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Introduction: This study presents the application of machine learning (ML) to
evaluatemarine fog visibility conditions and nowcasting of visibility based on the
FATIMA (Fog and turbulence interactions in the marine atmosphere) campaign
observations collected during July 2022 in the North Atlantic in the Grand Banks
area and vicinity of Sable Island, northeast of Canada.

Methods: Themeasurementswere collected using instrumentationmounted on
the Research Vessel Atlantic Condor. The collected meteorological parameters
were: visibility (Vis), precipitation rate, air temperature, relative humidity with
respect to water, pressure, wind speed, and direction. Using all variables, the
droplet number concentration was used to qualitatively indicate and assess
characteristics of the fog using the t-distributed stochastic neighbor embedding
projection method (t-SNE), which clustered the data into groups. Following
t-SNE analysis, a correlation heatmapwas used to select relevantmeteorological
variables for visibility nowcasting, which were wind speed, relative humidity,
and dew point depression. Prior to nowcasting, the input variables were
preprocessed to generate additional time-lagged variables using a 120-minute
lookback window in order to take advantage of the intrinsic time-varying
features of the time series data. Nowcasting of Vis time series for lead times of
30 and 60 minutes was performed using the ML regression methods of support
vector regression (SVR), least-squares gradient boosting (LSB), and deep learning
at visibility thresholds of Vis < 1 km and < 10 km.

Results: Vis nowcasting at the 60 min lead time was best with LSB and was
significantly more skillful than persistence analysis. Specifically, using LSB the
overall nowcasts at Vis 1 < km and Vis 10 < km were RMSE = 0.172 km and
RMSE = 2.924 km, respectively. The nowcasting skill of SVR for dense fog (Vis
≤ 400 m) was significantly better than persistence at all Vis thresholds and lead
times, even when it was less skillful than persistence at predicting high visibility.

Discussion: Thus, ML techniques can significantly improve Vis prediction when
either observations or modelbased accurate time-dependent variables are
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available. The results suggest that there is potential for future ML analysis that
focuses on modeling the underlying factors of fog formation.

KEYWORDS

visibility nowcasting, machine learning, artificial intelligence, marine fog, visibility,
microphysics, deep learning, regression

1 Introduction

Marine fog can form suddenly in marine environments over
a range of time and space scales through complex microphysical
and dynamic interactions. The intensity of marine fog is expressed
in terms of visibility (Vis). An earlier field campaign, called C-
FOG (Coastal-Fog), focused on coastal fog and its life cycle along
the coastal areas near Nova Scotia, Canada (Gultepe et al., 2021a;
Fernando et al., 2021). However, the coastal fog life cycle can be
significantly different compared to the marine fog life cycle and
can be attributed to the high variability of the fog life cycle
with respect to its formation, development, and dissipation across
different domains (Gultepe et al., 2007; Gultepe et al., 2016; Koracin
and Dorman, 2017). Thus, a specific analysis of marine fog Vis is
necessitated.

Marine fog prediction using Numerical Weather Prediction
(NWP) models can include large uncertainties over shorter time
scales such as less than 6 h (Gultepe et al., 2017). One reason for
this is that microphysical parameters cannot be predicted accurately
because of the limited knowledge of nucleation processes and
microphysical schemes (Seiki et al., 2015; Gultepe et al., 2017). Due
to this concern, postprocessing of the NWP model outputs such as
air temperature (Ta), dew point temperature (Td), relative humidity
with respect to water (RHw), wind speed (Uh), and direction
(ϴdir), precipitation rate (PR), and pressure (P) can be used for
Vis predictions (Gultepe et al., 2019). However, for nowcasting
applications, many studies are limited because of their large time
scales for predictions. For example, predictions based upon ERA5
(fifth generation European Centre for Medium-Range Weather
Forecasts (ECMWF) Atmospheric Reanalysis) predictions do not
cover shorter time (<1 h) (Yulong et al., 2019) and space scales
(<1 km) (Pavolonis et al., 2005; Mecikalski et al., 2007). Space scales
based on satellite observations are similarly limited for nowcasting
applications because infrared (IR) channels have a resolution of
usually 1 km and short-wave infrared (SWIR) channels cannot be
used accurately (Pavolonis et al., 2005; Gultepe et al., 2021a) for fog
monitoring during the daytime. This suggests that new analysis
techniques are needed for nowcasting of fogVis prediction over time
scales less than 6 h.

