
Intelligent reconstruction for
spatially irregular seismic data by
combining compressed sensing
with deep learning

Xinyue Gong, Shengchang Chen* and Chengmei Jin

School of Earth Sciences, Zhejiang University, Hangzhou, China

Data reconstruction is themost essential step in seismic data processing. Although
the compressed sensing (CS) theory breaks through the Nyquist sampling
theorem, we previously proved that the CS-based reconstruction of spatially
irregular seismic data could not fully meet the theoretical requirements,
resulting in low reconstruction accuracy. Although deep learning (DL) has great
potential in mining features from data and accelerating the process, it faces
challenges in earth science such as limited labels and poor generalizability. To
improve the generalizability of deep neural network (DNN) in reconstructing
seismic data in the actual situation of limited labeling, this paper proposes a
method called CSDNN that combines model-driven CS and data-driven DNN to
reconstruct the spatially irregular seismic data. By physically constraining neural
networks, this method increases the generalizability of the network and improves
the insufficient reconstruction caused by the inability to sample randomly in the
whole data definition domain. Experiments on the synthetic and field seismic data
show that the CSDNN reconstruction method achieves better performance
compared with the conventional CS method and DNN method, including
those with low sampling rates, which verifies the feasibility, effectiveness and
generalizability of this approach.
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1 Introduction

With the gradually complex targets of petroleum exploration and development, as well as
the promotion of the wide-band, wide-azimuth and high-density seismic acquisition
technologies, research has been increasingly focusing on efficient and low-cost
acquisition technology. In addition, due to the acquisition environment and economic
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factors constrains in exploration, the obtained spatially irregular and
incomplete seismic data usually cannot satisfy the Nyquist–Shannon
sampling theorem. Such missing trace data seriously affects the
subsequent seismic data processing, which in turn impairs the
reliability of the final interpretation. Thus, effective
reconstruction is meaningful for seismic data processing to
accurately depict complex geological structures and provide more
effective instructions and assistance for petroleum exploration.

Currently, the major ap proaches used to reconstruct spatially
irregularly distributed seismic data include model-driven methods
based on the knowledge of mathematical equations or time-space
variation characteristics, and data-driven methods based on deep
learning (DL) from big data.

Model-driven methods mainly encompass predictive filtering
methods (Spitz, 1991), wave equation methods (Ronen, 1987; Trad,
2003; Zhao et al., 2021), sparse-transform methods (Zwartjes and
Gisolf, 2006; Herrmann and Hennenfent, 2008; Mousavi et al.,
2016) and low-rank approximation methods (Oropeza and Sacchi,
2011;Wang et al., 2017; Innocent Oboué et al., 2021). Among them, the
sparse-transform and low-rank promotion methods are closely related
to the compressed sensing (CS) method (Donoho, 2006a), which treats
reconstruction as an underdetermined linear inversion problem solved
using the sparsity constraint in the transform domain. Compared with
the method based on predictive filtering, the CS-based method involves
the sparsity and the spatiotemporal variation characteristics of data,
which also does not require prior knowledge of the geological model
needed by wave equation methods.

The existing research around the CS method mainly focuses on
sparse transformation and reconstruction algorithms, with sparse
transformations such as Fourier (Naghizadeh and Innanen, 2011),
Curvelet (Hennenfent et al., 2010), Dreamlet (Wang et al., 2015),
Radon (Ibrahim et al., 2018), Framelet (Pan et al., 2023), etc. To
solve sparse optimization problems, regularization algorithms are
commonly used, such as L0 norm (Chen et al., 2013), L1 norm (Yin
et al., 2015), non-convex LP norm (Zhong et al., 2015), etc.
According to the CS theory, the data sparsity domain and the
acquisition matrix must have the same definition domain.
Seismic data controlled by second-order partial differential
equation has sparsity in the time-space domain, but spatially
irregular data is obtained by compressed acquisition only in
spatial domain, so the compressed acquisition domain is
inconsistent with the data sparsity domain used in
reconstruction. In other words, there is a theoretical defect in the
application process, hence the reconstruction of the CS-based
method for spatially irregular seismic data is difficult to meet the
production requirements, especially for low sampling rates.

In the past decade, data-driven artificial intelligence (AI) has
been highly valued in seismic exploration, and the rise of DL has
greatly promoted the research of intelligent seismic data processing,
inversion, interpretation, and other fields. For seismic data
reconstruction, various deep neural network (DNN) structures
have been increasingly used for this research topic, such as
convolutional neural networks (CNN), ResNet (Wang et al.,
2019), 3D denoising convolutional neural network (3-D-DnCNN)
(Liu et al., 2020), U-Net (Chai et al., 2020), prediction-error filters
network (PEFNet) ((Fang et al., 2021a)), multi-dimensional
adversarial GAN (MDA GAN) (Dou et al., 2023), etc. The
deepening and complexity of the network structure not only

increases the amount of computation but also brings gradient
instability, network degradation, and the model being over-
parameterized; it becomes difficult for the trained model to stably
generalize to new missing data with different distributions.
Moreover, most of the existing DL-based methods refer to the
concept of computer vision completion, and the difference
between image processing and seismic data reconstruction should
be considered in further research, that is, incorporating richer
characteristics of the seismic data (Luo et al., 2023).

