulting in unfocused migration energy and
reduced imaging resolution. In addition, seismic attenuation is also anisotropic, which is
usually caused by the directional alignment of fluid-filled fractures (Hosten et al., 1987;
Chichinina et al., 2009; Carcione et al., 2012) or the texture of sedimentary rocks (Zhu et al.,
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2007; Zeng et al., 2021). Therefore, it is essential to develop an
accurate wave equation to simulate these effects in seismic modeling
and imaging.

The most significant effect of seismic attenuation on wave
propagation is amplitude reduction and phase distortion
(Futterman, 1962; Kjartansson, 1979; Aki and Richards, 2002;
Carcione, 2014). Based on the constant-Q assumption
(Kjartansson, 1979), many studies have focused on describing
these characteristics in wave propagations (Carcione et al., 1988;
Zhu and Harris, 2014; Chen et al., 2016; Hao and Greenhalgh, 2021;
Mu et al., 2021; Wang et al., 2022; Zhang et al., 2023). According to
the linear viscoelastic theory, the stress-strain relationship is
described by a fractional time derivative (Carcione et al., 2002;
Zhu, 2017; Qiao et al., 2019). However, solving the fractional time
derivative requires storing a lot of previous wavefields, which is a big
challenge in practice. To solve this issue, Zhu and Harris (2014)
converted the fractional time derivative to the fractional Laplacian
and derived a new viscoacoustic wave equation. This new equation
can compensate for energy loss and correct phase dispersion by
keeping the sign of its dispersion term unchanged and reversing the
sign of its amplitude term (Zhu et al., 2014; Sun and Zhu, 2018).
Therefore, it is very useful for attenuation-compensated RTM
(Q-RTM).

Although many Q-RTM applications are implemented to
improve the resolution of seismic imaging (Zhu et al., 2014; Li
et al., 2016; Wang et al., 2018; Wang et al., 2019; Chen et al., 2020),
however, most of these implementations ignore the anisotropy of
seismic velocity and attenuation, which will inevitably harm the
imaging results. Recently, some anisotropic viscoacoustic and
viscoelastic wave equations have been derived to simulate the
effect of attenuation and anisotropy on wavefield propagations
(Bai and Tsvankin, 2016; Da Silva et al., 2019; Hao and
Alkhalifah, 2019; Qiao et al., 2019; Qiao et al., 2020; Zhu and
Bai, 2019; Zhang et al., 2020). Considering the significant
computational cost and the complexity of wave-mode
decomposition in viscoelastic wavefield propagation, the
viscoacoustic wave equation is probably a better choice for
anisotropic Q-RTM (Mu et al., 2022; Qiao et al., 2022).

On the other hand, the viscoacoustic wave equation derived by
Zhu and Harris (2014) using fractional Laplacian has relatively low
accuracy in strongly attenuating media due to the approximation
ω ≈ kv0 in the derivation. To improve the accuracy, Zhang et al.
(2022) optimized the relationship between angular frequency and
wavenumber and derived a modified complex modulus. In this
study, we incorporate the anisotropy of velocity and attenuation into
the expression and derive a new pure-viscoacoustic (pure visco-P-
wave) wave equation by combining the complex dispersion
relationship and modified complex modulus. Compared with the
pseudo-viscoacoustic wave equation, the pure-viscoacoustic wave
equation can simulate stable P-wavefields in complex geological
structures without S-wave artifacts. Based on the proposed equation,
we further implement pure-viscoacoustic Q-RTM to generate high-
resolution migration images. We also investigate the influence of the
anisotropy on Q-RTM.

The rest of this paper is organized as follows. First, we derive
a new pure-viscoacoustic wave equation with modified complex
moduli in both vertical (VTI) and tilted transversely isotropic
(TTI) attenuating media. Then, the anisotropic Q-RTM

workflow is built based on this new equation. Next, we
validate the accuracy and robustness of the proposed method
for pure-viscoacoustic wavefield simulations and migration
imaging in complex anisotropic attenuating media. Finally,
conclusions are drawn from these numerical analyses and
experiment results.

