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The U-steel support structures of underground caverns are prone to instability
and failure under blast loads. The purpose of the underground cavern
reinforcement is to mobilise the self-supporting capacity of the surrounding
rock to resist the blast. To better understand the mechanical performance and
failure mechanism of the U-steel support, the fracture process and vibration
behaviour of the support structure under blast loading are investigated by the
microseismic monitoring experiment. The dynamic responses of the cavern
support structures under blast loading are investigated, and the potentially
hazardous sections of the U-steel support structure are revealed by the
theoretical analysis. The microseismic monitoring results show that the blast
induced microseismic events are concentrated in the arch shoulder of the
small chainage, correspondingly the U-steel structures in this region have been
partially extruded and deformed. The failure mechanism of the supporting
structure is presented. In order to effectively inhibit the internal fracture
evolution or macroscopic failure of the rock mass, the synergetic reinforcement
scheme of the structures is proposed. The results of the research can be used
as a reference for the design and control method of the U-steel support in
similar projects.

KEYWORDS

underground cavern, u-steel support, blast load, microseismic monitoring, structural
performance

1 Introduction

As geotechnical engineering progresses to depth, excavation-induced seismicity and
rockburst disasters increase (Feng et al., 2017; Gong et al., 2018; Zhao et al., 2024; Li et al.,
2023¢; Li et al,, 2023d; Cui et al.,, 2023). The underground caverns are usually excavated by
the traditional drilling and blasting (D&B) technique. The shock wave released by the blast
will inevitably damage the bearing capacity of the rock mass structure (Dong et al., 2016;
Dong et al., 2020; Zhao et al., 2022a; Zhao et al., 2022b; Zheng et al., 2023a; Zheng et al.,
2023b). Blast excavation of underground caverns can cause varying degrees of damage
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or failure of the rock mass, seriously threatening the safety of workers
and delaying the progress of the project (Yang et al., 2021; Yang et al.,
2023; Zhao et al., 2023). Blast technology in cavern excavation is a
double-edged sword, i.e., a reasonable and useful blast design can
effectively fracture the rock within the desired limits of excavation
(Ma et al., 2018; Chen et al., 2020; Feng et al., 2021; Feng et al., 2023;
Guo etal., 2023). However, inappropriate blasting excavation will
damage the rock mass of the cavern (Brady and Brown, 2005;
Liu et al., 2023; Mei et al., 2023).

As an important line of defence, rock support measures are used
to prevent or minimize damage to excavations, thereby improving
workplace safety (Kaiser and Cai, 2012; Xu et al., 2023a; Xu et al,,
2023b). Rock reinforcement refers to the method of using artificial
components to strengthen and stabilize the rock mass (Li and
Doucet, 2012). Rock reinforcement measurements can effectively
control the inner fracture of the surrounding rock (Jiang et al.,
2015; Xu etal., 2022). U-steel is a kind of support structure that
commonly used in mines and underground caverns. In recent years,
the U-steel support structure of rock engineering has attracted much
attention from scholars due to its high strength, high rigidity and
good mechanical properties (Barla et al., 2011; Wong et al., 2013;
Zhao et al,, 2015; Cheng et al., 2023a; Cheng et al., 2023b; Lu et al.,
2023). Wang et al. (2018) studied the deformation and damage zone
of soft rock by in-situ acoustic wave testing technology, and proposed
a combined support technology with U-steel support and anchor
grouting. Wu et al. (2019) assessed the response of rock bolts and
U-steel under coal-burst conditions, with the aim of improving
the knowledge of the application of support systems in coal-burst-
prone mines. Wang et al. (2021) used numerical simulation to study
the interaction between the U-steel reinforcement element and the
surrounding rock under dynamic loading. In a word, the point or
surface mechanical properties of U-steel were effectively revealed.

