
Estimation method of earthwork
excavation using shield tunneling
data -- a case study of Chengdu
Metro

Yuxin Cao1, Haohan Xiao2*, Maozhou He3, Liao Fan2 and
Quanbin Xu3

1Power China Railway Construction Investment Group Co., Ltd, Beijing, China, 2Key Laboratory of
Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Re-Sources and
Hydropower Research, Beijing, China, 3Power China Southern Construction Investment Group Co., Ltd,
Shenzhen, China

The occurrence of over-excavation or under-excavation in tunnel construction
poses significant safety risks. Moreover, there is currently no automatic estimation
method available for real-time estimation of earthwork excavation, particularly in
the case of shield tunnels. In this study, we tracked the excavation process of
Chengdu Metro Line 19, acquired tunneling parameters and earthwork excavation
data using various sensors, and subsequently proposed an automatic estimation
method that combines Bayesian optimization (BO) and gradient boosting
regression tree (GBRT) algorithm. The results of our case study indicate that
the BO-GBRT model improves the performance of earthwork excavation
estimation, reducing the residual after each calculation with a root mean
square error (RMSE) of 1.712 and mean absolute error (MAE) of 1.331.
Furthermore, compared to other machine learning methods, the proposed
BO-GBRT model demonstrates superior estimation performance. Additionally,
the importance distribution of input parameters reveals that propulsion pressure,
foam pressure, and rotation speed are themost critical factors affecting earthwork
excavation. Overall, the proposed automatic estimation method shows great
promise as a tool for efficiently estimating earthwork excavation in shield
tunnel construction.
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1 Introduction

Urban railway systems have been rapidly developed to mitigate the increasingly serious
traffic problem in developing countries (Zhang et al., 2020; Qin et al., 2022). Most of the
metro tunnels are constructed using shield machines because these machines save in labor,
allow for high-quality construction, and generate small disturbance (Yan et al., 2021). During
the shield tunnel construction, the amount of earthwork excavation determines the degree of
disturbance to the surrounding stratum (Lu et al., 2015; Koopialipoor et al., 2019a).
Exceeding the designated range of earthwork excavation, either through over-excavation
or under-excavation, can have detrimental effects such as damage to nearby structures or
surface deformations (Song et al., 2019). These consequences subsequently lead to increased
construction costs, slower progress rates, and higher post-construction maintenance
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expenses (Verma et al., 2018; Foderà et al., 2020). Unlike the drill-
and-blast method, the shield tunneling technique occupies a
significant portion of the tunnel face, making direct measurement
of tunnel over-excavation and under-excavation challenging (Jian
et al., 2022). Given these circumstances, the development of an
automatic estimation method for accurately assessing the earthwork
excavation quantity in shield tunnels becomes crucial for safe
construction.

At the construction site, some engineers have attempted to
monitor the earthwork excavation amount of shield machine by
arranging equipment. Dong et al. (2018) monitors real-time
dynamic information of the muck discharge by installing a belt
weighing device in the shield machine. Gong et al. (2021) proposed a
real-time muck analysis system for assistant intelligence TBM
tunneling, which can measure the mass and volume flow of the
muck by installing a belt scale and a scanner to monitor the stability
of the rock mass on the tunnel face. In fact, construction workers
often adopt the hook scale metering system to calculate the
earthwork excavation amount. Some achievements have been
made in in-site monitoring of engineering, but there are still
some limitations, such as the serious lag effect of weighing
outside the tunnel and the measurement accuracy of the belt
scale is easily affected by belt tension and soil viscosity factors.
Moreover, in-site monitoring methods can only serve as a reference
after construction and cannot timely remind machine operators
whether there is over-excavation or under-excavation. The amount
of earthwork excavation for each ring still depends on the subjective
experience of the machine operator.