During the research process, we can see that it has been difficult
to achieve the goal of AI seismic exploration with a single route or
paradigm. Wu et al. (Wu et al., 2023) concluded that domain
knowledge constraints can be applied to deep neural networks to
improve those with weak generalization ability, low interpretability
and poor physical consistency, such as physics-driven intelligent
seismic processing (Pham and Li, 2022), impedance inversion (Yuan
et al., 2022), porosity prediction (Sang et al., 2023), designing prior-
constraint network architectures for seismic waveform inversion
(Sun et al., 2020) and exploring the physics-informed neural
network (PINN) for solving geophysical forward modeling (Song
and Wang, 2023). From these studies, we conclude that a more
reasonable direction to deal with reconstruction problems can be the
combination of data-driven model and mechanism model.

In light of the shortcomings of conventional DL seismic data
reconstruction, we propose a strategy for reconstructing spatially
irregular data by integrating CS and DL methodologies, called
CSDNN. First, we prove the theoretical flaw in the CS-based
reconstruction of spatially irregularly acquired seismic data. Second,
we present the DL method to reconstruct seismic data with DnCNN
and analyze its pros and cons. Thirdly, we combine data-driven and
model-driven models and refer to the sequential strategy used in the
joint inversion of multiple geophysical data to establish the optimal
objective function, and adopt a step-by-step optimization algorithm to
achieve high-precision and high signal-to-noise ratio (SNR)
reestablishment. Numerical experiments demonstrate the efficiency
and the improvement in the generalizability of the suggested
strategy, even for low-sampling-rate data.

2 Methodology

2.1 Reconstruction using CS

2.1.1 Irregular seismic data acquisition based on CS
Seismic data acquisition is conducted by adhering to the

spatiotemporal variation law of the wavefield u(x, y, t;xs, ys) and
utilizing the Nyquist–Shannon sampling theorem to regularly
perform equidistant discretization in the five dimensions of x, y,
t, xs and ys, as shown in (Eq. 1):

u xi, yj, tk;xsl, ysm( )
� ∑Ms−1

m�0
∑Ls−1
l�0

∑K−1
k�0

∑J−1
j�0

∑I−1
i�0

δ y − yj( )δ x − xi( )
× δ t − tk( )δ ys − ysm( )δ xs − xsl( )u x, y, t;xs, ys( ),

(1)
where u(xi, yj, tk;xsl, ysm) represents the obtained spatiotemporal
domain discretized data, xi � iΔx, yj � jΔy,tk � kΔt,xsl � lΔxs and

Frontiers in Earth Science frontiersin.org02

Gong et al. 10.3389/feart.2023.1299070

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1299070


ysm � mΔys. In this context, x and y denote the coordinates of the
receiving points; xs and ys denote the coordinates of the shot points,
and t is the number of time variable.Ms, Ls,K, J and I represent the
number of shot lines, the number of shots per shot line, the number
of time samples, the number of receiver lines, and the number of
receivers per line, respectively. δ(f) is the Dirac delta function
(Piela, 2014).

The CS theory states that if the signal u is sparse or sparse in a
transform domain, it can be projected from the high-dimensional
space to the low-dimensional space through the sampling matrix
W , which is uncorrelated with the basis function of sparse
transform, to obtain an observed signal d that is much smaller
than the original signal length. Then, the original signal u can be
recovered by the reconstruction algorithm (Donoho, 2006b;
Candès et al., 2006). If incomplete data d can reconstruct
complete data u, then d can be regarded as the compressed
sample data of u, where the linear mapping of d to u is
formulated as follows:

dM×1� WM×NuN×1, (2)
where M and N denote the number of irregular and regular
sampling points, respectively, with M≪N ; the incomplete data
d ∈ RM×1 can be regarded as an M× 1 column matrix, where R

means the field of real numbers; the complete data u ∈ RN×1 is a
regular equidistant vector with sparsity, and u also can be regarded
as anN× 1 columnmatrix;W ∈ RM×N is a random sampling matrix
composed of 0 and 1, and there are M elements with a value of 1. If
the complete data u comprises the regular discrete data sequence
u(xi, yj, tk; xsl, ysm) in (Eq. 1), then the compressed sampling of d
can break the sampling interval limitation in the Nyquist theorem,
where N � Ms × Ls × K × J × I, and W should have the same
definition domain as u.

