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After the water inrush accident in coal mine tunnels, early-stage pouring of
aggregate forms a high-resistance, low-permeability aggregate stacking,
transforming the pipeline flow into percolation. In the later stage, grouting is
carried out into the interior of the aggregate stacking, effectively accumulating
and solidifying the cement slurry. Among these, whether the slurry can migrate
over long distances and fill the voids inside the aggregate stacking is the critical
determinant of the success or failure of sealing. To quantitatively analyze the
migration distance of slurry inside the aggregate stacking after grouting, a single-
hole grouting test platform was established, and an orthogonal experiment was
designed with grouting pressure, water cement ratio, and aggregate stacking
porosity as influencing factors. Based on 25 sets of experimental measurements,
four neural network prediction models suitable for studying the slurry migration
distance within the aggregate stacking were constructed separately as back
propagation neural network (BPNN), genetic algorithm (GA) combined BPNN,
particle swarm optimization (PSO) combined BPNN, and GA-PSO combined
BPNN. Evaluation criteria such as Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Mean Square Error (MSE), Root Mean Square Error
(RMSE), and the coefficient of determination (R2) were used for comparative
analysis of the calculation errors and prediction accuracy of eachmodel. From the
perspective of neural network prediction results, the weight value of each
influencing factor was analyzed, and the ranking was as follows: grouting
pressure > aggregate particle size > water cement ratio, with grouting pressure
being the primary controlling factor. The study demonstrates that the GA-PSO-BP
model exhibits the best prediction performance, with an average relative error of
only 1.59% and an R² of 0.998. This neural network model overcomes issues such
as slow learning and getting stuck in tricky spots in BP neural networks. The
prediction model shows high accuracy and stability, enabling more effective and
accurate prediction of slurry migration distances, making it worthy of
dissemination and application. This study can improve safety measures by
reducing waste, expediting disaster management efforts, and minimizing
environmental hazards associated with mining incidents.
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1 Introduction

After the water inrush accident occurs in the coal mine, the first
step is to pour aggregates to form a sufficiently long and high
aggregate stacking to intercept and slow down the flow.
Subsequently, cement slurry is grouting into the interior of the
aggregate stacking to reinforce it, ultimately achieving complete
sealing, which is currently one of the most effective measures in
water hazard control (Mou et al., 2020). If the migration distance of
the grouting slurry is too short and cannot completely cover the
entire aggregate stacking, most of the internal voids of the aggregate
stacking will still be occupied by water, which could result in the
reinforced area of the aggregate stacking being too small, which
could lead to dam failure after being impacted by water flow. If the
migration distance of the slurry is too long, it will result in significant
resource wastage.

The migration distance of cement slurry is influenced by factors
such as the rheological properties of the slurry, gelation time,
grouting pressure, and geometric characteristics of the receiving
body (Zhu J. Q. et al., 2023). In cases where the particle size of the
aggregate particles is uniform, theoretical formulas can be used for
calculation. However, in practice, due to the involvement of
numerous influencing factors, there can be significant deviations
between the theoretically calculated migration distance and actual
values. Therefore, initial single-hole grouting experiments are
conducted to determine the migration distance. Once the
migration distance is determined, the spacing between holes can
be established. When determining hole spacing, it is necessary to
consider both maximizing the effectiveness of each grouting hole to
minimize project costs and ensuring that the holes are
interconnected for uniform slurry distribution. Therefore, the
accurate prediction of the migration distance of cement slurry
within the aggregate stacking is of paramount importance for
underground water hazard control efforts. Previously, the
migration distance of the slurry was predicted by proposing
hypotheses, establishing simplified models, and deriving
theoretical formulas, achieving some success in this area.
However, this approach still has significant limitations. For
example, when multiple influencing factors are involved,
theoretical models might not capture all variations and
interactions between factors, leading to deviations between
predicted results and actual situations.

In recent years, data-drivenmethods (such as regression analysis
and neural networks) have been applied by many scholars in
predictive research related to grouting volume and slurry
diffusion. However, this method is still in its infancy when it
comes to studying the migration distance of slurry within
aggregate stacking. Based on the model test results, a BP neural
network prediction model for the anti-seepage reinforcement effect
of permeable polymer grouting in the loose area of drainage
pipelines was constructed. This model was then applied to verify
the research results in the treatment project of the loose area of
drainage pipelines (Du et al., 2023). Advantage was taken of the close
relationship between the characteristic parameters and the grouting
saturation to establish a BP neural network regression model.
Moreover, the network parameters were adjusted to make the
model prediction effect the best. After adjusting the network
parameters, the network performance was significantly changed

and improved (Liu et al., 2022). Ma et al. (2022) utilized a
dataset obtained from numerical simulation experiments for
machine learning algorithm training. Three machine learning
algorithms widely used in geotechnical engineering, namely,
Backpropagation Artificial Neural Network (BP-ANN), Random
Forest (RF), and Support Vector Regression (SVR), were selected.
Based on error evaluation criteria, the prediction accuracy of
different algorithms for existing numerical simulation results was
compared.