Recently, the machine learning (ML) methods have attracted
much attention because it can mine the inherent laws behind the
data by relying on good autonomous learning and analysis ability
(Huang et al., 2021). Various ML methods have been developed and
applied to tunnel construction, such as tunneling parameters
optimization (Afradi et al., 2019; Gao et al., 2021; Kong et al.,
2022; Song and Xia, 2022), shield attitude forecast (Wang et al.,
2019; Zhou et al., 2019; Xiao et al., 2021; Xiao et al., 2022a; Huang
et al., 2022), and stratigraphic identification (Zhao et al., 2019; Liu
et al., 2020; Yang et al., 2022). For more comprehensive details, one
may refer to the relevant review papers by Song et al. (2023) and Li
et al. (2023). Especially in the field of drill-and-blast method
excavation, some scholars have attempted to use ML methods to
predict and discriminate the over-excavation and under-excavation.
For example, Lu et al. (2015) used fisher discrimination analysis,
conjugate gradient, and support vector machine (SVM) methods to
predict and discriminate tunnel overbreak. Koopialipoor et al.
(2019b), Koopialipoor et al. (2019c) adopted a variety of neural
network technologies for over-excavation prediction, and
demonstrated that their developed models can predict earthwork
excavation with high degree of accuracy. From above analysis, ML
methods have achieved good results in tunnel automation
construction, which provides technical support for this study to
establish an automatic estimation method for shield tunnel
earthwork excavation amount using the ML methods and
massive operation data.

The primary contribution of this study lies in the pioneering
application of ML methods in the domain of shield tunneling
excavation estimation. By establishing a correlation between
excavation parameters and earthwork amount, the findings can

offer valuable insights for optimizing shield machine parameters
and ensuring safe tunnel construction. Specifically, leveraging a
substantial dataset of shield excavation and earthwork excavation
records from Chengdu Metro Line 19, we propose an ML-based
automatic estimation method for earthwork amount. This approach
combines Bayesian optimization (BO) with the gradient boosting
regression tree (GBRT) algorithm. Additionally, three ML models
are utilized to compare and analyze the accuracy of earthwork
excavation estimation. Moreover, the significance of input
parameters is assessed to determine the influence of excavation-
related factors on earthwork amount estimation.

2 Methodologies

2.1 Implementation framework

Based on in-situ tunneling data, combined with MLmethod and
feedback control strategies, automatic estimation method for
earthwork excavation can be implemented. This will be superior
to machine operators setting tunnel parameters solely based on
subjective experience. The whole automatic estimation process can
be divided into four steps, as shown in Figure 1.

Step 1: By tracking the in-site tunneling process, collect the shield
tunnel earthwork excavation data and EPB tunneling data, and
ultimately form a database for estimating earthwork excavation
amount.

Step 2: Establish an earthwork excavation estimation model based
on ML algorithm, and estimate earthwork excavation information
when the machine operator provides preset parameters.

Step 3: Use the estimation model to estimate the earthwork
excavation amount to assist shield tunneling. When the design
requirements are not met, the machine operator will intervene in
real-time to control the earthquake excavation; When the design
requirements are met, tunneling according to the preset parameters.

Step 4: Accompanied by excavation, obtain the tunneling data and
earthwork excavation information again, update the database, and
then repeat steps 2 and 3.

The foundation of the implementation framework is to obtain
in-site tunneling data, and the core of the implementation
framework is to establish an estimation model based on ML
algorithm. In the following content, we will provide a detailed
introduction to the ML model used.

2.2 Estimation model

In existing ML algorithms, gradient boosting method can fully
consider the weight of each learner with the characteristics of high
accuracy and stable estimation results (Jiang et al., 2022).
Therefore, we adopt the gradient boosting regression tree
algorithm as the basic training algorithm for the evaluation
model, and on this basis, we propose a Bayesian optimization
estimation model (BO-GBRT).
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2.2.1 GBRT algorithm
GBRT is an iterative decision tree-based regression algorithm

based on boosting strategy (Friedman, 2001). Its basic idea is: first, the
decision tree is used as the basic learner, and the residual of the
previous round of learners (the gradient value of the loss function) is
adopted to train the current round of learners. Then, the weights of
the training set are updated, and then iterate continuously until the
expected residual or the set maximum number of iterations are
reached. Finally, these trained learners are integrated into a robust
learner. GBRT algorithm is widely adopted in various scenarios for its
strong interpretation, fast estimation speed, and the ability to combine
multiple influencing factors freely (Wu et al., 2021; Zhang et al., 2022).