Although high-dimensional data can make better use of the
spatial correlation, for a theoretically concise demonstration, we
simplify the problem to 2D seismic data but the conclusions
obtained can be extended to 5D. By sampling
u(xi, yj, tk; xsl, ysm) regularly in the 2D spatiotemporal domain,
the discrete sampling Equation 1 can be abbreviated as:

u xi, tk, xs( )�∑K−1
k�0 ∑I−1

i�0 δ t − tk( ) δ x − xi( )u x, t, xs( ). (3)

The CS theory provides a conceptual foundation for the sparse
acquisition of seismic data, which could greatly improve efficiency
and reduce costs in fieldwork. According to the CS-based sparse
sampling in Eq. 2) and ignoring the shot point coordinates xs in (Eq.
3), the irregular sampling for 2D seismic data in the definition
domain can be written as:

u xri, trk( ) � ∑N−1
r�0 δ trk-tk( )δ xri − xi( )u xi, tk( ), (4)

where (xri, trk) represents the spatiotemporal location of M
randomly selected sampling points (xi, tk) from N � I × K
regularly equally spaced sampling points of u(xi, tk). Among the
N elements in each row of the sampling matrixW , the value is 1 only
in one random position while all other element values are zero, soW
is a random sampling matrix in the whole data definition domain.
Compared with the Nyquist acquisition (Eq. 1), compressed
acquisition (Eq. 4) can greatly reduce the amount of collected

data. However, the sampling points are randomly and irregularly
distributed, so compressed acquisition (Eq. 4) neither reduces the
cost (except for data storage and transmission) nor improves the
acquisition efficiency.

In seismic exploration, three main factors cause the acquired
data to be spatially irregular. Firstly, the complicated exploration
environment and human geographic factors in the work area lead to
irregular distribution of shot and receiver positions. Secondly, the
recording geometry is affected by nature resulting in changes. For
example, due to waves, currents and tides in the ocean, the receiver
points deviate from the preset position. Thirdly, when applying CS
acquisition techniques while reducing the cost and improve the
acquisition efficiency, irregular sparse sampling points are only
randomly collected in the spatial dimensions of the data, and
Nyquist sampling is followed in the temporal dimension (only
this case is considered in this paper). Then, the high-efficiency
acquisition of temporally regular and spatially irregular sampling
can be written as:

u xri, tk( ) � ∑K−1
k�0 ∑Ir−1

ri�0 δ tk-tk( )
δ xri − xi( )u xi, tk( )�∑Ir−1

ri�0 δ xri − xi( )u xi, tk( ), (5)

where xri denotes the location of Ir traces randomly selected from I
regular equidistant seismic traces xi. For the sampling matrixW , the
M elements with value 1 in W correspond to the locations of K
regular time sampling points of Ir traces randomly selected from I
regular distributed seismic traces, thus W in (Eq. 5) is not random
sampling in the whole definitional domain of data. Clearly, in the
acquisition of spatially irregular data, random sampling in the time
dimension can decrease the number of time samples but cannot
reduce the total time or the time cost. Therefore, the CS acquisition
method is not used in the time dimension. Compared with (Eq. 1),
compressed acquisition (Eq. 5) greatly reduces the number of
seismic traces or the same number of traces can cover a wider
area, eventually lowering the cost and increasing the acquisition
efficiency.

For Eq. 5, it can be seen that the acquisition of spatially irregular
seismic data is not compressive sampling that fully satisfies the CS
theory, and the number of shot-detection points is far less than the
conventional regular shot-detection grid. Therefore, this is a high-
efficiency and low-cost acquisition method based on the concept of
CS (data sparsity and irregular sampling).

2.1.2 Theoretical defect of CS-based
reconstruction for spatially irregular seismic data

It is well known that CS is not only a high-efficiency signal
sampling method but also a high-resolution data reconstruction
method. The three important prerequisites for CS include: (i) the
complete signal satisfies sparsity or compressibility; (ii) the sampling
matrix should be a random matrix in the data definition domain,
which is independent of the signal; and (iii) a suitable high-precision
reconstruction algorithm that promotes sparsity.

The CS theory-based reconstruction strategy is the process that
satisfies all of the above three conditions, and then recovers the
original data u from the sampling matrix W and the observation
data d by finding the minimum norm solution of the
underdetermined system of equations, as follows:
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O c( ) � min d − Sc‖ ‖22( ), s.t. c‖ ‖1 ≤ σ, (6)
where O(c) denotes the optimization objective function with c as a
variable; c is the sparse transform coefficient of data u to be
reconstructed, with c � Φu, u � Φ−1c; Φ and Φ−1 represent the
sparse transformation and inverse transformation applicable to u,
respectively; S denotes the sensing matrix, with S � WΦ−1 ; σ is a
quantity that measures the sparsity of c.

The constrained optimization problem in (Eq. 6) can also be
converted into the following unconstrained optimization problem:

O u( ) � min d −Wu‖ ‖22 + λ Φu‖ ‖1( ), (7)
where λ is a regularization parameter. There are many algorithms for
solving optimization problems (Eqs. 6, 7). The common CS
reconstruction algorithms have been applied in seismic data

reconstruction, such as the Projection onto Convex Set (POCS)
algorithm (Abma and Kabir, 2006), Iterative Soft Thresholding
(IST) algorithm (Hennenfent et al., 2010) and Orthogonal
Matching Pursuit (OMP) algorithm (Sun et al., 2018). Eqs. 6, 7
are recognized as model-driven methods for reconstruction because
they are generated through the mathematical representation (Eq. 5)
of seismic data and the prior knowledge of spatiotemporal variation
(i.e., sparsity).