This study is based on the measured data obtained from indoor
single-hole grouting tests. It introduces a hybrid optimization
algorithm for predicting the migration distance of slurry within
aggregate stacking, which combines Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) to optimize a Backpropagation
Neural Network (BP) model (GA-PSO-BP neural network
prediction model). Comparative analysis with a standalone BP
neural network, GA-BP neural network, and PSO-BP neural
network validate the superiority of the model and the accuracy of
its predictions.

2 Neural network prediction model

2.1 Back propagation neural network

The BPNN (Back Propagation Neural Network) is a type of
multi-layer feedforward network trained using the error
backpropagation algorithm (Yu et al., 2017). In addition to input
and output nodes, the network includes one or more hidden layers
with nodes that are not interconnected within the same layer. The
learning process of the network comprises twomain phases: forward
propagation and backward error propagation (Hinton et al., 2006).

During the forward propagation phase, input information
passes through weighted processing from the input layer,
traversing the hidden layers before reaching the output layer.
After undergoing activation function operations, the resulting
output values are compared to the desired values. In the presence
of errors, the errors are propagated backward through the existing
connection pathways, which entails systematically adjusting the
weighted coefficients of neurons at each layer, layer by layer,
until the output closely approximates the expected output. This
iterative process continues until the output approaches the desired
output.

In a 3-layer BP neural network with an input layer containing O
nodes, a hidden layer containing P nodes, and an output layer
containing Q nodes, where xm represents the input to the mth node
in the input layer, the weight from themth node in the input layer to
the nth node in the hidden layer is denoted as wmn. The weight from
the nth node in the hidden layer to the kth node in the output layer is
denoted as wk. The thresholds for the hidden layer and the output
layer are represented as θn and γk, respectively. The activation
functions for the hidden layer and the output layer are φ and ψ,
respectively. During the forward propagation process of data, the
output y of the kth node in the output layer can be calculated as
follows:

yk � ψ ∑P
n�1

wnkφ ∑O
m�1

wmnxm + θn⎛⎝ ⎞⎠ + γk
⎡⎢⎢⎣ ⎤⎥⎥⎦ (1)
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The process of backpropagation of error involves computing the
output errors for each neuron layer, starting from the output layer
and then iteratively calculating the error gradients. These gradients
are used, based on the gradient descent method, to adjust the weights
and thresholds of the hidden and output layers. This adjustment is
aimed at making the network’s final output as closely aligned as
possible with the desired output (Liang et al., 2020; Zhang et al.,
2022a).

2.2 GA-BP neural network model

The Genetic Algorithm (GA) is a heuristic stochastic search
algorithm that draws inspiration from the biological evolutionary
process, simulating the natural mechanisms of inheritance (Wang
et al., 2016). It possesses strong adaptability, inherent parallelism,
and excellent global search capabilities (Zhu L.et al., 2023). Genetic
algorithms map the search space into a genetic space, utilizing a
fitness function as the evaluation criteria. Through genetic operators
borrowed from the field of natural genetics, such as crossover and
mutation, the algorithm performs the selection and inheritance of
individuals in the encoded population, establishing an iterative
process to generate a new set of solutions. Individual members of
the population continually evolve during the iterations, gradually
approaching the optimal solution.

Utilizing the global search capabilities and extensive adaptability
of genetic algorithms, they demonstrate robust learning capabilities
and can overcome the limitations present in the training process of
BP neural networks (Wang and Bi, 2020; Guo et al., 2023). They can

perform global optimization searches without relying on gradient
information, optimizing the initial weights and thresholds of BP
neural networks and also addressing the issue of local optima.

The specific GA-BP process (Figure 1) is as follows:

(1) Initialize the population. Encode the connection weights and
thresholds of all nodes in the neural network using either real-
valued or binary encoding, determining the chromosome
length. The number of chromosomes in the population is
referred to as the population size, and it is determined by
setting the initial population size and generating the initial
population randomly.

(2) Define the fitness function. Individual fitness values serve as the
basis for population-level operations and are fundamental in
guiding individual operations. Higher individual fitness values
indicate greater adaptability to the environment and a stronger
problem-solving ability in the solution vector space
corresponding to the strings. The design of the fitness
function, to a certain extent, influences the evolutionary
direction and characteristics of the biological population.

(3) Selection operator. The selection operation can simulate the
natural selection phenomenon in the biological world. By
applying a fitness-proportionate selection operator, high-
fitness individuals are chosen for the next iteration. The
probability of selecting the ith individual in the population,
with fitness fi, is calculated as pi=fi/Σfi (Tan et al., 2019).

(4) Crossover operator. The crossover operation simulates the
reproductive process in biological evolution and is a primary
process in genetic algorithms for generating new, improved

FIGURE 1
GA-BP neural network optimization flow chart.
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individuals. The single-point crossover operator is used to create
new individuals.

(5) Mutation operator. The mutation operation can simulate gene
mutations that occur under various chance conditions in
biology. To maintain individual diversity and ensure the
effectiveness of the genetic algorithm, a non-uniform
mutation operator is applied to generate new individuals.

(6) One generation in the GA means a process of completing the
selection, crossover and mutation and circularly iterating the
optimal initial weight value and the threshold value. After
several generations, stop the computation until the
computation error reaches the allowable error.

(7) Replace the initial weights and thresholds of the BP neural
network with the optimized weights and thresholds computed
by the GA.