Given the training dataset D = {(x1, y1), (x2, y2), . . ., (xm, ym)}
and loss function L (x, f(x)), the process of establishing GBRTmodel
is as follows (Zhang et al., 2022):

Step 1: Initialize the first weak learner with the training set:

f0 x( ) � argmin
c

∑n
i�1
L yi, c( ) (1)

Step 2: For m = 1, 2, . . .,M, generateM regression trees iteratively:

1) For i =1, 2, . . ., N, calculate the negative gradient of the loss
function of the mth regression tree and regard it as the estimate
of the residual:

rmi� − ∂L yi, fm−1 xi( )( )
∂fm−1 xi( ) (2)

2) Build a regression tree to fit rmi and generate the leaf node region
of the mth regression tree Rmj (j=1, 2,. . ., Jm), where J is the
number of leaf nodes of the mth regression tree.

3) For j=1, 2, . . ., Jm, calculate the best fit value for each leaf node:

cmj � argmin ∑
xi∈Rmj

L yi, fm−1 xi( ) + c( ) (3)

where yi is the observed value of sample xi of the jth leaf node;
fm−1(xi) is the estimation value of sample xi of the jth leaf node on
the previous regression tree; cmj is the minimum error between yi
and fm−1(xi) of the jth leaf node.

FIGURE 1
Implementation framework of automatic estimation method for earthwork excavation.
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4) Update the current round model as:

fm x( ) � fm−1 x( ) +∑J
j�1
cmj I, x ∈ Rmj (4)

where I is a function. If the sample xi is on Rmj, I=1; otherwise, I=0.

Step 3: Iteration until the expected number of base learners is
reached, and the final strong learner is:

F x( ) � f0 x( ) + ∑M
m�1

∑J
j�1
cmj I, x ∈ Rmj (5)

GBRT supports many different loss functions for regression. In
this study, the loss function is squared error.

2.2.2 Bayesian optimization algorithm
BO is an iterative algorithm proposed by Snoek et al. (2012),

which is widely used in hyperparameter optimization issues. It
mainly includes two parts: surrogate model and acquisition
function (Cui and Yang, 2018). On the one hand, BO usually
adopts Gaussian process (GP) as the surrogate model of the
objective function modeling, for its flexibility and tractability. GP
is an extension of the multi-dimensional Gaussian distribution on
the infinite dimensional stochastic process, represented by the mean
and covariance functions. Theoretically, it can achieve countless
multi-layer neural network fitting (Gu et al., 2020). On the other
hand, choose appropriate acquisition function to match the
surrogate model is important in the practical hyperparameter

FIGURE 2
Modeling process of the BO-GBRT model.
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optimization problem. The common acquisition functions include
the probability of improvement (PI), expected improvement (EI),
and upper confidence bound (UCB). Among them, the UCB
function balances the mean and variance by weighting and is
selected as the acquisition function in this study, which is defined
as (Archetti and Candelieri, 2019):

UCB x( ) � μ x( ) + βσ x( ) (6)
where μ(x) and σ(x) are the mean and standard deviation predicted
by GP model, respectively; β is a constant, and β ≥0. Compared with
the traditional optimization algorithm, BO algorithm is frequently
employed in research papers due to its numerous advantages (Jones,
2001; Zhou et al., 2021). While newer optimization algorithms like

the Marine Predators Algorithm may offer specific advantages
(Faramarzi et al., 2020), the BO algorithm’s robustness,
efficiency, and versatility have ensured its ongoing popularity
since its proposal in 2012.

2.2.3 BO-GBRT model
Figure 2 shows the modeling process of the BO-GBRT model.

First, preprocess the data based on the characteristics of the
earthwork excavation dataset, including effective data extraction,
feature selection, and dataset segmentation. Then, the BO-GBRT
model is trained using the training dataset. In this stage, according to
the hyperparameters search range of the GBRT algorithm, the BO
algorithm works by defining a probabilistic model that estimates the

FIGURE 3
Study section of Chengdu Metro Line 19: (A) layout of the study area; (B) EPB shield machine; (C) completed shield tunnel.

FIGURE 4
Process of obtaining earthwork excavation amount data: (A) shield tunnel cinder box; (B) gantry crane; (C) control room; (D) paper record file.
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relationship between hyperparameters and model performance,
using an acquisition function to balance exploration and
exploitation. The objective function, which measures model
performance based on a chosen metric, is evaluated for a set of
hyperparameters, with the probabilistic model being updated
iteratively until the best set of hyperparameters is identified.
Then constantly update, iterate, and calculate to get a GP model
that closer to the true distribution of the objective function. When
the iteration reaches the maximum number, stop updating the
model and output the optimal hyperparameter combination
result. Finally, the BO-GBRT model of earthwork excavation
estimation with optimal hyperparameter combination is obtained.