Due to the sampling matrix directly affecting the quality of the
compressed information, certain constraints need to be met when
constructing this matrix, such as null space, constrained equidistant
properties and incoherence. However, in the CS-based
reconstruction for spatially irregular seismic data, the sampling
matrix W in (Eq. 5) is irregularly random sampling only in the
spatial dimension of seismic data but not in the time dimension,

FIGURE 1
Irregularly sampled data and corresponding reconstructions and residuals for synthetic seismic data u1 . (A) dx (SR = 30%); (B) ux of (A); (C) difference
between u1 and (B); (D) dx (SR=50%); (E) ux of (D); (F) difference between u1 and (C); (G) dpxt (SR = 30%); (H) ux of (G); (I) difference between u1 and (H); (J)
dpxt (SR = 50%); (K) ux of (J); (L) difference between u1 and (K); (M) dxt (SR = 30%); (N) ux of (M); (O) difference between u1 and (N); (P) dxt (SR = 50%); (Q)
ux of (P); (R) difference between u1 and (O).
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which does not satisfy the CS precondition that the sampling matrix
should be random in the whole data domain. Therefore, there is a
theoretical flaw in the CS-based reconstruction method commonly
used in this case, making it difficult to obtain high SNR
reconstruction, especially for data with low sampling rate.

Although the collection corresponding to (Eq. 4) satisfies the CS
theoretical requirements, it cannot improve efficiency, or save time
and economic cost in actual production. Therefore, we propose a
pseudo-CS acquisition, that is, pseudo-spatiotemporally irregular
acquisition, where the seismic traces are randomly sampled at the
sampling rate r1, then the extracted traces are randomly sampled in
the spatiotemporal domain at the sampling rate r2, so the total
sampling rate is r1r2. We use a 2D synthetic seismic data u1 with
512 traces, 512 samples in each trace, and a sampling interval of 2 ms
as the complete data. Irregular sampling is performed in spatial dx

(Figures 1A, D), pseudo-spatiotemporal dpxt (Figures 1G, J), and
spatiotemporal domain dxt (Figures 1M, P). We abbreviate the
sampling rate as SR. The SR of each sampling method is 30%
(Figures 1A, G, M) and 50% (Figures 1D, J, P). Under the same SR,
the number of points collected is consistent.

We take the discrete cosine transform (DCT) as the sparse
transformation and use the IST algorithm to obtain the final CS
reconstruction ux, upxt and uxt, as shown in Figure 1. By
comparison, the reconstruction result uxt is significantly
better than ux and upxt at each same SR. When the SR is
lower, the deficiency of ux is more obvious, indicating that
the CS-based spatially irregular reconstruction is acceptable
when the SR is relatively high. This also explains the
rationality of the current widely used spatially irregular CS in
the study of seismic data reconstruction, but in the presence of
the aforementioned theoretical defect, insufficient

reconstruction would be obvious under a low SR. As a trade-
off scheme between the acquisition efficiency and the
randomness of the sampling matrix, the sampling points of
pseudo-CS acquisition are carried out in the spatiotemporal
domain of the collected traces. In Figure 1G, we set the SR of
seismic traces to be consistent with the SR of the space-time, so
that the total sampling rate is 30%, but the sampling matrix is
closer to the randomness of whole data definition domain, and
more traces are collected than Figure 1A. Figure 1H is obviously
different from Figure 1B, which corroborates our reasoning and
reflects the importance of the randomness in the data definition
domain. Comparing the reconstruction of the three acquisition
forms, we prove that irregular data will have better a CS
reconstruction when it is closer to the randomness of the
whole domain.

Although CS-based irregular spatiotemporal acquisition offers
more accurate reconstruction, the efficiency and cost of acquisition
cannot be improved in actual exploration. On the other hand,
spatially irregular acquisition is effective and economical, but the
reconstruction is poor especially under a low SR. Therefore, it is
urgent to interpolate the irregular missing seismic trace with high
precision and SNR.

2.2 Reconstruction by supervised learning

Reconstructing seismic data using traditional methods can be
both computationally expensive and susceptible to various
human factors. By utilizing supervised learning, the missing
traces can be recovered by learning the mapping between
input and label from a vast quantity of data. These data-

FIGURE 2
Architecture of DnCNN.
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FIGURE 3
CSDNN: the proposed architecture for spatially irregular seismic data reconstruction.