2.3 PSO-BP neural network model

The Particle Swarm Optimization (PSO) is a swarm intelligence
algorithm built upon the imitation of the foraging behavior of birds.
PSO initially initializes a population of particles in the feasible solution
space, each with its position and velocity (Moazen et al., 2023; Song
et al., 2023; Yin et al., 2023). Each particle represents a potential optimal
solution to the problem at hand and has its fitness determined by a
fitness function. As the particles iterate through the solution space, they
track two extremes: one is the best solution found itself, referred to as
the personal best, and the other is the best solution found by the entire
swarm of particles, known as the global best. Subsequently, particles
have their velocities and positions updated until the global optimal
solution is found or the maximum iteration limit is reached, thereby
concluding the algorithm (Ma et al., 2017).

Assuming a solution space of dimension D, a randomly
initialized population of N particles, where particle i’s position is
denoted as Xi=(xi1, xi2, . . . , xiD) and particle i’s velocity is
characterized as Vi=(vi1, vi2, . . . , viD), and each particle i has
found its individual best solution represented as pi=(pi1, pi2, . . . ,
piD), and the global best solution found by the particle swarm is
defined as pg=(pg1, pg2, . . . , pgD). After particles have found their
individual and global best solutions, their velocities and locations are
updated according to the following formulas (Yan et al., 2021; Qiao
et al., 2023):

vt+1ij � wvtij + c1r1 pt
ij − xt

ij( ) + c2r2 pt
gj − xt

ij( ) (2)
xt+1
ij � xt

ij + vt+1ij (3)

where i=1, 2, . . . , N, j=1, 2, . . . , D, is the dimension of particles; t is
population evolution times; c1, c2 is learning rate; r1, r2 is a random
number from 0 to 1; w is inertia weight and represents the non-
negative parameter and is used to adjust the search range of the
solution space.

The essence of PSO-BP neural networks is to map the weights
and thresholds of a BP neural network into PSO particles, which is
done by iteratively optimizing the weights and thresholds through
updates to particle velocities and positions (Zhang et al., 2022b; Gao
et al., 2023). The goal is to enhance the BP neural network’s
convergence speed and prediction accuracy. The steps of the
PSO-BP neural network are as follows:

(1) Initialize the parameters of the BP neural network and PSO
algorithm. These include the activation function, training
function, learning rate (lr), goal error (goal), and maximum
iterations (epochs), which are determined based on the training
sample data. Define the number of nodes in the neural network’s
input, hidden, and output layers as O, P, and Q, respectively.

(2) Set the parameters for the particle swarm optimization (PSO)
algorithm, including the population size N, acceleration
constants c1 and c2, initial weights w1, final weights w2, and
population dimension D.

(3) Calculate the fitness value according to the objective function of
the optimization problem.

(4) Compare the fitness value of the particle’s current location with
its historical best location (pbest) and its global best location
(gbest). If the fitness value of the current location is better than
the former, the historical location is replaced.

(5) Update the velocity and location of each particle according to
Eq. 2–Eq. 3.

(6) The global optimum is output if the stopping criteria are
achieved, Otherwise, the algorithm goes back to step (3).

(7) Replace initial weights and thresholds in the BP neural network
with the optimized weights and thresholds computed by
the PSO.

The algorithm flowchart of the PSO-BP model is shown in
Figure 2.

2.4 Combined model of PSO, GA, and BPNN

Genetic operations from genetic algorithms are incorporated
into particle swarm optimization (PSO), forming a combined GA-
PSO algorithm for preprocessing the weights and thresholds of a BP
neural network, optimizing the BP neural network model. The GA-
PSO merged optimization BP neural network model is established.
Particle swarm optimization (PSO) is an optimization algorithm
that simulates the natural phenomena of biological population
clusters. Genetic algorithms (GA) and particle swarm
optimization (PSO) algorithms share similarities, based on the
concepts of populations and fitness. Particle swarm optimization
exhibits fast convergence in the early stages of evolution, but in the
later stages, convergence speed decreases, and convergence accuracy
fluctuates, making it susceptible to falling into local minima. Genetic
algorithms possess excellent parallel computing capabilities and
strong global search abilities.

Thus, the combination of these two algorithms is emphasized,
with particle swarm optimization as the primary approach and
genetic algorithms as a supplementary method. While particle
swarm optimization iteratively optimizes the solution space of
the problem being addressed, the individual particles within the
particle swarm are transformed into chromosomes for genetic
algorithm operations (Lv et al., 2020). The iterative genetic
operations of genetic algorithms, including crossover and
mutation, are introduced into the optimization process of all
chromosomes in the population. The resulting GA-PSO-BP
model simultaneously possesses the global convergence of genetic
algorithms and the fast convergence of particle swarm optimization,
taking advantage of both.
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The steps of the PSO-GA-BP are as follows.

(1) BP neural network initialization. Determine the network
structure and basic parameters of the BP neural network.

(2) Particle swarm initialization Based on the network structure,
determine the population size, dimensions, particle velocities,
and positions. Use the error function F of the BP neural network
as the fitness function to evaluate the quality of each particle.

(3) Particle swarm iteration. Calculate the update of particle
velocities and positions and the fitness of particles to obtain
a new population.