3 Case study

3.1 Project description

The layout of the study area is shown in Figures 3A. The research
data was collected from Chengdu Metro Line 19, China. The study
section starts fromNewWharf Street Station and is laid along Ningbo
Road, passing through several roads, bridges, and residential areas,
finally arriving at Honglian Village South Station. The excavation
diameter of the tunnel is 8.64 m and the buried depth of the bottom
plate is 16.4~50 m and the buried depth of the top plate is 8~41.5 m.
The starting and ending mileages of the study section are 98732 and
100967, and the total excavation length is 2.235 km.

The two representative soil strata of the tunnel site are
moderately weathered mudstone and sandstone, and the
remaining upper overburden layers include miscellaneous fill,
silty clay, fine sand, pebble, and strongly weathered mudstone.
The excavation equipment of the section is the earth pressure
balance (EPB) shield machine, which recorded 530 tunneling
parameters at 1Hz acquisition frequency, such as advance rate,
cutterhead thrust, and rotation speed, providing a solid data basis
for establishing an estimation model.

3.2 Earthwork excavation data

There are multiple ground buildings within the research section,
and the disturbance generated during the EPB shield machine
construction will cause deformation or damage to the existing
buildings on the ground. Therefore, according to the safety control
requirements of the project, in-site engineers are particularly
concerned about the over-excavation and under-excavation
phenomenon, and recorded the earthwork excavation amount
through a high-precision hook scale metering (HSM) system. As
shown in Figures 4C, the high-precision HSM system is installed in
the control room of the gantry crane, paired with components such as
the cinder box (Figures 4A) and gantry crane (Figures 4B), and can
achieve a maximum weighing capacity of 60 t and an accuracy of
0.01 t. The engineer manually records the excavation amount of the
earthwork and keep it in the form of paper documents (Figures 4D).

FIGURE 5
Effective data extraction from massive shield tunneling data: (A) raw data for 1 day; (B) effective tunneling section; (C) tunneling section
corresponding to one cinder box.
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Through in-site tracking records, the author team recorded a
total of 409 sets of earthwork excavation data for cinder boxes, with
corresponding ring numbers ranging from 131 to 172, an average
value of 31.33 t, a maximum value of 37.04 t, and a minimum value
of 23.82 t. These data are adopted as target values for the BO-GBRT
model, and 530 tunneling parameters within the 131 to 172 ring
range are used as input values for the BO-GBRT model.

3.3 Tunneling data processing

Unlike manually recorded earthwork excavation data, EPB
tunneling data has obvious characteristics such as large data
volume, complex features, and low value density (Xiao et al.,
2022b). Therefore, this section mainly analyzes the preprocessing
of EPB tunneling data.

3.3.1 Effective data extraction
The shield machine is not advancing forward all the time in a

day, and there are many invalid tunneling data, as shown in Figures
5A. The first step of effective data extraction is to eliminate invalid
tunneling data and extract effective tunneling section. Effective
tunneling section refers to the complete rock boring process of
the shield machine, usually including free running, loading, boring,

and unloading. According to the excavation law of Chengdu Metro,
the rotation speed is taken as the judging feature of the effective
tunneling section. The rotation speed greater than zero is valid
tunneling, and less than or equal to zero is invalid tunneling.
Additionally, it is recommended to demolish the tunneling
section that has a length shorter than 0.1 m and a tunneling time
less than 60 s. It is often observed that the data distribution of
tunneling sections with limited lengths and durations lacks
orderliness, which poses challenges for subsequent data modeling
endeavors (Xue et al., 2019). Finally, we filter out the tunneling
sections shown in Figures 5B.