FIGURE 4
Experimental synthetic seismic data. (A) Complete seismic data. Spatially irregular data with sampling rates of (B) 70%, (C) 50% and (D) 30%.
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driven approaches do not account for the irregularity,
spatiotemporal variation or the impact of sparse
transformation of seismic data. The DL-based seismic data
reconstruction usually assumes that there is a nonlinear
mapping relationship Net between the known regular seismic
data u and its corresponding spatially irregular seismic data d,
which can be represented by a DNN model as follows:

u � Net d, θ( ), (8)
where θ represents the parameters that constitute the network.

We record the existing complete data as the label ulab and the
existing spatially irregular data as the training data d. The following
optimization algorithm is usually solved to obtain the θ̂
corresponding to the minimum of O(θ):

O θ( ) � min Net d, θ( ) − ulab‖ ‖22( ). (9)

Based on the trained parameters θ̂, we take the spatially irregular
data d outside the training set to obtain the corresponding
reconstruction û. This process is the generalization of (Eq. 9) and
can be expressed in (Eq. 10):

û � Net d, θ̂( ). (10)

The reconstruction performance of (Eq. 10) largely depends on
the generalizability of the network model represented by θ̂. Using
the network model with excellent generalizability can better recover
data; otherwise, it is difficult to guarantee the reconstruction in
network promotion.

For DL training, we adopt the DnCNN architecture depicted in
Figure 2, whose residual learning mode focuses the mapping
connection on the distinction between labels and input data
instead of directly learning the mapping between them. This

FIGURE 5
Reconstructed results and residual errors for the data (SR = 70%) in Figure 4C. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN.
(D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
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network is simpler to optimize and effectively avoids the gradient
dispersion problem during training because most of the residuals are
small. The DnCNN comprises 17 convolutional layers, with the first
layer consisting of convolution (Conv) and rectified linear unit
(ReLU), the second through 16th layers consisting of Conv,
Batch normalization (BN) and ReLU, and the 17th layer is a Conv.

The benefits of DL-based methods, such as nonlinear mapping
and automatic feature extraction, are valuable for reconstructing
seismic data, while challenges persist such as limited training data
sets, uncertainty and poor generalization. On the one hand, the
spatial characteristics of seismic data learned by the network may
have difficulty correctly interpolating in a large missing ratio; many
studies only showed the reconstruction when fewer traces were
missing (SR more than 50%) (Fang et al., 2021b). On the other hand,
the trained models may fail to generalize well on new samples with
different distributions. In Wang’s DNN-based residual learning
method for seismic reconstruction, as the feature disparity

between the test field data and the training data set grows, the
interpolation deviation becomes more obvious (Wang et al., 2019).

The application impact of DL-based method depends on the
generalizability of the network, making it challenging to implement
in actual production. The main determinants affecting the
performance of network models include the network structure,
the optimization algorithm, the size and feature diversity of the
dataset used for training, the computer processing capability, etc.
The following methods can be used to improve the network
generalizability: (i) training more data with a wider range of
features; (ii) modifying or reshaping the network architecture to
incorporate mathematical and physical operators; (iii) adjusting the
objective function by adding the constraints of the mathematical
expression and prior knowledge about the data.

However, it is not easy to measure how much data is obtained
with a larger number and higher diversity of characteristics, which
may bring some practical difficulties. In terms of incorporating

FIGURE 6
Reconstructed results and residual errors for the data (SR =50%) in Figure 4C. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN.
(D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
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mathematical, physical and prior data knowledge into the goal
function (Eq. 10), although some methods have been proposed
recently and certain progress has been made, these are still in the
process of exploration (Mousavi and Beroza, 2022). Such methods
imply that under the condition of the limited training dataset,
constructing a network with excellent generalizability is a difficult
task, and this method also has challenges regarding research and
application for the reconstruction of spatially irregular seismic data.

2.3 Data and model dual-driven seismic data
reconstruction

In statistical learning theory, the complexity of hypothesis space
H, which includes the set of all possible mapping relations of the

learning algorithm, is a key factor to analyze the generalization ability
of network models (Vapnik, 1999; Wu and Zhang, 2017). For
common regression problems, the complexity of the mapping
relationship between label and data is sometimes difficult to
quantify and characterize. However, for seismic data
reconstruction, the label is the complete seismic record, the input
data is a spatially irregular seismic record, and labels and data are
essentially the same kind of data, with the difference degree
corresponding to the complexity of the relationship between them.
Therefore, for fitting the desired mapping between u and d in (Eq. 8),
reducing the difference between the two is equivalent to weakening
the complexity of mapping relationship, thereby narrowing the
dimension of hypothesis space. In this way, the learned parametric
model can approximate the true model with greater probability, thus
increasing the network generalization ability.

