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Protection of cultural relics and sites is of great significance. In this study, the new
gray-green thin-layer biological crust on the rammed soil surface at the
Shanhaiguan Great Wall in China was found. The emergence of this material
has substantially improved the resistance of the rammed Earth Great Wall to rain
erosion. 16S rRNA gene sequencing on the surface crusts of rammed Earth was
performed. Results show the biological crusts were mainly algae-based
composite crusts containing fungi. At the genus level, microalgae and
Sphingomycetes were predominant. Under scanning electron microscopy
(SEM), algae filaments dominated by filamentous algae overlapped and
intertwined with each other. Furthermore, polysaccharide organic matter
secreted by algae formed a covering film. The two formed a complex spatial
network structure to envelop soil particles, which enhances erosion resistance.
The conformable biological crusting is expected to be used as a new civil
engineering material for the protection of rammed Earth sites in the future.
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Introduction

The Great Wall is an important military defense system in ancient China and a world
historical and cultural heritage site (Chen et al., 2015; Chen et al., 2018a). The Shanhaiguan
Great Wall was built during the Ming Dynasty, and the wall is mainly composed of outer
bricks and rammed Earth inside the wall. Due to climatic and historical reasons, some of the
city bricks disappeared, leaving only the rammed Earth wall core. The rammed Earth wall
core has experienced collapse and erosion damage due to rain, causing irreversible damage to
cultural relics. Therefore, civil engineering materials used to protect the rammed Earth of the
Great Wall urgently need to be developed.

The Great Wall is a world cultural site, and the protection of the rammed Earth of the
Great Wall needs to be implemented under the consideration of the principle of in situ
protection in accordance with the requirements for the protection of cultural relics and sites
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(Li et al., 2011b). That is, no change in the status quo and minimal
intervention. This creates a challenge in the selection of protective
materials. Therefore, some scholars have used inorganic materials
and organic polymer materials to carry out protective experiments
on rammed Earth surfaces (Maravelaki-Kalaitzaki et al., 2008; Kim
et al., 2009; Fang et al., 2015b; Chen et al., 2016; Chen et al., 2018b).
The advantages of organic reinforcement are good permeability,
strong adhesion and flexibility, and good hydrophobicity; however,
the disadvantage is that most are toxic and susceptible to
environmental degradation due to environmental influences
(Zhao et al., 2008; Li et al., 2011a; Wang et al., 2011). Inorganic
materials have good antiaging performance, long service life, and
relatively low costs; however, the disadvantages are high shrinkage,

poor water resistance, and low reinforcement ability. Therefore, a
new type of civil engineering material suitable for the rammed Earth
of the Great Wall remains to be found (Chen et al., 2015; He et al.,
2019).

Notably, a gray-green thin-layer biological crusting material was
found through on-site investigation. The presence of this material
has substantially improved the resistance of rammed Earth sites to
rain erosion. So, it is essential to study the biological composition
and microstructure of the material to further understand the erosion
resistance mechanism. In this study, five groups of biocrust materials
from different locations are collected. The 16S rRNA gene was
sequenced to determine its biological composition and dominant
attributes. And SEM was adopted to observe the microstructure.

FIGURE 1
Rammed Earth Great Wall biological crust: (A) The biological crusts are resistant to rain erosion, (B) Biological Crusts sample.

FIGURE 2
OTUs of biological crusts: (A) Total amount of different crusts, (B) Rank Abundance.
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Materials and methods

Biological crusts on the rammed soil surface
of the shanhaiguan great wall

Figure 1 shows photos of rammed Earth Great Wall biological
crust. As shown in Figure 1A, there is clearly no rainwater erosion of
the biological crusts found on the surface of the Great Wall rammed
Earth (Fang et al., 2015a). However, traces of rainwater erosion are
clearly visible in the crusts of non-growing organisms. The biological
crusts of rammed Earth surfaces are gray-green, with a thickness of
approximately 1–3 mm. Under the crustal layer is primitive rammed
Earth, the soil structure is dense, silty clay, and contains crushed
stone particles, as shown in Figure 1B. The experimental samples
were collected from the Shanhaiguan Great Wall in China, and a
total of five sets of samples were selected and named JP1~JP5. JP1,
JP2, JP3, and JP4 are the biological crust samples taken from the
GreatWall itself, and JP5 are the biological crust samples taken from
the natural ground at the foot of the Great Wall slope.

Genomic DNA sequencing

The 16S rRNA gene was sequenced from five groups of
biological crust samples, the test was conducted in a gene
laboratory, Wuhan. It was used to identify the genetic
characteristics and dominant species of the biological crusts. The
test process was as follows: DNA extraction → polymerase chain
reaction (PCR) amplification → amplicon library construction →
machine sequencing.

SEM testing

Gray-green biological crust samples were selected for drying for
SEM observation. The VEGA3 (LM) fully automated tungsten
filament scanning electron microscope produced by TESCAN in
the Czech Republic was used for this test. The experimental
magnification was 500–20,000 times.

Results and DISCUSSION

Biodiversity analysis

Figure 2A shows OUTs and rank abundance of five samples,
where OTUs refer to the number of per unit volume. From
Figure 2A, it could be found that JP5 samples collected from the
foot of the Great Wall had the largest number of organisms, with
1699 OTUs (OTU is the abbreviation for Operational Taxonomic
Units). The OTU numbers of JP2, JP3, and JP4 were basically the
same, with 770, 949, and 940, respectively. The number of OTUs in
JP1 was between them, with 1338. This shows that the number of
ground organisms exceeds the number of wall organisms, and the
ground biological crusts are more complex.