Further, it is necessary to screen out the tunneling data
matching with a single cinder box on the basis of effective
tunneling section. According to the in-site construction
arrangement, the machine operator will temporarily reduce the
rotation speed of the screw machine (Ns) to zero to suspend the
tunneling process. This time varies from 10 s to 20 s. Therefore,
based on the characteristic of Ns, the effective tunneling section is
further divided into single section corresponding to single cinder
box, and the representative result is shown in Figures 5C. Finally,
409 groups of tunneling data corresponding to the earthwork
excavation amount are screened, and the average tunneling time
and tunneling length of each cinder box are 180.8 s and 149.3 mm,
respectively.

FIGURE 6
PCC values of the input parameters for the earthwork excavation. (A) forty input parameters; (B) twenty input parameters.
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3.3.2 Feature selection
The core of realizing the earthwork excavation estimation is to

grasp the key tunneling parameters that directly affect the
earthwork excavation. Parameters surely unrelated to the
earthwork excavation, such as motor temperature and oxygen
content, will be excluded. During the construction of Chengdu

Metro, the propulsion system is the main tunneling force for the
earthwork excavation, and the cutterhead system is the main rotary
force for the earthwork excavation (Ates et al., 2014; Leng et al.,
2020). In addition, additives such as foam or bentonite are added to
increase the fluidity and water resistance of the muck during
excavation. Representative parameters include the advance rate,

TABLE 1 Statistical description of parameters in training set and test set.

Parameter Training set Test set

Ave Min Max Ave Min Max

Input DA 149.272 29.102 283.105 149.664 82.129 254.687

FM 1111.926 194.328 2096.737 1120.176 553.875 1894.535

BT 0.140 0.000 3.948 0.152 0.000 1.306

CS 0.963 0.000 2.896 0.983 0.000 2.436

PA 45.787 24.065 80.203 45.880 22.885 79.793

PB 63.306 30.512 118.484 62.828 30.055 114.093

PC 134.511 67.945 195.546 138.838 89.592 199.533

PD 60.716 19.624 115.833 60.293 28.177 105.802

PE 40.855 17.814 89.267 39.984 19.323 82.593

PF 41.960 12.683 80.601 41.316 9.618 69.461

n 1.839 1.652 1.961 1.850 1.647 1.951

v 49.159 21.336 61.293 48.747 33.037 61.733

F 16180.266 8029.066 20955.404 16324.108 12509.908 20429.242

T 5330.751 2311.774 7256.359 5242.915 3094.985 6584.125

t 180.183 37.000 314.000 183.420 107.000 267.000

FP2 2.033 1.474 2.820 2.051 1.566 2.554

BP1 0.289 0.000 0.957 0.281 0.000 0.708

BP2 0.343 0.000 1.427 0.368 0.000 1.314

BP3 0.014 0.000 0.612 0.017 0.000 0.322

SP4 1.178 0.249 2.503 1.212 0.426 2.349

Output Earthwork excavation amount 31.301 23.820 37.040 31.449 27.440 36.930

Note: Ave is average; Min is minimum; Max is maximum.

FIGURE 7
RMSE and MAE corresponding to different n_estimators: (A) training set; (B) test set.
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propulsion pressure, rotation speed, cutterhead torque, foam
pressure, bentonite pump outlet pressure, and central scouring
pressure, etc.

Therefore, in this study, thirty average values of advance rate (v),
cutterhead thrust (F), propulsion pressure (PA~PF), rotation speed
(n), cutterhead torque (T), foam pressure (FP1~FP12), bentonite
pump outlet pressure (BP1~BP3), and central scouring pressure
(SP1~SP5) are adopted as the input parameters of the model. Nine
reconstruction parameters (the difference between the first and end
of tunneling section), propulsion displacement (DA~DF), current
ring cumulative of foam mixture (FM), bentonite (BT), and
cutterhead spray (CS), are also adopted as the model inputs.
Moreover, the boring time (t) of a tunneling section is also

added as an input feature, which determines the boring length
and affects the amount of earthwork excavation.

Further, we checked the correlation of these forty input
parameters by Pearson correlation coefficient (PCC) method
(Benesty et al., 2009). As presented in Figures 6A, six groups of
propulsion displacement (DA~DF), twelve groups of foam pressure
(FP1~FP12), and five groups of central scouring pressure (SP1~SP5)
all have high correlations in the same attribute. In view of these
redundant parameters, each group only retains one set of parameters
that are highly correlated with earthwork excavation. Finally, a total
of twenty parameters are used for this analysis.