FIGURE 7
Reconstructed results and residual errors for the data (SR=30%) in Figure 4D. The reconstruction results with (A) CS, (B) DnCNN and (C) CSDNN.
(D–F) are the residual errors between the complete synthetic data in Figure 4A and panels (A–C) of this figure.
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Moreover, the seismic record comprises spatiotemporal data
that satisfies the wave equation; hence, the process of CS searching
for suitable sparse transformation to obtain few coefficients to
represent the data is actually controlled by mathematical physics,
which is a kind of mode knowledge. Based on the above discussion,
we propose a method for reconstructing the spatially irregular

seismic data that combines CS and DL. Firstly, using CS for
preliminary reconstruction to obtain the input data of DnCNN,
we reduce the difference between u and d in the sample set and lower
the complexity and nonlinearity of network training, which is
carried out to enhance the generalization of the network model
by incorporating prior knowledge into DL. Then, the reconstruction

FIGURE 8
The curve of (A) SNR, (B) PSNR, (C) SSIM, and (D) MSE of the reconstruction effect.

FIGURE 9
Field seismic data. (A) Complete field seismic data. Spatially irregular data with SR of (B) 70%, (C) 50% and (D) 30%.
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is carried out by data-driven iteration. We refer to this method as
CSDNN for short, with its structure shown in Figure 3.

In the training dataset, the spatially irregular seismic data d is
used as input data and the corresponding complete data ulab is used
as the label. The objective function of our data and model dual-
driven method CSDNN can be written as:

O u, θ( ) � min d −Wu‖ ‖22 + λ Φu‖ ‖1( ) + α ulab −Net d, θ( )‖ ‖22[
+β u −Net d, θ( )‖ ‖22] � O1 u( ) + αO2 θ( ) + βO3 u( ),

(11)
where O(u, θ) is the objective function, with u and the network
model parameter θ as its dependent variable, aiming to find θ
with the greatest generalizability and achieve the best possible
data reconstruction effect. The parameters α and β are the
weighting coefficients of different metrics. O1(u) �
min(‖d −Wu‖22 + λ‖Φu‖1) denotes the objective function
corresponding to the preliminary reconstruction by CS, O2(θ) �
min(‖ulab −Net(d, θ)‖22) corresponds to supervised learning, and

O3(u) � min(‖u −Net(d, θ)‖22) represents the expectation of neural
network with strong generalizability (best potential for application).

In general, prior constraints are applied to DNNS to improve
the generalizability, interpretability and physical consistency of
the model, including three general strategies: imposing
constraints on data, fusing constraints into network
architecture, and integrating constraints into loss functions
(Wu et al., 2023). As an objective function related to network
parameters, Eq. 11 is constrained by the mathematical knowledge
of CS, which is equivalent to restricting the solution space of DL,
a large-scale non-convex optimization problem, to physically
reasonable solutions, so as to enhance their out-of-distribution
generalization.

Even though objective function (Eq. 11) formally integrates
model-driven and data-driven methodologies, it is challenging to
acquire the optimum parameters with strong network
generalization while achieving the optimal CS reconstruction at
the same time. We thus propose the following step-by-step

FIGURE 10
Reconstructed results and residual errors for the field data (SR=70%) in Figure 9B. The reconstruction results with (A)CS, (B)DnCNN and (C)CSDNN.
(D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.
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optimization solution for (Eq. 11), referring to the concept of
sequential inversion in the combined inversion of multiple
geophysical data. In the first step, we optimize O1(u), which
preliminarily reconstructs the data of missing traces d with CS
to produce a rough reconstruction dcs.

In the second step, we optimize O2(θ), which involves training
the parameter θ for DnCNN, but the input data is dcs, so the
objective function O2(θ) is rewritten as:

O2 θ( ) � min ulab −Net dcs, θ( )‖ ‖22( ), (12)

where utilizing the CS-based reconstruction results to train the
network could be regarded as improving the data-driven
approach via mathematics and previous knowledge.

The third step is to optimize O3(θ), which is the application to
trained network models obtained by Eq. 12. For the rough
reconstruction dcs of d, applying the trained DnCNN can be
written as u � Net(dcs, θ̂), to obtain an interpolation with high
precision and high SNR.

Through the above steps, the distance between dcs and ulab used for
DnCNN in the second step is reduced compared with the distance
between the original d and ulab in the preceding step by preliminary
reconstruction, which will weaken the degree of nonlinearity between
the input and the label. This will bring a higher possibility of training a
DnCNN with strong generalization and enable the more effective
reconstruction of spatially irregular seismic data.

3 Numerical experiments

In order to evaluate the effect of seismic data reconstruction from
multiple perspectives, we select SNR, peak signal-to-noise ratio (PSNR),
structural similarity index method (SSIM), and mean square error
(MSE) as evaluationmetrics to assess the relationship between complete
data u and reconstruction data û. This selection is based on our
experience in the field of seismic data reconstruction and the
evaluation system of computer vision super-resolution. The four
evaluation metrics can be written as:

FIGURE 11
Reconstructed results and residual errors for the field data (SR=50%) in Figure 9C. The reconstruction results with (A)CS, (B)DnCNN and (C)CSDNN.
(D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.