2 Materials and methods

Since the acoustic wave equation can accurately simulate the
kinematic characteristic of the P wave with a relatively small
computational cost, it has been widely used in anisotropic RTM.
Based on the constant-Qmodel, a pure-viscoacoustic wave equation
with modified complex moduli is derived by setting the S-wave
velocity along the symmetry axis to zero (Alkhalifah, 2000) and
factorizing the dispersion relationships of P- and SV-waves (Liu
et al., 2009).

2.1 The VTI pure-viscoacoustic wave
equation

In VTI attenuating media, the generalized relationship between
stress σ̂ ij and strain ε̂ij in the frequency domain has the following
form

σ̂11
σ̂22
σ̂33
σ̂23
σ̂13
σ̂12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

D11 D12 D13 0 0 0
D12 D11 D13 0 0 0
D13 D13 D33 0 0 0
0 0 0 D55 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ε̂11
ε̂22
ε̂33
2ε̂23
2ε̂13
2ε̂12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where Dij is the complex modulus, which can be written as follows
(Kjartansson, 1979; Carcione et al., 2002)

Dij � Cijcos
2 πγij/2( ) iω/ω0( )2γij , (2)

where Cij is an elastic stiffness coefficient, γij � π−1 arctan(Q−1
ij ) is a

dimensionless parameter related to the quality factor Qij, i �
���−1√

is
the imaginary unit,ω andω0 are the angular frequency and reference
angular frequency, respectively. In two-dimensional (2D) VTI
attenuating media, Cij and Qij can be characterized by Thomsen
anisotropy parameters ε, δ (Thomsen, 1986) and Q-dependent
anisotropy parameters εQ, δQ (Zhu and Tsvankin, 2006; Hao and
Alkhalifah, 2017a; Hao and Alkhalifah, 2017b; Hao and Tsvankin,
2023), which are defined by

ε � C11 − C33

2C33
, δ � C13 + C55( )2 − C33 − C55( )2

2C33 C33 − C55( ) , (3)

TABLE 1 Homogeneousmodel parameters for viscoacoustic wave propagation.
Note that the reference velocity and quality factor are 2,400 m/s and 30,
respectively, defined at the reference frequency of 1 Hz (i.e., ω0 � 2π rad/s).

Model ε δ εQ δQ φ(+)
Model 1 0.25 0.20 0.35 0.25 0

Model 2 0.25 0.20 0.35 0.25 45
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εQ � Q33 − Q11

Q11
, δQ �

Q33 − Q55

Q55
C55

C13 + C33( )2
C33 − C55( ) + 2

Q33 − Q13

Q13
C13 C13 + C55( )

C33 C33 − C55( ) .

(4)

In a homogeneous viscoelastic model, the square of the P-wave
complex velocity can be written as (Zhu and Tsvankin, 2006)

V2 θ( ) � D11sin
2 θ +D33cos

2 θ +D55 + E θ( )[ ]/ 2ρ( ), (5)

with

E θ( ) �
���������������������������������
D11 −D55( )sin 2 θ − D33 −D55( )cos 2 θ[ ]2

+4 D13 +D55( )2sin 2 θcos 2 θ

√
, (6)

where θ is the phase angle, and ρ is the density. Setting the S-wave
velocity along the symmetry axis to zero (i.e., D55 � 0) and
multiplying k2 (k is the wavenumber) on both sides of Eq. 5 yields

FIGURE 1
Wavefield snapshots at 0.45 s computed in Model 1. (A, B) are computed by the pseudo-acoustic and pseudo-viscoacoustic wave equations. (C, E)
are computed by the conventional and our new pure-viscoacoustic wave equations. (D, F) are the differences between (B, C), and (B, E), respectively. The
artifacts in the blue-line box are excluded in PRE calculations.
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ω2 � D11k
2
x +D33k

2
z( ) + ����������������������������������

D11k2x +D33k2z( )2 + 4 D2
13 −D11D33( )k2xk2z√[ ]

×/ 2ρ( ),
(7)

where kx � k sin θ and kz � k cos θ are the wavenumbers along the x
and z directions. Approximating the root-mean-square operator
with the first-order Taylor-series expansion in Eq. 7, we obtain