Actually, the high precision three-dimensional monitoring
method can directly reflect the mechanical properties of support
structure (Ma et al., 2019). The microseismic monitoring is a timely
and regional monitoring method, which can monitor the failure
process of rock mas or support structure of whole underground
cavern in 3D perspective (Ma et al., 2013; Dai et al., 2016; Laura and
Martin, 2017; Xu et al., 2018). Chen et al. (2015) used microseismic
monitoring technology to deeply study the rock mass damage and
rockburst in the deep-buried tunnel of Jinping II Hydropower
Station. Based on the experimental study of rock failure acoustic
emission, Liu et al. (2021) established a prediction method of rock
burst disasters of mine. Microseismic monitoring technology has
been widely used in rock engineering under high stress, and has
become a common means of deep engineering disaster research
(Lietal, 2022; Lietal, 2023a.; Lietal., 2023b; Xia et al.,, 2023a;
Xia et al., 2023b; Chen et al., 2023).

The above-mentioned literature are concerned with the local
damage or failure of U-steel structure. However, there are few
researches on the vibration response characteristics and failure
mechanism of support structure under blast loading. In order
to investigate the evolution mechanism of the U-steel support,
a three-dimensional microseismic monitoring test of the support
structure of the underground cavern was carried out. The vibration
response and failure mechanism of the support structure under blast
load were investigated. The research results also provide reference
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FIGURE 1
Mechanical model of the U-steel.

for further study on the synergetic reinforcement mechanism of
rockbolt and U-steel support structure.

2 Dangerous section of U-steel
2.1 Mechanical model

The mechanical model of the U-steel support is established as a
rigid frame structure with a straight wall and a semi-circular arch
(Figure 1). In the figure, h is the height of the shed leg of the U-
steel, and r is the radius of the semi-circle arch. In order to simplify
the calculation, these conditions are supposed as follows: 1) the
connection between arch beam and shed leg is rigid junction; 2) the
U-steel support is closely attached to surrounding rock, and there is
no air gap between the U-steel and rock mass; 3) regardless of the
elastic resistance of surrounding rock to the support. Assuming that
the U-steel is subjected to vertical load q, and horizontal load q,,
and the calculation formula is:

9, =yH (6]

9, =Aq, =AyH (2)

In the Egs. 1, 2, y is the average bulk density of the overlying
surrounding rock, H is buried depth, and A is the lateral pressure
coefficient.

2.2 Solution of constraint reaction force

The mechanical model of the plane rigid frame is a statically
indeterminate structure. In Figure 1, both ends A and D are fixed
hinges. The principle of force method is adopted to solve the
problem. Supposing the horizontal constraint of point D is released,
and the force F is used instead, thus the basic statically system with
hinged end A and rolling support end D is obtained. The basic
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FIGURE 2
Calculation model of internal force equation under external load.

structural system after removing redundant constraints is shown
in Figure 2. The displacement of the point D is calculated by the
principle of force method. Assuming that a right horizontal unit
force is applied to the point D, then the equation of axial force and
the bending moment of rigid frame can be calculated. Actually, the
end D is a fixed hinge support, the horizontal displacement of point
D is zero, and the calculation formula is:
AD, =0 (3)
From the static equilibrium equation of Eq.3, the force

F can be resolved:

b c
F=2q,+% 4
st n 4
3
-z &+l(nh2+4r+zr2) (5)
28 31 I 2
:Z-ﬁ(”_h_,.ﬂ) (6)
3§ I\4 3
4
=l(”—h+ér)+h—+l<nh3+6h2r+§nhrz+ér3> 7)
S\2 3 41 2] 2 3

The bending moment equation of AB, CD and BC sections of
plane rigid frame are listed in Eqs. 8-10:

M1@1)=Fy1_%‘12y§ (8)
M,(y,) = —Fy, + %‘12)’% )
M(p) = %qz(h+rsin (p)2+%q172(1— cos ¢)? (10)

~F(h+rsin ¢) —q,7*(1 - cos ¢)

Where ¢ is the angle between the arbitrary section of BC
segment and the section of point C.
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TABLE 1 The basic mechanical parameters of U-steel support.

Inertia
moment
(cm®)

Sectional
?)