(4) Particle swarm optimization added genetic operations. Within
the new population, particles are subjected to crossover with
individual best particles and global best particles. Additionally,
particles with significant differences in fitness values undergo
mutation operations with random initialization.

(5) Calculate the fitness values of the new particles. Compare,
record, and update the best positions of different individuals
and the best position of the population. Replace the best
particles from the previous generation of genetic
optimization. If it is not met, jump to step (3) and continue
completing the iteration.

(6) Decode and assign values to train the network. The improved
GA-PSO algorithm’s optimal individual is decoded and
assigned to the BP neural network. Utilize training data to

train the network and continuously update the network’s weight
matrices until the training is complete or meets the accuracy
requirements, establishing a well-trained neural network model.

The flowchart of PSO-GA-BP neural network prediction model
is shown in Figure 3 as follows:

3 Experiment part

3.1 Factors affecting slurry migration
distance

The migration distance of the slurry is influenced by factors such
as the rheological properties of the slurry, the injection pressure, and
the physical characteristics of the injected medium. Many factors
need to be considered. Therefore, the selection of appropriate levels
for experimental factors is particularly crucial. Based on the analysis
of data from previous coal mine water inrush channel grouting
control projects, three critical experimental factors were determined:
water cement ratio, aggregate particle size, and injection pressure.

3.1.1 Aggregate particle size
The particle size of aggregates serves as a critical metric for

assessing the suitability of slurry types and injectability, particularly

FIGURE 2
PSO-BP neural network optimization flow chart.
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when considering parameters such as particle distribution, porosity,
and permeability, which are pivotal in determining injectability and
calculating the required injection volume. The particle size of
aggregates directly governs the porosity of the aggregate
assembly, as well as the permeability, subsequently exerting an
influence on the seepage of the slurry within the assembly. With
an increase in porosity, the particle content per unit area decreases,
pore channel width expands, and the contact surface between the
slurry and particles diminishes, resulting in a comparatively lower
flow resistance during the migration process of the slurry.

3.1.2 Water cement ratio
The rheological properties of slurry are closely associated with

the water cement ratio (W/C). The transition from a Newtonian
fluid to a Bingham fluid in cement slurry occurs at a critical water
cement ratio near 1. When the water cement ratio is greater than 1,
the slurry exhibits Newtonian behavior, while when the water
cement ratio is less than 1, it behaves as a Bingham fluid. During
the grouting process, the water cement ratio is one of the factors that
influence the migration efficiency of the slurry. The water cement
ratio directly determines the initial viscosity of the slurry, which in

turn affects its injectability. As the water cement ratio in cement
slurry increases, there is a significant decrease in viscosity, density,
sedimentation rate, and compressive strength of the slurry, as well as
an increase in initial and final setting times. On the other hand, a
lower water cement ratio implies more incredible grouting difficulty,
requiring higher injection pressures and faster pressure decay within
the fissures.

3.1.3 Injection pressure
The injection pressure is employed to overcome the resistance

encountered by the slurry during its penetration or displacement
within the sandy soil layers, and the effectiveness of pressure control
is pivotal to the success or failure of grouting. Without considering
boundary conditions, elevating the injection pressure enables the
slurry to evacuate all voids, including air and water, within the
aggregate particle interstices, resulting in denser and more
consolidated particles. However, when the pressure exceeds the
permissible range dictated by boundary conditions, it can lead to
deformations and damage to the foundation and structures. The
injection pressure serves as the driving force for the slurry to
overcome resistance and displace groundwater during the

FIGURE 3
Flow chart of GA-PSO-BP neural network prediction model.
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grouting process. To achieve optimal slurry migration, it is
imperative to select and appropriately apply the injection
pressure judiciously.

3.2 Experimental setup

The experiment utilizes a self-built visual simulation test system
for grouting and water blocking in a water inrush channel. This
system comprises five main components: the water inrush channel
simulation system, grouting control system, water supply system,
data acquisition system, and material recovery system. The
conceptual diagram of the model is depicted as shown in
Figure 4 while the physical representation is illustrated in Figure 5.

The design of the test platform aims to simulate real-life
conditions closely. It is primarily used to study the interaction
processes between cement slurry and aggregate stacking, focusing

on technical issues related to grouting pressure, water cement ratio,
and aggregate particle size.

3.2.1 Water supply system
The water supply system comprises a water supply tank, a pump,

and an inlet pipeline. A 2.0ZDK-20 constant pressure water pump is
selected for the water supply pump. A ball valve is installed at the
inlet, and after pressurization by the pump, water flows through the
water supply pipeline into the water inrush channel, simulating the
flow within the channel. Dynamic water flow control is achieved by
adjusting the pump pressure and the ball valve.

3.2.2 Water inrush channel simulation system
The water inrush channel simulation system consists of two

main components: transparent cylindrical pipes and pipe supports.
The transparent pipes are made of acrylic material. The total length
of the acrylic pipe is 3.0 m, with an inner diameter of 70.0 mm. To

FIGURE 4
Conceptual model of the water inrush channel grouting and water blocking test platform.