ρω2 ≈ D11k
2
x +D33k

2
z( ) + D2

13 −D11D33( )k2xk2z
D11k2x +D33k2z( ) . (8)

Taking assumptions of D13 ≈ D33

�����
1 + 2δ

√
and D11k2x +

D33k2z ≈ D33k2 on the third term of Eq. 8, we have (Qiao et al., 2022)

ρω2 ≈ D11k
2
x +D33k

2
z( ) + D13

�����
1 + 2δ

√ −D11( )k2xk2z
k2

. (9)

FIGURE 2
Wavefield snapshots at 0.45 s computed in Model 2. (A, B) are computed by the pseudo-acoustic and pseudo-viscoacoustic wave equations. (C, E)
are computed by the conventional and our new pure-viscoacoustic wave equations. (D, F) are the differences between (B, C), and (B, E), respectively. The
artifacts in the blue-line box are excluded in PRE calculations.

Frontiers in Earth Science frontiersin.org04

Zhang and Chen 10.3389/feart.2023.1290154

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1290154


Based on the approximation ω ≈ kv0, the complex modulus can
be reformulated by (Zhu and Harris, 2014)

Dij ≈ Cijcos
2 πγij/2( )

× cos πγij( ) kvij/ω0( )2γij + iω( ) sin πγij( ) kvij/ω0( )2γij−1ω−1
0[ ],
(10)

where vij � ����
Cij/ρ
√

. It is worth noting that the approximation ω ≈ kv0
has low accuracy in strongly attenuating media (Zhu and Harris, 2014).
To improve the accuracy, Zhang et al. (2022) optimized the relationship
between angular frequency and complex wavenumber with ω �
[kv0 cos(πγ/2)ω−γ

0 (i)γ]1/(1−γ) and derived the modified complex
modulus (see Supplementary Appendix SA)

Dij ω( ) � Cijcos
2 πγij/2( )

×
cos

πγij
1 − γij

kvij
ω0

cos
πγij
2

( )[ ] 2γij
1−γij

+ iω( )
ω0

sin
πγij
1 − γij

kvij
ω0

cos
πγij
2

( )[ ] 2γij−1
1−γij

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭. (11)

The real and imaginary parts in Eqs. 10, 11 represent the velocity
dispersion and amplitude dissipation, respectively. Expressing the

complex modulus (Eq. 11) with Dij � Rij + (iω)Iij and substituting
it into Eq. 9, we have

ρω2 ≈ R11k
2
x + R33k

2
z +

R13

�����
1 + 2δ

√ − R11( )k2xk2z
k2

[ ]
+ iω( ) I11k

2
x + I33k

2
z +

I13
�����
1 + 2δ

√ − I11( )k2xk2z
k2

[ ]. (12)

2.2 The TTI pure-viscoacoustic wave
equation

To derive the pure-viscoacoustic wave equation in TTI media, we
rotate the observation coordinate system to the physical coordinate
system, and their wavenumber relation can be expressed as follows (for
the 2D case)

~kx � kz sinφ + kx cosφ, ~kz � kz cosφ − kx sinφ, (13)
where φ is the dip angle, kx and kz are the wavenumbers in the
observation coordinate system, ~kx and ~kz are the rotated wavenumbers
in the physical coordinate system. Substituting kx and kz in Eq. 12 with
~kx and ~kz yields

FIGURE 3
Viscoacoustic wavefield snapshots at 0.45 s computed in VTI (A, B) and TTI (C, D) homogeneous models. (A, C) are computed by the acoustic,
dispersion-dominated, attenuation-dominated, and viscoacoustic wave equations. (B, D) are computed by the pure-viscoacoustic wave equation with
Q = 200, 80, 30, and 15, respectively.
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ρω2 ≈
R11 kz sinφ + kx cosφ( )2 + R33 kz cosφ − kx sinφ( )2

+ R13

�����
1 + 2δ

√ − R11( ) kz sinφ + kx cosφ( )2 kz cosφ − kx sinφ( )2
k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ iω( )