The rank abundance curve is shown in Figure 3. The abscissa
indicates the abundance ranking of the OTU, and the ordinate
indicates its relative abundance. This reflects the diversity of species
composition and the distribution of species abundance. From
Figure 2B, JP5 has the largest sample abundance, followed by the
JP1 sample, JP3 is close to JP4, and JP2 is the smallest. The
biodiversity of the five sampling points had certain differences,

FIGURE 3
Dilution curves for 16S rRNA.
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and the foot of the Great Wall was the most different from the
surface of the Great Wall.

Community composition of biological crusts

The dilution curves for 16S rRNA sequencing of five samples are
shown in Figure 3. As shown in Figure 3, the dilution curves of each
sample first increase rapidly and thenflatten. This shows that the amount
of sequencing data is reasonable, the sequencing depth is appropriate,
and the data reflect the real situation of the microbial community.

Figure 4 presents the classification of organisms of five samples.
It could be found that a total of 28 phyla, 65 classes, 140 orders,

177 families, 356 genera, and 403 species were included in five
samples.

Figure 5A shows that the top five of the five groups of test
samples at the phylum level include Cyanobacteria, Proteobacteria,
Actinobacteriota, Chloroflexi, Bacteroidota, and Planctomycetota.
The dominant phylum was Cyanobacteria for all groups.

Figure 5B presents colony column chart at the genera.
Obviously, there are great differences in the distribution of
horizontal communities among the samples. To compare the five
samples more clearly, the top two genera for every sample are shown
in Table 1. It could be found that the top two genera of JP1 include
Microcoleus (15.77%) and Sphingomonas (3.14%); the top two
genera of JP2 are Segetibacter (5.48%) and Sphingomonas

FIGURE 4
Number of crusted species levels at different sampling points.

FIGURE 5
Bacterial community composition in crusts at different sampling points: (A) Colony column chart at the phylum, (B) Colony column chart at the
genera.
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(4.72%); the top two genera of JP3 are Leptolyngbya (17.83%) and
Calothrix (7.20%); the top two genera of JP4 are Sphingomonas
(6.55%) and Methylobacterium (5.70%); and the top two genera of
JP5 are Mastigocladopsis (7.37%) and Sphingomonas (3.13%).
Among them, Microcoleus, Leptolyngbya, Calothrix, and
Mastigocladopsis all belong to Cyanobacteria. So, the dominant
species are Microcoleus and Leptolyngbya of Cyanobacteria.

SEM microstructure

Figure 6 shows SEM results for a 500–5000 magnification of the
biocortex. Under a scanning electron microscope, Figure 6A is

a ×500 magnification photograph of the crust. The figure shows
that the filamentous algae grow densely and overlap with each other,
forming a spatial network pattern. Figure 6B shows the crust
magnified at 1000x. Filamentous algae can be seen intertwined and
covering the surface of soil particles, tightly locking the soil particles.
Figure 6C shows a ×2000magnified view of the crust. From Figure 6C,
the polysaccharide mucus secreted by algae covers the surface of the
soil particles, forming a dragnet membrane-like structure that covers
the soil below. Figure 6D shows a magnified 5000x photo of the crust,
and the state of the filamentous algae can be clearly seen.

From the survey site, it was found that algal biological crusts can
effectively prevent rainwater erosion and washing. The anti-erosion
mechanism of algal crusts is explained as follows: algae secrete

TABLE 1 Top two genera for five samples.

Samples JP1 JP2 JP3 JP4 JP5

Genera type and relative content Microcoleus (15.77%) Segetibacter (5.48%) Leptolyngbya (17.83%) Sphingomonas (6.55%) Mastigocladopsis (7.37%)

Sphingomonas (3.14%) Sphingomonas (4.72%) Calothrix (7.20%) Methylobacterium (5.70%) Sphingomonas (3.13%)

FIGURE 6
SEM photo of the crust layer under different magnifications: (A) 500, (B) 1000, (C) 2000, and (D) 5000.
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polysaccharides, lipids and proteins under photosynthesis, which
have a bonding effect and can effectively bind soil particles (Mazor
et al., 1996; Hokputsa, 2003). On the other hand, algae silk,
mycelium and soil particles form a wrap and entanglement,
which can firmly lock the soil particles (Belnap and Gillette,
1998; Hu et al., 2002). Furthermore, it forms a special multilayer
network structure with polysaccharide mucus secretions so that the
stability of the soil surface is enhanced (Ye et al., 2020).

Conclusion

From the on-site investigation, it is known that the biological
crusts of the rammed Earth of the Shanhaiguan Great Wall have
strong rain erosion resistance. These biological crusts are a new
material for civil engineering with great potential in the future.
Through genome sequencing and SEM testing of biological crust
samples, we have reached the following conclusions:

1) Biological crusts conform to biological crusts that are dominated
by the phylum Cyanobacteria and contain a variety of fungi. At
the genus level, filamentous algae, dominated by microalgae and
Sphingomycetes, predominate.

2) Algae algae silk, mycelium and soil particles form a wrap and
entanglement, which can firmly lock the soil particles. In
addition, it forms a special multilayer network structure with
polysaccharide mucus secretions so that the stability of the soil
surface is enhanced.

3) Future work can analyze and extract the dominant algal species
through the analysis of the crustal biodiversity of native algae of
the Great Wall. The dominant algae can be inoculated on the
surface of the rammed Earth of the Great Wall for rain erosion
test analysis. Native algae can be turned into usable civil
engineering protection materials.
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