Frontiers in Earth Science frontiersin.org12

Gong et al. 10.3389/feart.2023.1299070

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1299070


SNR dB( )� 20 lg
u‖ ‖2

u − û‖ ‖2( ), (13)

PSNR dB( )� 10 lg
Max 2

u

MSE
( ), (14)

SSIM u − û( ) � 2μuμû + C1( )
μ2u + μû2 + C1

×
2σuû + C2( )

σ2u + σ û2 + C2
, (15)

MSE � 1
L
∑L

i�1 u − û( )2, (16)

whereMax u represents themaximum value of u; μu and μû denote the
average of u and û, respectively; σu and σ û denote the variance of u and
û, respectively; σuû denotes the covariance between u and û; C1 and C2

are constants to avoid fluctuations when the mean approaches zero.
SSIM evaluates the similarity between two images andMSE reflects how
different the estimator is from the estimated one. For seismic data,
higher SNR, PSNR, and SSIM values indicate better reconstruction,
while MSE values closer to zero are better.

3.1 Synthetic data experiments

We select four datasets including the Hess VTI migration
benchmark, 1994 BP statics benchmark model, 1997 BP 2.5D

migration benchmark model, and 2007 BP Anisotropic Velocity
Benchmark, and sort out their synthetic pre-stack seismic data for
experiments. Then, the amplitudes of all the data are normalized.
Following the above CSDNN process flow, we randomly sample 50%
of the traces in each complete data, then use the CS method to
reconstruct these spatially irregular data preliminarily to obtain the
input data for DnCNN. In this paper, when the CS method is used,
the selected sparse transform is DCT, and the reconstruction
algorithm is IST. Next, the complete labels and the
corresponding input data are all cut into 50 × 50 patches to train
the DnCNN. During the training process, the MSE is employed as
the loss function to evaluate the difference between the network
prediction and the truth, and the Adaptive Moment Estimation
(Adam) algorithm is implemented to optimize the network
parameters.

The numerical test is based on the synthetic complete seismic
record outside the training dataset, which is shown in Figure 4A,
with 500 traces and 1,000 samples in each trace. It is randomly
sampled in the spatial dimension with sampling rates of 70%
(Figure 4B), 50% (Figure 4C) and 30% (Figure 4D). To verify the
superiority of our method compared with the traditional methods,
different reconstructing strategies, including CS, DnCNN and our
CSDNN, are tested separately on these missing data, as shown in

FIGURE 12
Reconstructed results and residual errors for the field data (SR = 30%) in Figure 9D. The reconstruction results with (A) CS, (B) DnCNN and (C)
CSDNN. (D–F) are the residual errors between the complete synthetic data in Figure 9A and panels (A–C) of this figure.
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Figures 5–7. For the same complete data, spatially random sampling
with different sampling rates from 5% to 95% is carried out with a
step size of 5%, then the four evaluation metrics curves of the above
reconstruction methods are calculated by Eqs. 13–16, the evaluation
index curves as shown in Figure 8.

From the reconstruction and residual profiles in Figures 5–7, the
above three methods can effectively recover the information in few
missing traces (SR=70%). As the SR gets lower, the CS-based
reconstruction is the worst, and the SNR drops from 17.78 dB in
Figure 5A to 5.34 dB in Figure 7A, which constitutes a decrease of
53%. It can be seen that the inadaptability of the CS method to low
SR and spatially irregular data is obviously enhanced, which verifies
the theoretical defect of the CS method in this case. The DnCNN-
based reconstruction with SR = 50% (Figure 6B, SNR = 16.78 dB) is
similar to the CS-based reconstruction with SR = 70% (Figure 5A,
SNR = 17.78 dB), so the effect of DLmethod represented by DnCNN
is better than CS. With more missing traces, the reconstruction SNR
of the DnCNN drops from 18.50 dB in Figure 5B to 11.42 dB in
Figure 7B, equivalent to a drop of 38%. This shows that when the
difference between training data and labels is larger, the
generalizability of the trained network model is weaker. Our
CSDNN method indicates the best reconstruction performance at
each SR, from 20.76 dB in Figure 5C to 14.29 dB in Figure 7C,
equivalent to a decrease of 31%. Thus, CSDNN is more adaptable to
the reconstruction of spatially irregular seismic data with low SR.

Figure 8 shows that when the SR is higher than 75%, the CS-
based reconstruction has better SNR and PSNR than CSDNN. The
reason is that the underdetermined degree of the objective function
is low when the amount of data is large, which explains the
rationality of obtaining credible CS reconstruction results for
spatially irregular data under high SR even if it does not meet
the requirements of CS theory. Another reason is that in the two
methods related to learning, the SR used in the training data is 50%,
which means that when the SR of the data to be reconstructed is very
different from the training data, there will be a significant
inadaptation, but the reconstruction of CSDNN is still better
than DnCNN in this case. In other cases, CSDNN reconstruction
has the highest SNR, PSNR, SSIM and the lowest MSE among the
three methods. In fact, we usually focus on reconstruction with
relatively low SR, so the result also verifies the effectiveness of
reducing the difference between the training data and its labels
for improving network generalizability.