I11 kz sinφ + kx cosφ( )2 + I33 kz cosφ − kx sinφ( )2
+ I13

�����
1 + 2δ

√ − I11( ) kz sinφ + kx cosφ( )2 kz cosφ − kx sinφ( )2
k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(14)

2.3 Numerical implementation

Since the modified complex modulus (Eq. 11) in attenuating
media contains several mixed-domain operators (k2γ/(1−γ), and
k(2γ−1)/(1−γ)), it is difficult to directly solve the pure-viscoacoustic
wave equation using the finite-difference or pseudo-spectral
methods. To solve this issue, Zhang et al. (2022) introduced a
truncated Taylor-series expansion to separate the operators into
the wavenumber and space domains

k
2γ
1−γ ≈∑N

n�0

2γ
1 − γ
( )n

ln k( )[ ]n
n!

, k> 0( ), (15)

k
2γ−1
1−γ � k−1k

γ
1−γ ≈∑N

n�0

γ

1 − γ
( )n

ln k( )[ ]nk−1
n!

, k> 0( ). (16)

According to Eqs. 15–16, solving a mixed-domain operator
requires N times inverse Fourier transforms. Therefore, the
computational cost of Eq. 14 is a big challenge in practice.
Here, we introduce two low-rank decompositions to
approximate the real and imaginary parts on the right-hand
side of Eq. 14. Based on the low-rank decomposition, we have
(Fomel et al., 2013)

MRe x, k( ) ≈ W1 x, kM( )aMNW2 xN, k( ), (17)
MIm x, k( ) ≈ ~W1 x, kM( )~aMN

~W2 xN, k( ), (18)
where MRe(x, k) and MIm(x, k) correspond to the square brackets
on the right-hand side of Eq. 14,W1(x, kM) and ~W1(x, kM) are the
wavenumber-related submatrices,W2(xN, k) and ~W2(xN, k) are the
location-related submatrices, aMN and ~aMN are the coefficient

FIGURE 4
Trace comparisons computed in VTI (A, B) and TTI (C, D) homogeneous models. (A, C) are computed by the acoustic, dispersion-dominated,
attenuation-dominated, and viscoacoustic wave equations. (B, D) are computed by the pure-viscoacoustic wave equation withQ = 200, 80, 30, and 15,
respectively. Note that all traces are extracted at x = 1,000 m from seismic records.

FIGURE 5
The two-layer model.
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matrices. Assuming the density ρ = 1 and transforming Eq. 14 back
to the time-space domain yields

∂2P
∂t2

≈ − ∑M
m�1

W1 x, km( ) ∑N
n�1

amnF −1 W2 xn, k( )F P( )[ ]⎧⎨⎩ ⎫⎬⎭
− ∂
∂t
∑M
m�1

~W1 x, km( ) ∑N
n�1

~amnF −1 ~W2 xn, k( )F P( )[ ]⎧⎨⎩ ⎫⎬⎭,

(19)

where P is the wavefield in the time-space domain. The first- and
second-order time derivatives are calculated by the following finite-
difference approximations

∂P x, t( )
∂t

≈
P x, t( ) − P x, t − Δt( )

Δt , (20)

∂2P x, t( )
∂t2

≈
P x, t + Δt( ) − 2P x, t( ) + P x, t − Δt( )

Δt( )2 , (21)

where Δt is the time step.

2.4 Anisotropic Q-RTM workflow

Since the proposed pure-viscoacoustic wave equation can
simulate the amplitude attenuation and phase dispersion
independently, we can effectively correct for energy loss
and phase distortion by reversing the sign of its attenuation
term and keeping the sign of its dispersion term
unchanged during wave propagation. The compensated

FIGURE 6
Viscoacoustic wavefield snapshots and extracted traces computed in the two-layer model. (A, B) are computed by the VTI and TTI pseudo-
viscoacoustic wave equations. (C) is computed by the TTI pure-viscoacoustic wave equation. (D) is the difference between (B, C). (E, F) are extracted from
(B, C) at x = 700 and 2,340 m, respectively. The artifacts in the blue-line box of (D) are excluded in PRE calculations.
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pure-viscoacoustic wave equation can be written as (from
Eq. 19)

∂2P
∂t2

� −∑M
m�1

W1 x, km( ) ∑N
n�1

amnF −1 W2 xn, k( )F P( )[ ]⎧⎨⎩ ⎫⎬⎭
+ ∂
∂t
∑M
m�1

~W1 x, km( ) ∑N
n�1

~amnF −1 ~W2 xn, k( )F P( )[ ]⎧⎨⎩ ⎫⎬⎭.