Studies based on earlier field campaigns used microphysical
measurements such as droplet size distribution (DSD) to obtain
microphysical parameters (i.e., liquid water content (LWC), droplet
number concentration (Nd), and Vis) and develop observational-
based Vis parameterizations (Song et al., 2019; Gultepe et al., 2021b;
Dimitrova et al., 2021). Although developing Vis parameterizations
in this manner is correct, application of these parameterizations
to model output data is not straightforward because NWP
models cannot accurately predict key microphysical parameters,
e.g., LWC, Nd, and RHw (Bott et al., 1990; Bergot et al., 2005;
Zhou et al., 2012; Seiki et al., 2015). Studies have shown that only

a 5% error in RHw or Nd can significantly affect Vis conditions
(Kunkel, 1984; Gultepe et al., 2007; Song et al., 2019). Due to these
uncertainties inmeteorological parameters, new analysis techniques
are needed for developing Vis prediction algorithms. An additional
study on Vis parameterization, (Gultepe et al., 2006; Gultepe et al.,
2017), suggested that a 10%–30% error in Nd can lead to a
100% error in Vis, demonstrating the volatility of Nd-dependent
predictions.

The limitations of microphysical parameterizations for NWP
models used for Vis prediction suggest that alternate techniques are
needed. For example, Yulong et al. (2019) suggested that machine
learning (ML) techniques can be used for fog Vis prediction. Such
studiesmostly used ERA5 reanalysis data or similar archive datasets,
which used observations that were hourly, 3-hourly, or even daily
(Pelaez-Rodriguez et al., 2023, Yulong et al., 2019). However, fog
can form and dissipate in less than a few minutes (Pagowski et al.,
2004), thus large/slow-scale model outputs are likely to have biased
predictions for smaller/faster-scale events. Another study based on
satellite observations, used shortwave (SW) and IR channels on a
spatial scale of 1 km to predict fog formation but did not yield
insights about Vis (Gultepe et al., 2021b).

In recent years, there has been a focus on predicting the
presence of fog, called a binary classification task in the context
of ML, given meteorological variables, using either deep learning
(Kipfer, 2017; Miao et al., 2020; Kamangir et al., 2021; Liu et al.,
2022; Min et al., 2022; Park et al., 2022; Zang et al., 2023) or more
standard techniques (Marzban et al., 2007; Boneh et al., 2015; Dutta
and Chaudhuri, 2015; Cornejo-Bueno et al., 2017;Wang et al., 2021;
Vorndran et al., 2022). Such approaches forego the opportunity
for insights regarding the dissipation and formation of fog
over time by not predicting fog intensity and, thus, do not
lend themselves to characterizing the underlying fog-evolution
mechanisms. Furthermore, in the aforementioned studies, the
analyzed time resolution was 1 h, presenting no opportunity to
even classify rapidly dissipating fog. Predicting the time series
of fog visibility was pursued by (Yu et al., 2021), but the time
resolution was again limited to 1 h and the lead times were 24
and 48 h, which are not viable operationally. Moreover, there
was only one fog event in the prediction interval, which does
not provide sufficient information regarding the variability of
Vis. Other studies have attempted to predict the times series of
visibility, not due to fog, but rather pollution (Zhu et al., 2017;
Kim et al., 2022b; 2022a; Ding et al., 2022), and at a coarse time
resolution with very few low visibility events (Zhu et al., 2017;
Yu et al., 2021).

Although purely deep learning models that inherently account
for the autoregressive time series structure have been popular
in recent years for various applications such as precipitation
nowcasting (Shi et al., 2017; Wang et al., 2017), electricity and
traffic load forecasting (Rangapuram et al., 2018), or ride-sharing
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FIGURE 1
Overall preprocessing pipeline used for ML nowcasting Vis.