FIGURE 5
The water inrush channel grouting and water blocking test platform.
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meet the pressure requirements, the pipe wall thickness is designed
to be 10.0 mm. A grouting port is located 1.0 m from the inlet for
pressure testing. Additionally, there are three pressure-measuring
holes with a diameter of 6.0 mm at the pipe’s lower part to measure
the pipe’s internal pressure. At both ends of the pipe, flange plates
are connected to the inlet and outlet pipes and equipped with control
devices. When two flange plates are bolted, they create a joint where
a gasket or sealing material can be placed, which helps prevent leaks
from the joint.

3.2.3 Grouting control system
The grouting control system consists of a slurry preparation

tank, a slurry storage tank, a grouting pipeline, and an air
compressor. The prepared slurry is poured into the slurry storage
tank, and the slurry is pressurized and conveyed to the aggregate
assembly using the pressure generated by the air compressor,
thereby achieving the grouting and sealing objectives. The upper
part of the slurry storage tank is equipped with a pressure gauge, and
the lower part has a ball valve for regulating the slurry discharge. The
air compressor is equipped with a pressure-regulating valve,
allowing for a stable pressure output of 0–0.8 MPa. The storage
tank and air compressor are connected via the delivery pipe, and the
physical representation of the slurry storage tank and air compressor
is depicted in Figure 6.

3.2.4 Data acquisition system
As shown in Figure 7, the data acquisition system comprises

image capture equipment and data acquisition devices. The data
acquisition device includes an electromagnetic flowmeter, a pressure
sensor, and a paperless recorder. An electromagnetic flowmeter is
positioned at a distance of 2.5 m to monitor real-time changes in
water flow velocity. Pressure sensors are arranged at distances of
0.75, 1.25, and 1.75 m from the inlet, respectively, and the pressure

variations within the channel during the grouting process are
exported via the paperless recorder. Specific equipment
parameters are detailed in Table 1.

3.2.5 Material recovery system
The material recycling system includes a drainage pump, a

drainage pipeline, and a recovery bucket. The tested aggregates,
mixed with cement slurry, flow into the recovery bucket through the
water outlet. The aggregates are separated, cleaned, dried, and then
screened for reusability. Any other wastewater is discharged through
the drainage pump.

3.3 Experimental result

The main parameters involved in the indoor testing include
aggregate particle size, water cement ratio, and initial grouting
pressure. Among these, aggregate particle size is categorized into
four levels: 0–2, 2–5, 5–8, and 8–10 mm. The water cement ratio
has five levels: 0.5, 0.8, 1.0, 1.5, and 2.0. The grouting pressure
ranges from 0.1 to 0.5 MPa, with intervals of 0.1 MPa as
individual levels. This experimental design follows a mixed-
level orthogonal design denoted as L25 (41 × 52). The total
volume of slurry is kept constant at 2.0 kg, and the entire test
duration is 5 min.

Based on the above analysis, slurry migration experiments were
conducted, and data for slurry migration distance were obtained. It
is evident that the migration distance of slurry within aggregate
stacking increases with a higher water cement ratio, larger aggregate
particle size, and increased grouting pressure, aligning with actual
scenarios. Across various factors and levels, the range of migration
distance varies approximately between 30 and 150 cm, as shown in
Table 2 below.

FIGURE 6
Grouting system equipment. (A) Grout storage tank. (B) Air compressor.
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4 Establishment of slurry migration
distance prediction model

4.1 Neural network model parameters

Slurry injection pressure, water cement ratio, and aggregate
stacking porosity are selected from the table as input influencing
factors for the neural network, with the lateral migration distance of
the slurry as the target output data. The data must be normalized to
avoid prediction errors in the neural network due to significant
differences in the magnitudes of input and output data (Feng et al.,
2022; Shan et al., 2022). The data set is normalized to the range [0, 1]
using the mapminmax function provided by Matlab.

The normalization formula is as follows:

Xn � 2 xn − x min( )
x max − x min

−1 (4)

where Xn represents the normalized sample data; xn represents the
actual measured data; xmin and xmax represent the minimum and
maximum values of each actual measured data.

Based on slurrymigration distance data and prediction requirements,
the number of nodes O in the input layer is determined to be 3, and the
number of nodes Q in the output layer is 1. The approximate range for
the optimal number of nodes P in the hidden layer of the neural network
can be determined by Eq. 5 (Satti et al., 2021).

P � �������
O + Q( )√ + b (5)

In the formula, O, Q, and P are the input layer nodes, output
layer nodes, and hidden layer nodes, respectively, and the value of b
is typically between 0 and 10.

Considering the BP neural network’s convergence and
generalization capabilities, a trial-and-error approach was utilized
to optimize the number of hidden layer nodes. In this study, the
hidden layer was configured within the interval [3, 12], and the
optimal number of hidden layer nodes was sought within this range.
Figure 8 illustrates the training accuracy values of the conventional
BP neural network for various numbers of hidden layer nodes. It can
be observed from the graph that when 5 hidden layer nodes were
selected, the network achieved the highest training accuracy. So, It
was determined that when there were 5 nodes in the hidden layer,
the best convergence was acquired by the BP neural network.