(22)

The anisotropic Q-RTMworkflowmainly includes the following
three steps (Zhu et al., 2014):

(1) Forward propagating the source wavefield Ps(x, t) from the
source fS using the compensated wave equation

∂2Ps

∂t2
� −∑M

m�1
W1 x, km( ) ∑N

n�1
amnF −1 W2 xn, k( )F Ps( )[ ]⎧⎨⎩ ⎫⎬⎭

+ ∂
∂t
∑M
m�1

~W1 x, km( ) ∑N
n�1

~amnF −1 ~W2 xn, k( )F Ps( )[ ]⎧⎨⎩ ⎫⎬⎭ + fS.

(23)

(2) Backward propagating the receiver wavefield Pr(x, t) from the
recorded data fR using the compensated wave equation

∂2Pr

∂t2
� −∑M

m�1
W1 x, km( ) ∑N

n�1
amnF −1 W2 xn, k( )F Pr( )[ ]⎧⎨⎩ ⎫⎬⎭

+ ∂
∂t
∑M
m�1

~W1 x, km( ) ∑N
n�1

~amnF −1 ~W2 xn, k( )F Pr( )[ ]⎧⎨⎩ ⎫⎬⎭ + fR.

(24)

(3) Applying the cross-correlation imaging condition to forward
and backward wavefields

I x( ) �∑
t

Ps x, t( )Pr x, t( ). (25)

3 Numerical examples

In this section, we show several numerical examples to
validate the accuracy of the proposed method for simulating
pure-viscoacoustic wavefields in VTI and TTI attenuating
media. We also implement the pseudo-viscoacoustic
(Supplementary Appendix SB) wavefield simulation for
comparisons. The anisotropic Q-RTM is performed in the
modified BP gas chimney TTI model. A percentage relative

FIGURE 7
The modified BP gas chimney TTI model. (A) v0. (B) Q. (C) ε. (D) δ. (E) φ. (B–E) are built by Eqs. 27, 28, respectively. Note that the Q-dependent
anisotropy parameters εQ � 2ε and δQ � 2.5δ are not shown here.
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FIGURE 8
Wavefield snapshots at 1.3 s for themodified BP gas chimneymodel. (A, B) are computed by the VTI and TTI pure-viscoacoustic wave equations. (C)
is the waveform comparison between (A, B). The source is located at (2,376 m, 12 m).

FIGURE 9
RTM images for the modified BP gas chimney model. (A, B) are computed by acoustic RTM using lossless and lossy data, respectively. (C, D) are the
Q-RTM results computed by the VTI and TTI pure-viscoacoustic wave equations. A low-pass filter with a cutoff frequency of 120 Hz is used to suppress
high-frequency noise.
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error (PRE) between the reference and approximated solutions
is defined as follows

PRE �∑S
i�1

xri − xai( )2/∑S
i�1
x2
ri × 100%, (26)

where S is the total grid number of the model, xr and xa are the
reference and approximated solutions, respectively.

3.1 Wavefield simulation in homogeneous
models

The first example is a homogeneousmodel, with a grid size of 301 ×
301 and a spatial interval of 10 m. Themodel parameters are defined by

Models 1 and 2 in Table 1. The simulation duration and time step are
1.0 s and 1.0 ms, respectively. A Ricker wavelet with a peak frequency of
25 Hz is placed at the center of themodel to generate seismic vibrations.
The reference frequency is 1 Hz. Figure 1 shows several wavefield
snapshots at 0.45 s computed by the pseudo-acoustic (Duveneck et al.,
2008), pseudo-viscoacoustic (see Supplementary Appendix SB),
conventional pure-viscoacoustic wave equation (Figure 1C), and new
pure-viscoacoustic wave equation (Figure 1E) in a VTI homogeneous
model. Compared with Figures 1A, B shows significant attenuation on
wavefield amplitude. Meanwhile, there are some S-wave artifacts
around the source in Figures 1A, B. However, they are effectively
mitigated by using the pure-viscoacoustic wave equations in Figures 1C,
E. Figure 1D shows the wavefield difference between Figures 1B, C, F