Design
height of
shed leg m)

Design arch

area (cm radius m)

45.69 928.65 5 ‘ 6 ‘

2.3 Determination of dangerous section
position

The sections AB and CD of plane rigid frame are symmetrical
structures, and the positions of dangerous sections are also
symmetrically distributed. Therefore, the AB section is used as the
analysis object to determine the dangerous section of the U-steel
support. Taking the uniform load (q, = q, # 0) of the support as
an example. The basic mechanical parameters of U-steel support
that used in the tunnel cavern are listed in Table 1. The above
mechanical parameters are substituted into Eqs. 4-7, then the force
F can be solved in Eq. 11:

F=-1.18¢, +5.659, (11)

According to the bending moment equation of the plane rigid
frame AB section, the bending moment curve is a quadratic
parabola. Differentiating the bending moment equation of the plane
rigid frame AB section, as shown in Eq. 12:

M,'(y,) =0

The location of the dangerous section of the AB section of the

(12)

U-steel support is calculated in Eq. 13:

y=£=
! q,

1.18¢,
1

+5.65

(13)

According to the condition of q, = q, # 0, the potential
dangerous section of AB section is 4.47 m away from the foot of
shed leg. It can be judged from Eq. 10 that the dangerous section of
the BC section is the middle of the arch. In practical engineering,
the sectional area, inertia moment and cavern size are relatively
constant. The change of dangerous section position of support is
related to the lateral pressure coefficient, that is, the force transferred
between support and surrounding rock, which is manifested in the
difference of contact force between support and surrounding rock.

3 Case study
3.1 Engineering background

The excavation size of left and right bank underground cavern
groups of the Baihetan Hydropower Station are huge, among them
the layout of designed right caverns is indicated in Figure 3. The
powerhouse is divided into ten layers along the elevation, and the
cavern is excavated by the traditional D&B method. The designed
excavation and blasting scheme of the powerhouse is demonstrated
in Figure 4.
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FIGURE 3

The layout of designed right underground cavern groups.
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FIGURE 4
Blasting excavation scheme of the underground powerhouse.

3.2 In-situ seismic monitoring experiment

The excavation size of underground cavern group is large,
and the cavern group is in high stress environment, which means
it is easy to induce the failure of the surrounding rock. Due
to the unfavourable multi-face empty environment of the busbar
tunnel, the disturbance degree of blast excavation unloading on
surrounding rock near the intersecting cavern is obviously greater
than that of single cavern. In order to effectively inhibit the internal
fracture evolution or macroscopic deformation of surrounding rock
of busbar tunnel, the reinforcement measures such as rockbolt and
U-steel support scheme are often used. The schematic diagram of the
U-steel support of the busbar tunnel is shown in Figure 5.

The busbar tunnel intersects with the powerhouse, and the U-
steel supports of the busbar tunnel are inevitably be impacted by
the blasting excavation of the powerhouse. In order to study the
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FIGURE 5
Schematic diagram of the U-steel support of the busbar tunnel.

dynamic response characteristics of the U-steel support under blast
excavation load, a microseismic monitoring test was carried out
during the excavation of the cavern. The 11# intersecting cavern
area is selected as the research object. Three-dimensional layout of
microseismic sensor network of underground cavern is described
in Figure 6. There are three monitoring sections surrounding the
research area. Two microseismic sensors are installed on each
section, and the distance between adjacent monitoring section is
30 m. The adopted microseismic sensor in underground cavern
is the uniaxial geophone. The bandwidth and sensitivity of the
geophones used are 7-2000 Hz and 100 V/m/s, respectively.

3.3 Vibration response of the support
structure

3.3.1 Blast signal characteristic

The forced vibration of U-steel support structure is excited by
blast load. Studying the vibration signal excited by blast load is
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FIGURE 6
Three-dimensional layout of microseismic sensor network of
underground cavern.
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FIGURE 7
Waveform characteristics of blast signal: (A) amplitude-time curve, (B)

amplitude-frequency curve.

helpful to understand the dynamic characteristics and mechanical
mechanism of support structure. The representative waveform of
the blast signal received by the MS sensor is shown in Figure 7.
Millisecond blast technology is used in the field construction of
underground cavern, resulting in multiple persistence of the excited
blast spectrum, that is, a single blast spectrum contains multiple
similar subwaveforms.

Frontiers in Earth Science

A
MSevent —» '

. Magni
oment Busbar tunnel ‘

0%.(.‘
@

-3.14
-2.89
-2.64
-2.40
-2.15
-1.91
-1.66
-1.42
-1.17
-0.92

B ‘

o
Moment Magnitude ‘
-3.14
-2.89
-2.64
-2.40
-2.15
-1.91
- -1.66
-1.42
-1.17
-0.92

Moment Magnitude

-3.14
-2.89
-2.64
-2.40
2215
-1.91
-1.66
-142
-1.17
-0.92

FIGURE 8
Spatial evolution of microseismic events in rock mass induced by blast

load. (A) Crack initiation period, (B) crack propagation period, and (C)
crack cluster period.