Consequently, a topology structure of 3×5×1 was selected for the
BP neural network. A single hidden layer was employed in
constructing the neural network, with the tansig function being
utilized as the activation function for the hidden layer and the
purelin function as the activation function for the output layer. The
training algorithm was applied, employing the Levenberg-
Marquardt gradient descent algorithm via the trainlm function to
adjust the weights and thresholds of the BP neural network. The
tansig function is defined as shown in Eq. 6. The training process
encompassed 10,000 iterations, the learning rate is 0.1, and the target
error is 1×10−6.

The tansig function formula is shown below (Zhang et al.,
2022b):

f x( ) � 2
1 + e−2x

−1 (6)

where e is the base of the natural log function.
The optimization of the BP neural network using a genetic

algorithm is based on real number encoding, with the Sheffield
Genetic Algorithm Toolbox employed for the genetic algorithm. The
selection method utilized the roulette wheel selection, the crossover
method involved two-point crossover, and the mutation method
used Gaussian mutation. Specific parameter settings included a

FIGURE 7
Data acquisition system equipment. (A) Pressure sensor. (B) Paperless recorder. (C) Electromagnetic flowmeter.

TABLE 1 Parameters of pressure sensor and electromagnetic flow meter.

Type Pressure sensor Electromagnetic
flowmeter

Product Model PCM350 HONQI50

Power Supply 24VDC 220VDC

Output Signal 4–20 mA 4–20 mA

MeasuringMedium Liquid Water, Oil, and Slurry

Accuracy 0.5% FS 1.0%

Measuring Range 0–100 KPa 0–50 m3/h
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population size N of 30, a genetic generation T of 100, a crossover
rate Pc of 0.8, and a mutation rate Pm of 0.2. The GA-BP neural
network model was established according to the algorithmic flow of
GA optimization for BP neural networks.

Based on the topology structure of the BP neural network, the
dimensionalityD in PSO is calculated asD=3×5+5×1+5+1=15+5+6=26.
When the population sizeN is smaller, the algorithm converges quickly,
and when it is larger, the algorithm exhibits better optimization
capability but slower convergence. Typically, values between 10 and
50 are chosen for the population size; in this case, N is set to 30. The
initial weight, w1 and the final weight, w2, are set to 0.9 and 0.4,
respectively. The learning factors c1 and c2 are both assigned values
of 1.49, and the maximum number of iterations T is set to 100.

4.2 Construction of fitness function

The fitness value is one of the indicators for assessing whether
the predictions meet the expected accuracy. The mean square error

calculation formula of the BP neural network output is used as the
fitness function of PSO and GA algorithm, as shown in Eq. 7 (Deng
et al., 2018):

F � MSE � 1
n
∑n
i�1

yi − y*
i( )2 (7)

where F represents the fitness value; n represents the number of
training samples; yi is the ith actual output value of the network; yi*
is the expectation value of the ith.

4.3 Evaluation of performance

To evaluate the performance of the prediction models, four
performance metrics were employed, namely, Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Mean Square
Error (MSE), Root Mean Square Error (RMSE), and Coefficient of
Determination (R2), were selected to evaluate the prediction
accuracy (Zheng et al., 2023). The formula for performance

TABLE 2 Data for slurry migration distance.

Serial number Aggregate size (mm) Water cement ratio Grouting pressure (MPa) Migration distance (cm)

1 0–2 0.5 0.1 31.35

2 2–5 1 0.1 53.89

3 5–8 1.5 0.1 75.19

4 5–8 2 0.1 85.60

5 8–10 2 0.1 93.17

6 0–2 1.5 0.2 63.51

7 2–5 0.8 0.2 57.37

8 5–8 0.8 0.2 65.50

9 8–10 0.5 0.2 65.39

10 0–2 1 0.3 69.07

11 2–5 0.8 0.3 81.62

12 5–8 2 0.3 146.66

13 8–10 0.5 0.3 88.57

14 8–10 1 0.3 114.39

15 0–2 1 0.4 68.10

16 2–5 1 0.4 97.30

17 2–5 1.5 0.4 124.38

18 5–8 0.5 0.4 81.76

19 8–10 2 0.4 168.57

20 0–2 0.8 0.5 68.83

21 0–2 1.5 0.5 97.24

22 0–2 2 0.5 111.95

23 2–5 0.5 0.5 85.02

24 5–8 1.5 0.5 150.59

25 8–10 0.8 0.5 112.59
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metrics is as follows (Deng et al., 2022; Zhang et al., 2022; Wang
et al., 2023):

MAE � 1
n
∑n
i�1

yi − y*
i

∣∣∣∣ ∣∣∣∣ (8)

MAPE � 1
n
∑n
i�1

yi − y*
i

∣∣∣∣ ∣∣∣∣
yi

(9)

RMSE �
������������
1
n
∑n
i�1

yi − y*
i( )2√

(10)

R2� 1−∑n
i�1 yi − y*

i( )2∑n
i�1 yi − �y( )2 (11)

where n is the total number of data points; i is an integer value
ranging from 1 to n; y denotes the experimental value; �y is the mean
value; and y* is the predicted value.