FIGURE 10
Trace comparisons (A, B) extracted from RTM images and their spectra (C, D).
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shows the wavefield difference between Figures 1B, E. The PRE of
Figure 1F is 0.56%, which is much smaller than the conventional
wavefield difference in Figure 1D (1.77%). The wavefield comparisons
computed in the TTI homogeneous model (Figure 2) also give us a
similar conclusion.

We also use the VTI (Model 1) and TTI (Model 2) homogeneous
models to perform pure-viscoacoustic modeling with the decoupled
forms. Figure 3 shows the corresponding wavefield snapshots
computed in VTI and TTI attenuating media. In Figures 3A, C,
each panel contains four wavefield snapshots, computed by the
acoustic, dispersion-dominated, attenuation-dominated, and pure-
viscoacoustic wave equations, respectively. Compared to the
acoustic wavefield, the dispersion-dominated wavefield has a
similar amplitude, but the phase is advancing. In contrast, the
attenuation-dominated wavefield has significant attenuation on
amplitude, while the traveltime is consistent with the acoustic
result. Since the pure-viscoacoustic wave equation contains the
amplitude attenuation and phase dispersion, both effects can be
observed in the bottom-right corners of Figures 3A, C. Furthermore,
we investigate the influence of different quality factors (Q = 200, 80,
30, and 15) on pure-viscoacoustic wave propagations. According to
Figures 3B, D, more significant amplitude attenuation and phase
distortion occur as quality factor Q decreases. A similar conclusion
can be drawn from the extracted traces in Figure 4.

3.2 Wavefield simulation in a two-layer
model

The second example is a two-layer model (Figure 5). The first
layer is a VTI medium, and the second layer is a TTI medium with a

dip angle of 30°. The computational area is divided into 301 ×
301 grids with a spatial interval of 10 m. The simulation duration
and time step are 1.0 s and 1.0 ms, respectively. A Ricker wavelet
with a peak frequency of 25 Hz is placed at (1,500 m, 1,200 m) to
generate seismic vibrations. The reference frequency is 1 Hz.
Figure 6 shows several wavefield snapshots at 0.5 s computed by
the pseudo- (Figure 6B) and pure-viscoacoustic (Figure 6C) wave
equations, respectively. In Figure 6B, some S-wave artifacts can be
observed around the source (black arrow). Also, there are some
converted S-wave artifacts (red arrow) in the figure, which are
caused by the dip angle variations and may lead to numerical
instability (white arrow). If there are no dip angle variations, the
converted S-wave will disappear (Figure 6A). In contrast, the
pure-viscoacoustic wave equation can fundamentally eliminate
S-wave artifacts and improve simulation stability (Figure 6C).
Figure 6D shows the wavefield difference between Figures 6B, C.
The PRE of Figure 6D is as small as 2.32%. Meanwhile, Figures
6E, F show several trace comparisons extracted from Figures 6B,
C at distances of 700 and 2,340 m. Both curves show a high level
of agreement.

3.3 Anisotropic Q-RTM in the modified BP
gas chimney model

Finally, we use the modified BP gas chimney model (Figure 7) to
perform anisotropic Q-RTM and examine the performance of the
proposed method in anisotropic attenuating media. The model is
divided into 398 × 181 grids with a spacing of 12 m in both
directions. The simulation duration and time step are 3.0 s and
1 ms, respectively. The Ricker source with a peak frequency of 20 Hz

FIGURE 11
Pure-viscoacoustic Q-RTM profiles for the modified BP gas chimney model. (A) is computed with the anisotropic quality factor and velocity. (B) is
computed with the isotropic quality factor. (C) is computed with the isotropic velocity. (D) is computed with the isotropic quality factor and velocity.
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is used to generate seismic vibrations. The reference frequency is
100 Hz. There are 67 shots evenly distributed at a depth of 12 mwith
an interval of 72 m in the horizontal direction. All wavefields are
recorded by 398 receivers at the same depth as seismic sources
during wavefield extrapolations. The anisotropic parameter and dip
angle models are built using the following relations