The ultimate datasets include 409 monitored earthwork
excavation amount points and 20 tunneling parameters,
recording the output and input parameters of each cinder box.
Figures 6B presented the correlations between earthwork excavation
amount and 20 tunneling parameters. It is found that the correlation
between input parameters and output parameters is weak, and the
absolute values of PCC are all less than 0.3. The parameter with the
smallest PCC is the current ring cumulative of cutterhead spray
(CS), which is only −0.008. The findings reveal that the earthwork
excavation weakly correlates to twenty input variables, and a simple
linear relationship between variables is not existed.

3.3.3 Dataset segmentation
In this study, 409 sets of earthwork excavation amount and the

corresponding shield tunneling parameters are adopted as the
datasets for BO-GBRT model. Datasets of similar scale have been
widely used in other previous scenarios, and the model application
effect is good (Mottahedi et al., 2018; Xue et al., 2019; Yin et al.,
2022). To develop intelligent model for predicting earthwork
excavation, the established database should be divided into
training and test datasets. According to Swingler (1996)
(Swingler, 1996), the best model developments and model
evaluations can be obtained using a combination of percentage
values of (80, 20). Therefore, 328 datasets (80% of the data)
randomly sampled from the database are used for model
development and the remaining 81 datasets (20% of the data) are
adopted for model evaluation. Table 1 presented the statistical
description of parameters in training set and test set.

3.4 Implementation of the model

The datasets of this study contain a variety of parameters with
different dimensions. If the normalization process is not carried out
before entering the model, the estimation accuracy of the model will
be vulnerable affected by the singular data. Therefore, the
standardization method expressed in Eq. 7 is applied to the input
dataset to eliminate the impact of different characteristics scales.

�x � x − u

σ
(7)

where �x is the normalized input features; x is the original features; u
is the mean; σ is the standard deviation. In the result analysis stage,
the standardized features are reconverted to the original features.

The important link in the estimation model establishment
process is to select the optimal hyperparameter combination
through the BO algorithm. The parameters involved in GBRT

TABLE 2 Hyperparameters selections of BO-GBRT model.

Index Parameters Search range Optimal value

1 n_estimators 2~2000 438

2 learning rate 0.001~1 0.18

3 min_samples_split 2~20 9.78

4 max_features 1~6 3.62

5 max_depth 2~10 4.43

TABLE 3 Hyperparameters selections of three ML model.

Model Search range Optimal value

BO-SVM C (0.01, 200) C = 35.14

epsilon (0, 10) epsilon = 1.08

BO-AdaBoost n_estimators (2, 2000) n_estimators = 100

learning_rate (0.001, 1) learning_rate = 0.32

BO-RF n_estimators (2, 2000) n_estimators = 60

min_samples_split (2, 20) min_samples_split = 3.53

max_features (1, 6) max_features = 5.47

max_depth (2, 10) max_depth = 9.01

TABLE 4 Comparison of performance indicators of different models.

Model Dataset Indicators Train time/s

RMSE MAE R2

BO-GBRT Training set 0.003 0.002 1.000 26.720

Test set 1.712 1.331 0.387 \

BO-SVM Training set 1.749 1.515 0.487 15.870

Test set 1.907 1.598 0.239 \

BO-AdaBoost Training set 1.646 1.408 0.546 51.758

Test set 1.921 1.576 0.227 \

BO-RF Training set 1.012 0.829 0.546 33.596

Test set 1.781 1.442 0.227 \
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algorithm mainly include n_estimators, learning rate, min_
samples_split, max_features, and max_depth. These parameters
determine the accuracy and training time of the estimation
model. Taking parameter n_estimators as an example, Figure 7
shows the changes in root mean square error (RMSE) and mean
absolute error (MAE) of the model under different n_estimators
numbers in the training and test sets. The RMSE andMAE values of
the training set decrease dramatically with the increasing number of
n_estimators, and the errors are almost equal to zero when the
number of n_estimators exceed 1000 (Figure 7A). Moreover, for the
low number of n_estimators, the RMSE and MAE values of the test
set decline with the increase in the number of n_estimators
(Figure 7B), which refers to the mitigation of underfitting. When
the decision tree exceeds 300, the RMSE and MAE values tend to
saturate (Figure 7B). According to the development laws of RMSE
and MAE, it can find the best n_estimators is within the range of
300~1000. Finally, the optimal depth value solved by the BO
algorithm is 438. Similarly, other hyperparameters selections of
BO-GBRT model are listed in Table 2.