5 Results and analysis

5.1 Training process and results

Twenty-five sets of slurry migration distance test data collected
in Table 2 were employed as the training and prediction sample set
for the neural network model. Due to the extensive computational
demands associated with the establishment of a neural network
prediction model, Matlab 2020b was utilized, with the Neural
Network Toolbox being invoked. Prediction models for slurry
migration distance were constructed based on BP, GA-BP, PSO-
BP, and GA-PSO-BP neural networks according to predetermined
parameters. In order to ensure the prediction capability of the neural
network prediction models, the sample data in Table 1 was classified
into two categories, one serving as the training sample and the other
as the testing sample. There is no fixed number of training and
testing samples; generally, the greater the number of training
samples, the enhanced the training capability of the network, and
correspondingly improved the network’s prediction ability. The
number of testing samples should be at least 2 (Han et al., 2013).

Thus, the randperm function in Matlab was employed to randomly
select 20 sets of samples from the 25 sets of sample data in the table
for use as the neural network training set, with the remaining 5 sets
of samples being utilized for neural network prediction in order to
assess accuracy.

The fitness value change curves for prediction models based on
various neural networks are displayed in Figure 9. The GA-PSO-BP
model, optimized through the hybrid algorithm, exhibited superior
convergence speed and optimal individual fitness values compared
to the PSO-BP and GA-BP models. As the number of iterations
increased, the fitness value of GA-PSO-BP rapidly decreased from
0.3632 to 0.0561, signifying rapid convergence. The fitness function
value obtained by GA-BP was 0.0875, whereas that of PSO-BP was
0.1062. The results of the GA-PSO-BP neural network prediction
model closely approximated the expected values, thereby indicating
a substantial optimization effect and affirming the effectiveness and
feasibility of the neural network prediction model based on the GA-
PSO-BP algorithm.

5.2 Performance analysis of prediction
results of different algorithms

As can be observed from Figure 10, the slurry migration distance
prediction model constructed based on the GA-PSO-BP neural
network exhibits superior prediction performance compared to
the other three neural network prediction models. Its accuracy is
higher, errors are smaller, and predicted values are closer to the
measured values.

To quantitatively assess the reliability of predictionmodels based on
various neural network algorithms and to validate the accuracy and
superiority of the trained GA-PSO-BP prediction model in predicting
slurrymigration distances, the trainedmodels were used to predict 5 test
samples. Subsequently, the predicted results were compared with the
measured values. The comparison of prediction results and errors for
each model is shown in Table 3. For the four models in our testing, the
results of MAE, MAPE, MSE, RMSE, and R2 have been respectively
shown in Table 4.

FIGURE 8
Training accuracy with different hidden layer nodes.

FIGURE 9
Variation curve of the fitness value.

Frontiers in Earth Science frontiersin.org11

Su et al. 10.3389/feart.2023.1308175

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1308175


Based on the comparison of prediction results in Table 3, it
can be observed that the maximum absolute error for the BP
neural network prediction model is 12.09 cm, and the maximum
relative error is 21.08%. For the GA-BP neural network
prediction model, the maximum absolute error is 10.82 cm,
and the maximum relative error is 18.85%. The PSO-BP
model has a maximum absolute error of 6.20 cm, with the
maximum relative error reaching 10.80%. In contrast, the GA-
PSO-BP model exhibits a maximum absolute error of only
2.24 cm and a maximum relative error of only 3.89%,
significantly lower than the other three neural network
prediction models, which indicates that the GA-PSO-BP
neural network prediction results are closer to the actual
measurements compared to the predictions made by the other
models. When predicting the migration distance of slurry within
aggregate stacking, it is essential to consider its primary
influencing factors comprehensively.

It can be concluded from Table 4 that the errors in various
performance indicators of the GA-PSO-BP model’s predictions
are smaller than those of the other three models. In comparison,
both the PSO-BP model and the GA-BP model also exhibit
smaller errors compared to the single BP neural network
model, which indicates that the GA-PSO-BP model has
incorporated the advantages of both the GA and PSO
algorithms, optimizing the weights and thresholds of the BP
neural network, thereby enhancing its prediction accuracy and
reducing prediction errors compared to the other three models.

5.3 Weight analysis for influencing factors

The migration distance of slurry within aggregate stacking is
influenced by various factors such as grouting pressure, aggregate
porosity, water cement ratio, among others. The weight values can
be calculated through the GA-PSO-BP neural network to determine
the primary influencing factors. The GA-PSO-BP neural network
adjusts the connection weights and thresholds between the input
layer and the hidden layer, as well as between the hidden layer and
the output layer, to achieve the specified error and end the training.
After training, the weight values for the influencing factors on the
migration distance of slurry are determined by computing the
connection weights. Different weight values reflect the
contributions of each factor to the degree of impact. The
calculation results of the weight values for various influencing
factors on the migration distance of slurry are shown in Table 5.
The formula for calculating the weight values of various influencing
factors is provided as follows:

Wi �
∑q

j�1wijvj
∣∣∣∣∣ ∣∣∣∣∣∑m
i�1 ∑q

j�1wijvj
∣∣∣∣∣ ∣∣∣∣∣ (12)

whereWi represents the weight of the ith influencing factor, where i
ranges from 1 to 3; m denotes the number of influencing factors,
with m equal to 3; q represents the number of hidden layer nodes,
with q equal to 5 (the optimal number of hidden layer nodes); vj
signifies the connection weight between the jth node in the hidden

FIGURE 10
Comparison of Different Prediction Models Results Error. (A) BP prediction model. (B) GA-BP prediction model. (C) PSO-BP prediction model. (D)
GA-PSO-BP prediction model.
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layer and the output layer node;wij is the connection weight between
the ith node in the network’s input layer and the jth node in the
hidden layer, where j ranges from 1 to 5.