ε � v0 − 2000| |
1000

× 0.1 + 0.03, δ � v0 − 2000| |
1000

× 0.06 + 0.05, (27)
εQ � 2ε, δQ � 2.5δ, φ � 60ε + 66.7δ. (28)

Figure 8 shows several wavefield snapshots of the 34th shot
computed by the VTI and TTI pure-viscoacoustic wave equations,
respectively. We can see that the proposed pure-viscoacoustic wave
equation can simulate stable P-wave characteristics in complex
anisotropic attenuating media. Compared with Figures 8A, B,
some conspicuous differences can be observed between the
wavefields computed by the VTI and TTI equations.

Based on the anisotropic Q-RTM workflow, we further use the
modified BP gas chimney model to perform Q-RTM experiments.
During the wavefield compensation, a low-pass filter with a cutoff

FIGURE 12
The 34th shot data for the BP gas chimney model. (A, B) are noisy data with SNR = 10 and 5 dB, respectively. (C) and (D) are the trace comparisons
extracted at x = 1,560 m.
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frequency of 120 Hz is used to suppress high-frequency noise.
Figure 9 shows several migrated images calculated by the
anisotropic pure-acoustic (Figures 9A, B) and pure-
viscoacoustic (Figures 9C, D) wave equations, respectively.
Compared with the reference solution obtained by the acoustic
RTM with lossless data, the acoustic RTM result using lossy data
has obvious energy loss and resolution reduction, especially below
the high-attenuation gas chimney. In contrast, the reflector
amplitudes are well recovered in Figures 9C, D due to the
compensated ability of the Q-RTM. Furthermore, trace
comparisons (Figure 10) extracted from Figure 9 also give us a
similar conclusion.

3.4 The influence of anisotropy on Q-RTM
and noisy data tests

We further use the modified BP gas chimney TTI model to
investigate the influence of anisotropy on Q-RTM results. The
parameters in numerical experiments include four groups:
anisotropic quality factor and velocity (Figure 11A), isotropic
quality factor (Figure 11B), isotropic velocity (Figure 11C), and
isotropic quality factor and velocity (Figure 11D). Ignoring the
anisotropy of the quality factor in Figure 11B reduces the
resolution of the migrated image, especially in some strongly
attenuating areas (see the blue box). However, ignoring the
anisotropy of velocity in Figure 11C severely perturbs the
Q-RTM results, causing many wavefields to converge incorrectly.
Therefore, it has great meaning to develop an accurate pure-
viscoacoustic wave equation for wave propagation and migration
in anisotropic attenuating media.

To evaluate the fidelity and anti-noise ability of the proposed
method, we perform anisotropic Q-RTM tests with noisy data,
obtained by adding Gaussian random noise with SNR = 10 and
5 dB. Figure 12 shows noisy data from the 34th shot. A low-pass
filter with cutoff frequencies of 90 and 80 Hz is applied to suppress
compensation instability. Overall, the migrated profiles in
Figure 13 have very high resolution and the reflector
amplitudes are well recovered although some weak noise can be
observed. Compared with the Q-RTM result using clean data
(Figure 9D), the energy of the migrated profiles in Figure 13 is

partly reduced due to the low cutoff frequencies in the low-pass
filtering.

4 Conclusion

We derived a new pure-viscoacoustic wave equation by
combining the complex dispersion relation and modified
complex modulus in anisotropic attenuating media. Compared
with the pseudo-viscoacoustic wave equation, the proposed pure-
viscoacoustic equation can simulate stable P-wave characteristics in
complex geological structures without S-wave artifacts. Since this
new equation can simulate the decoupled amplitude attenuation and
phase dispersion, we further use it to perform Q-RTMs and generate
high-resolution images. Numerical experiments demonstrate the
accuracy and robustness of the proposed method for pure-
viscoacoustic wavefield simulations and migration imaging in
transversely isotropic attenuating media.
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