4 Results and discussion

In this section, we compare the estimation results of SVM,
Adaptive boosting (AdaBoost), and Random forest (RF) algorithms
with the BO-GBRT model. To ensure a good comparison between
the models, these three model hyperparameters are also optimized
using the BO algorithm, and the optimal hyperparameters for each

model are shown in Table 3. We choose the MAE, RMSE, and
residual error (Re) as the evaluation indicators of the four ML
models. The calculation formulas of the three indicators are as
follows:

RMSE �
�������������
1
n
∑n
i�1

yi − yi
∧( )2

√
(8)

MAE � 1
n
∑n
i�1

yi − yi
∧

∣∣∣∣∣∣ ∣∣∣∣∣∣ (9)

Re � yi − yi
∧

(10)

R2� 1−
∑n
i�1

yi − yi
∧( )2

∑n
i�1

yi− yi( )2 (11)

where yi is the measured earthwork excavation amount; yi
∧

is the
estimated earthwork excavation amount; yi is the average
earthwork excavation amount; n is the number of datasets. RMSE
and MAE are the two most widely used evaluation indicators of
regression model. The smaller their values, the higher the estimation
accuracy of the model. The residuals error is treated as the error
between model estimation value and the measured value, and the
smaller the absolute value of the Re, the higher the model accuracy.

These ML models are implemented using the Scikit-learn
toolbox in Python 3.7. The entire test process is trained and
optimized on a computer equipped with a Windows 64-bit
operating system, Intel Core i7-7700k 4.20 GHz 8-core CPU with
32 GB RAM.

FIGURE 8
Measured and estimated earthwork excavation amount: (A) BO-GBRT; (B) BO-SVM; (C) BO-AdaBoost; (D) BO-RF.
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4.1 Estimation results

Table 4 list the estimation results of the four models in terms of
RMSE,MAE, and R2. The results indicate that the BO-GBRT model
outperformed the other three models in terms of earthwork
excavation volume, achieving the smallest values for both RMSE
andMAE as well as higher R2 values, both in the training and testing
sets. Additionally, the BO-GBRT model has fully learned the data
characteristics of the training set, the RMSE and MAE values are
close to zero. The RMSE and MAE values of the test set are also the
smallest, 1.712 and 1.331, respectively. Concurrently, considering
the training time, it illustrates the superiority of the BO-GBRT
model in predicting the scenarios of earthwork excavation amount,
which can meet the requirements of real-time estimation of projects.

Figure 8 illustrates the results of measured and estimated
earthwork excavation amount by BO optimization models.
Regarding the test set, the BO-GBRT model virtually better
captures the evolution of the earthwork excavation amount. Re

appear to be randomly distributed around zero. Figure 9
represents the distribution curves of the measured and estimated
earthwork excavation amount. The estimation values of the BO-
GBRTmodel are most similar to themeasured earthwork excavation
amount distribution curve, and the estimated range basically covers
the actual scope (i.e., 28~36 t). Figure 10 shows the comparison of
the measured and estimated earthwork excavation amount. It can be
seen that the estimated and measured earthwork excavation amount
of the four models are basically distributed around the 1:1 line.

The anticipated results show that the estimation effect of the
four Bayesian optimized models is similar and all have good
estimation effect. However, considering the evaluation
indicators of RMSE, MAE, Re, and the distribution curves of the
measured and estimated values, the proposed BO-GBRT model
can better estimate the earthwork excavation amount during shield
tunnel excavation.