Table 5 shows that the ranking of weight values for factors
affecting slurry migration distance is as follows: grouting pressure >
aggregate particle size > water cement ratio. The weight analysis
results indicate that grouting pressure and aggregate porosity are the
primary controlling factors affecting slurry migration distance, while
the water-cement ratio is a secondary factor, which aligns with
conventional wisdom and theoretical analysis. The weight value for
grouting pressure is the highest, signifying that grouting pressure is
the fundamental factor influencing slurry migration distance.
Additionally, the weight values reveal that aggregate stacking
porosity contributes significantly to slurry migration distance,
second only to grouting pressure. Therefore, by appropriately
controlling grouting pressure and aggregate stacking porosity,
slurry migration distance can be managed effectively, fulfilling
the internal voids of the aggregate stacking with slurry.

6 Conclusion and prospect

Three essential parameters influencing the migration distance of
slurry in aggregate deposits were identified. Simulated experiments
regarding the post-disaster remediation process after water inrush

incidents were conducted using a self-designed single-hole grouting
test platform. The experimental results were used as a neural
network predictive model dataset to forecast the slurry migration
distance. Additionally, an investigation into the predictive
performance of various models was carried out.

Genetic algorithms possess strong global search capability, while
particle swarm optimization algorithms can accelerate the
convergence speed of networks. In this study, a combination of
genetic algorithms and particle swarm optimization algorithms is
employed, with particle swarm optimization algorithms as the
primary method, supplemented by embedded genetic algorithms,
forming the GA-PSO algorithm. The weight and threshold values
obtained through iterative optimization by the GA-PSO algorithm
are assigned to the BP neural network. Based on the selected
influencing factors of slurry migration distance and sample data,
BP neural network models, GA-BP neural network models, PSO-BP
neural network models, and GA-PSO-BP neural network models are
constructed. Simulated pretests are conducted on 25 sets of
experimental data to compare the training error performance and
prediction accuracy of the four models, as well as the optimal
individual fitness of the four optimized models.

The trained PSO-BP neural network prediction model is used to
predict test samples, resulting in an average relative error of only
1.59% compared to actual values. The average relative error for the
GA-BP neural network prediction model is 6.85%, for the PSO-BP
neural network prediction model is 5.36%, and for the BP neural
network prediction model is 7.57%. More accurate prediction results
can aid in the precise determination of drilling locations, guiding
actual engineering construction, which will be conducive to
reducing the wastage of cement slurry, accelerating the progress
of water disaster remediation, and mitigating environmental
pollution.

While the method proposed in this study achieved favorable
prediction results in experiments, the determination of fundamental
parameters, such as the fitness function selection in particle swarm
optimization, particle swarm size, and acceleration factors,
significantly influences the prediction performance of the GA-
PSO algorithm optimized BP neural network. Currently, there is
no definitive basis for determining these control parameters, and the
next step will focus on researching methods for setting parameters to
leverage the capabilities of intelligent optimization algorithms fully.

Otherwise, future research will continuously gather and compile
datasets from various sources and field studies, encompassing
diverse geological settings, multiple types of slurries, diverse

TABLE 3 Comparison of different neural network prediction model calculation results.

Serial number Predicted value (cm) Absolute error (cm) Relative error (%)

1 2 3 4 1 2 3 4 1 2 3 4

7 45.28 68.19 63.57 59.61 12.09 10.82 6.20 2.24 21.08 18.85 10.80 3.89

5 94.21 97.42 92.11 92.37 1.04 4.25 1.06 0.80 1.11 4.56 1.14 0.86

10 61.59 71.84 75.25 69.32 7.48 2.77 6.18 0.25 10.83 4.01 8.95 0.36

18 81.11 78.22 81.11 83.49 0.65 3.54 0.65 1.73 0.80 4.33 0.80 2.11

24 144.55 154.36 158.32 151.67 6.04 3.77 7.73 1.08 4.01 2.51 5.14 0.72

*1—BP; 2—GA-BP; 3—PSO-BP; 4—GA-PSO-BP.

TABLE 4 The performance of the four models.

Model MAE MAPE (%) MSE RMSE R2

BP 5.461 7.567 48.037 6.931 0.955

GA-BP 5.030 6.852 33.897 5.822 0.968

PSO-BP 4.365 5.364 27.585 5.252 0.974

GA-PSO-BP 1.219 1.590 1.971 1.404 0.998

TABLE 5 Weight of factors affecting slurry migration distance.

Influencing factors Weight values Ranking

Grouting Pressure 0.4629 1

Aggregate Size 0.3646 2

Water Cement Ratio 0.1725 3
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application methods, and environmental conditions. A broader and
more varied dataset will facilitate the establishment of a more
comprehensive model. Additionally, advanced machine learning
and statistical techniques capable of handling complex
interactions and nonlinear relationships within the data will be
explored. Techniques such as ensemble methods, neural networks,
and deep learning architectures may be employed to enhance
predictive accuracy.
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