3.3.2 Evolution mechanism of MS events

In the process of blast excavation of underground cavern, the
blast shock wave is not directly applied to the support structure,
but is transmitted to the support structure through the rock mass
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FIGURE 10
Relationship between apparent stress and seismic moment.
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medium. Therefore, the fracture process of rock mass around the
support structure can also reflect the vibration characteristics of
the support structure. When rock breaks, energy is released in the

Frontiers in Earth Science

form of an elastic wave. Theoretically, any fracture will produce
an elastic wave accompanied by a slight vibration. If the vibration
signal generated by the rock fracture triggers the sensor, then
the rock fracture is recorded as a microseismic event. The spatial
evolution of microseismic events induced by blast excavation is
displayed in Figure 8. In the diagram, the color of the ball represents
the moment magnitude. The brighter the color, the larger the
magnitude. Moment magnitude is a source parameter that uses
the seismic moment to describe the magnitude of an earthquake
rupture. The size of the ball represents the radiated microseismic
energy, and the larger the radius of the ball, the greater the released
microseismic energy. According to the vibration response degree of
support structure to on-site blast excavation, the spatial evolution
of microseismic events can be divided into three stages: 1) Crack
initiation period (Figure 8A). There are a few microseismic events
induced by blast excavation. The spatial evolution shows that the
micro-fracture initiates at the arch shoulder of the small chainage
side of busbar tunnel. 2) Crack propagation period (Figure 8B).
A small number of large magnitude events are induced by blast
excavation, accompanied by a large number of small magnitude
events, which indicates that primary fracture propagation or new
fracture initiation occurs in rock mass under the action of tangential
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concentrated stress. 3) Crack cluster period (Figure 8C). The rock
mass enters the active period of deformation and fracture influenced
by the strong blast load. At this stage, the microseismic events occur
frequently, and the cumulative microseismic energy increases.

In addition, blastload is the important factor causing the damage
and deterioration of surrounding rock of the busbar tunnel. It
is found that the microseismic events of large magnitude near
the working face often occur within a few hours after blast.
Blast load is equivalent to the transient convergence of rock mass
after excavation, providing favorable conditions for deformation
and failure of U-steel support structure. Therefore, the excavation
method of short footage and discontinuous blasting should be
adopted when the working face advances to the vicinity of the
intersecting cavern.

The on-site survey found that the concrete spray layer of busbar
tunnel peeled off and the U-steel structure was partially extruded
and deformed. The failure of U-steel is the extrusion deformation
under compressive stress. The damage location of U-steel support
structure is consistent with the cluster area of microseismic events,
as shown in Figure 9. The cluster nucleation of microseismic events
indicates that the internal fracture of surrounding rock in this area is

10.3389/feart.2023.1314034

serious, and the deformation and failure of hard brittle surrounding
rock first occurs in the stress concentration area. The failure of the
U-steel support is also closely related to the redistribution stress after
blast excavation.

3.3.3 Apparent stress of microseismic events

Apparent stress can effectively measure the magnitude of
dynamic stress release in the seismic source, which is a microseismic
parameter independent of the source model. The calculation
formula of apparent stress is:

_HE

M (14)

94

In the formula, y is the shear modulus, E is the radiated
microseismic energy, and M is the seismic moment.

The relationship between apparent stress and seismic moment of
microseismic events is illustrated in Figure 10. The color of the ball
in the figure represents the microseismic energy of the microseismic
event. The lighter the color, the smaller the energy released. The size
of the ball represents the moment magnitude of the microseismic
event. The larger the radius of the ball, the larger the magnitude
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Schematic diagram of structural instability failure of U-steel support: (A) pinnacle shaped failure, (B) flat-top shaped failure.
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of the event. The apparent stress and seismic moment relation is
approximately power-law, and so a linear fit is used in the log-
log plot. The instability dynamic process of the structure can be
expressed by Eq. 14, which depends on the stiffness ratio of the
unstable rock to the surrounding rock mass.