4.2 Parameters importance

In order to evaluate the impact of input features on earthwork
excavation amount, this section uses the GBRT to obtain the feature
importance. The principle of this method is to evaluate the
importance of each input variable by comparing the variable
importance measure (VIM) of the Gini index calculated by the
decision trees (Otchere et al., 2022). The main calculation formula of
VIM is as follows:

GIm� 1−∑K| |

k�1
p2
mk (12)

VIMij � GIm − GIl − GIr (13)
whereGIm is the Gini index ofm features; k is the number of features
in dataset; pmk is the proportion of k in nodem;GIl andGIr represent
the Gini index of the first and second new nodes after bifurcation.
The VIM of Xj in the ith decision tree is:

FIGURE 9
Distribution curves of the measured and estimated earthwork excavation amount: (A) BO-GBRT; (B) BO-SVM; (C) BO-AdaBoost; (D) BO-RF.
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VIMij � ∑
m∈M

VIMjm (14)

If there are n decision trees in GBRT model, then:

VIMj � ∑n
i�1
VIMij (15)

The value range of VIM is 0~1. The higher the VIM value, the
greater the influence of the input parameters on the earthwork
excavation amount.

The importance of the input parameters for earthwork
excavation amount is displayed in Figure 11. The longer the bar
corresponding to the input parameter, the importance contributions

FIGURE 10
Comparison of the measured and estimated earthwork excavation amount: (A) BO-GBRT; (B) BO-SVM; (C) BO-AdaBoost; (D) BO-RF.

FIGURE 11
VIM values of input variables.
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to the earthwork excavation amount. From Figure 11, the
importance of predictive variables shows that PE, FP2, and n,
namely, the propulsion pressure, foam pressure, and rotation
speed, are the most critical factors affecting the earthwork
excavation amount. The results indicate that propulsion pressure
and foam pressure are the parameters that have a greater impact on
the earthwork excavation amount. In the future, more applications
will be conducted in different strata or different EPB shield tunnels
to reveal the influence of tunneling parameters on the earthwork
excavation amount.

4.3 Advantages and limitations

The amount of earthwork excavation directly determines whether
the shield tunnel is over-excavation or under-excavation, and further
affects the stability of the tunnel face. Conventional methods are lag
measurement and cannot guide the excavation process in real time. And
data-driven methods have been successfully applied in many scenarios,
as Phoon et al. (2022) stated, “In the era of Industry 4.0, data-driven
analytics is likely to bemore effective than physics in site characterization
and it is a natural extension of current practice.”Data-driven techniques
excel at extracting valuable information from extensive datasets. This
study employs the data-driven GBRT algorithm to address the
complexities and uncertainties inherent in the environment. Notably,
through engineering practice, an initial set of 40 input parameters was
determined, whichwas then reduced to 20 dimensions using data-driven
methods. This reduction in parameters significantly enhances the
computational efficiency of the ML model.

This study proposes a preliminary framework and
implementation method of automatic estimation for earthwork
excavation, integrating data acquisition, model construction,
feedback control, and iterative updating. Through simple
engineering training, in-site workers can choose the optimal
tunneling parameters to avoid over-excavation or under-
excavation. However, the in-site construction environment is
complex, with diverse geological conditions and many uncertain
factors. To truly guide the construction site, the proposed method
must be closely integrated with the in-site environment and
continuously optimized and upgraded in practice. Currently, this
project has reached its conclusion, but we eagerly anticipate future
opportunities to further validate the effectiveness of the model using
specific engineering examples. Therefore, our forthcoming
endeavors will concentrate on other shield tunneling projects,
while also striving to expand the scope of the database in terms
of diverse formations and equipment considerations. Furthermore,
the subsequent phase of this work will also emphasize the evaluation
of updated optimization algorithms to comprehensively compare
their efficacy in estimating the amount of earthwork excavation.

5 Conclusion

The key factor in the construction of an EPB shield machine is to
achieve balance between the internal and external chamber pressures.
Through control of operational parameters, excavation amounts for
each tunneling section can be kept within a reasonable range, thereby
reducing the impact on the surrounding strata. This study addresses

issues surrounding delayed and imprecise estimation of shield tunnel
earthwork excavation, proposing a BO-GBRT model for automatic
estimation. The main conclusions are as follows:

(1) The proposed method utilizes data collected by HSM system and
EPB shield machines, with validation conducted using the
Chengdu Metro project. Results demonstrate that the BO-GBRT
model is an effective tool for estimating the excavation volume of
shield tunnel earthwork.

(2) Compared to other machine learning methods, the BO-GBRT
model significantly improves performance, with residual errors
reduced as evidenced by RMSE of 1.712 and MAE of 1.331.

(3) Importance analysis indicates that propulsion pressure, foam
pressure, and rotation speed are the most influential features in
earthwork excavation.
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