3.2 Field data experiments

In order to further verify the generalizability of our method, the
real marine seismic data (Figure 9A, with 430 traces, 512 samples
in each trace, spatial interval is 12.5 m), is also randomly sampled
in the spatial dimension with SR of 70% (Figure 9B), 50%
(Figure 9C) and 30% (Figure 9D). Then, we reconstruct them
using the above three methods, and the results and residuals are
shown in Figures 10–12. The DnCNN and CSDNN methods here
use the two network models trained in the above synthetic data
experiment.

When the field data misses few traces (SR = 70%), the CS
reconstruction (Figure 10A, SNR=11.04 dB) is close to DnCNN
(Figure 10B, SNR=11.84 dB). All three methods can reconstruct the

field data well, but the CSDNN reconstruction result has the highest
SNR (14.86 dB), PSNR (36.57 dB), SSIM (0.988), the lowest MSE
(2.20e-04), and the strongest horizontal continuity, and can recover
many small features. With lower SR, the CS reconstruction
(Figure 11A, SNR = 6.18 dB; Figure 12A, SNR = 2.59 dB) shows
event discontinuity and the noise is more obvious; the DnCNN
reconstruction (Figure 11B, SNR = 7.48 dB; Figure 12B, SNR =
3.77 dB) is better than CS, but there is an apparent error in the
reconstructed event at the continuous missing traces position (red
mark in Figure 12B); CSDNN (Figure 11C, SNR=10.88 dB;
Figure 12C, SNR=7.09 dB) combines the model-driven prior
knowledge on the DnCNN, better guarantees the event
continuity and correctness, and the reconstruction SNR is the
highest. The inveracious reconstruction shown in Figure 12B
does not meet the spatiotemporal variation rules of seismic data
and also indicates the necessity of adding knowledge constraints to
DL. The performance of our CSDNN method on the field data
further proves its generalizability.

4 Discussions

Aimed at the reconstruction of spatially irregularly acquired
seismic data, in this work, we considered it separately from the
perspectives of the traditional and AI methods. On the one hand, we
pointed out the theoretical flaw of CS reconstruction for such data
and explained the reason why CS is difficult to obtain satisfactory
reconstruction. On the other hand, we highlighted that the
generalizability of DL under limited datasets is a crucial aspect
that must be significantly enhanced before this method can be
implemented in industrial applications. By summarizing the
discussion about network complexity and generalization in
statistical learning theory, and combining it with the nature of
the seismic data reconstruction problem, our inference is that the
approach for DL to train neural networks with excellent
generalizability should be to minimize the difference between
training data and labels.

Based on this reasoning, the proposed CSDNNmethod reduces this
difference through the CS-based preliminary reconstruction, and takes
DL to alleviate the reconstruction deficiency caused by the defect of
applying CS theory, with the sparsity of the data as the domain
knowledge. Tests conducted on both synthetic and field seismic data
revealed that the CSDNN outperforms traditional CS and DNN
methods. This superiority holds even at low sampling rates,
affirming the viability, efficiency, and versatility of this approach.

Due to the fact that CSDNN method requires more processing
to reconstruct based on CS than typical DL methods, one of its
disadvantages are in terms of computational efficiency and
amount. Another disadvantage is that we simply use the
cascade connection to combine CS and DNN, and there is no
further discussion of integrating domain knowledge into neural
networks. We designed this form of tandemCS and DnCNN just to
validate the inference that reducing the differences between labels
and input data can improve the generalization ability. In fact,
future research can be done on designing more flexible models that
incorporate more domain knowledge and more fully and deeply
into neural networks. Besides, the main limitation of this method is
that supervised learning requires a large amount of completed data
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in network training, but it is difficult to obtain a large amount of
field label data. Our next research will also focus on using
unsupervised or weakly supervised methods to obtain better
reconstruction results.

The strategy outlined in this paper is equivalent to feeding the
network additional feature and constraint information during
training, compacting the solution space to a more reasonable
range and increasing the accuracy of data reconstruction at low
sampling rates. Subsequent research endeavors will foster a closer
integration between model-driven and data-driven
methodologies.

5 Conclusion

According to the notion that imposing prior knowledge constraint
in data-driven models may effectively improve the generalizability of
DL, we proposed a CSDNN method combining the model-driven CS
and the data-driven DnCNNmethod for spatially irregular seismic data
reconstruction, and a step-by-step optimization algorithm was put
forward by synthesizing their objective functions. The domain
knowledge here is the sparsity of seismic data, which is governed by
the wave equation and has a regular spatiotemporal variation. Based on
this, a suitable sparse basis can be found for preliminary reconstruction
with CS. Experiments proved that preliminary implementation of the
data and model dual drive in the form of concatenation produced
positive findings, which backed up our theory regarding the link
between dataset differences and network generalizability. The
direction of future research is to analyze the quantitative relationship
among the complexity of the network model, the variation between
training data and labels, and the network generalizability.
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