In general, the greater the degree of stress concentration, the
greater the elastic strain energy released when the rock mass breaks.
The magnitude of energy release can be reflected by the source
parameter of apparent stress. The blast-induced cloud diagram of
apparent stress of microseismic events is shown in Figure 11. As
shown in the figure, the apparent stress is concentrated in the
contour of busbar tunnel, especially in the arch shoulder of the small
chainage and the arch foot of the large chainage. The apparent stress
concentration indicates that the stress level and the risk of fracture
of the support structure are high. In addition, the busbar tunnel

10.3389/feart.2023.1314034

is in an unfavorable multi-face empty and multi-faceted unloading
stress environment, which further aggravates the risk of failure to
the U-steel support structure.

4 Discussion

The instability of U-steel structure induced by blast loading is
the main cause of extrusion deformation of the support. To ensure
the safety and stability of the supporting load-bearing structure, the
impact stress can be decreased by reducing the excavation footage
and blasting charge. The structural stability of the support structure
is also an important factor affecting the deformation and instability
of U-steel support. In reality, the area between the U-steel and the
surrounding rock is usually unevenly distributed, influenced by the

A
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FIGURE 13
Synergetic reinforcement scheme of U-steel and prestressed cable: (A) lateral view, (B) front view of support structure.
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blasting technique, lithology and structural plane, resulting in poor
mechanical interaction between the rock and the support structure.
In addition, the unfavourable interaction relationship significantly
reduces the overall load-bearing capacity of the U-steel structure,
resulting in structural instability of the support. The specific form of
structural instability failure is closely related to the region of uneven
air gaps distribution behind the U-steel. For example, the pinnacle
shaped failure of U-steel when the air gap is distributed in the top
arch (Figure 12A), and the flat-top shaped failure of U-steel when
the air gaps are distributed in the spandrel of cavern (Figure 12B).

Based on the above-mentioned typical unstable section and the
failure characteristics of U-steel support, a synergetic reinforcement
scheme is proposed. The designed synergetic reinforcement scheme
of structure with support and surrounding rock is shown in
Figure 13. The synergetic reinforcement is a method in which the
U-steel, the back wall filling and the pre-stressed anchor cable
are coupled together. The synergetic reinforcement compensates
the bearing capacity and structural stability of the support by the
anchor cable at a reasonable position, which can improve the overall
bearing capacity and structural stability of the U-steel support.
At the same time, the U-steel support provides a good surface
protection component for the anchor cable, and improves the
anchoring performance of the anchor cable. In essence, the main
purpose of reinforcement is the mobilisation of the self-supporting
capacity of the surrounding rock to the greatest extent possible. After
the installation of U-steel and the filling behind the wall, the I-
steel coupling joist is used to install the prestressed anchor cable at
the dangerous section. On the one hand, the scheme can effectively
realize the efficient transmission of the prestress, and provide certain
structural compensation force to the unstable section position. The
stress of the potential failure section of the support structure is
greatly reduced after adopted the synergetic reinforcement scheme.
On the other hand, the synergetic reinforcement measure can
promote the uniform distribution of the external load of the
support, thereby improving the overall bearing performance of the
support structure.

5 Conclusion

An in-situ microseismic monitoring system is established in
the cavern of the Baihetan Hydropower Station, and the impact
of blasting on the U-steel support structure is investigated. The
dynamic response and failure process of the U-steel support under
blast loading are obtained by microseismic monitoring experiment
and theoretical analysis. The monitoring results show that the forced
vibration of the U-steel support structure is excited by the blast load.
The concrete spray layer of the busbar tunnel is delaminated and the
U-steel structure is partially extruded and deformed under the blast
load. Furthermore, the location of the damage to the U-steel support
structure is consistent with the area of the cluster of microseismic
events. The apparent stress is concentrated in the contour of the
busbar tunnel, particularly in the arch shoulder of the small chainage
and the arch foot of the large chainage.

In addition to the effects of blast loading, the structural
stability of the support is an important factor in the deformation
and instability of the U-steel support. Therefore, the synergetic
reinforcement scheme is proposed to inhibit the deterioration
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of the surrounding rock. The results showed that the designed
synergetic reinforcement scheme could provide a certain structural
compensating force to the unstable section position, and improve
the overall bearing performance of the U-steel support structure.
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