FIGURE 2
The mission path (red colored line) for the R/V Atlantic Condor for collecting detailed microphysics, dynamics and aerosol observations during the
FATIMA field campaign. Data was collected near Sable Island, NS and the Hibernia oil platform near St. John’s, NL, Canada.

load forecasting (Laptev et al., 2017; Zhu and Laptev, 2017),
such models do not necessarily perform better than non-deep
learning techniques (Laptev et al., 2017; Elsayed et al., 2021) unless
careful hyperparameter tuning is employed (Laptev et al., 2017).
Direct forecasting (Marcellino et al., 2006) with the appropriately
lagged variables (Hyndman and Athanasopoulos, 2021) performs
on par or even better than the time-dependent deep learning
models that are variants of recurrent neural networks (RNNs)
(Laptev et al., 2017; Elsayed et al., 2021). Furthermore, deep
learning models, particularly RNNs are notoriously difficult to train
with data obtained from non-standard settings (Laptev et al., 2017;
Elsayed et al., 2021).

In the current study, we used FATIMA (Fog and turbulence
interactions in the marine atmosphere) marine fog field
campaign’s 1-min observations obtained from various platforms
and instruments mounted on the Research Vessel (R/V) Atlantic
Condor (Fernando et al., 2022). Measurements were collected
over the northeast (NE) of Canada, near Sable Island (SI) and
Grand Bank (GB) region of the northwest (NW) Atlantic Ocean
(Fernando et al., 2022; Gultepe et al., 2023). Nowcasting of marine
fog Vis with the ML regression algorithms of support vector
regression (SVR), least-squares gradient boosting (LSB), and
deep learning (DL) was performed using lagged versions of
these observations. To characterize marine fog with respect to
Vis, t-distributed stochastic neighbor embedding (t-SNE) was
performed on the whole dataset and projected into 2D space, which

organized the data into groups that could be visually assessed with
respect to Nd.

2 Materials and methods

The complete data analysis pipeline for nowcasting marine
fog Vis time series at lead times of 30 and 60 min, using the
3 ML regression methods of 1) SVR, 2) LSB, and 3) DL at
visibility thresholds of Vis <1 km and <10 km is summarized in
Figure 1. For analysis, data obtained from 10 intensive observation
periods (IOPs) from the FATIMA campaign were used. The
collected meteorological variables were preprocessed to create
additional time lagged variables, using a lag of 120 min, to take
advantage of the latent time-dependent features inherent to the
time series data. The following subsections describe the FATIMA
field campaign observations, data reduction choices, and 3 ML
nowcasting methods.

2.1 FATIMA field campaign and
observations

The FATIMA field campaign took place over the northeastern
Atlantic Ocean, off the eastern Canada coast (Figure 2) in July of
2022 (Fernando et al., 2022; Gultepe et al., 2023). The R/V Atlantic
Condor outfitted with platforms and instruments (Figure 3),
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FIGURE 3
(A) The R/V Atlantic Condor, with instruments and platforms used for obtaining measurements. The WXT520 on the upper platform was used to obtain
the meteorological observations. (B) FD70 was used to obtain fog visibility and hydrometeor data, such as precipitation rate and amount.

collected observations as it sailed from Halifax, NS to Sable Island,
NS and the Grand Banks area. The data was collected nearby from
Sable Island, NS and the Hibernia oil platform near St. John’s,
NL, Canada. Using the Vaisala WXT520 compact meteorological
station (Figure 3A) the meteorological parameters of Ta, P, RHw,
and Td were measured at 1 Hz. From the Vaisala FD70 (Figure 3B),
observations related to fog Vis, PR, and type were obtained every
15 s. With the Gill R3A ultrasonic anemometer Uh and ϴdir
were obtained at 20 Hz. One-minute intervals were applied to
aggregate the dataset for analysis. In addition to WXT520 and FD70
measurements, fog microphysics and aerosol measurements were
also made, but were not directly used in the analysis, except that
the Nd collected from the FM120 was used to qualitatively verify
the low Vis conditions. Details on these instruments can be found
in Gultepe et al. (2019) and Minder et al. (2023).

2.2 PR filtering and visibility thresholding

The analyzed measurements for the ML algorithms were
fog Vis (km), Ta (°C), ϴdir (°), Uh (m s−1), RHw (%), and P
(hPa). The dew point depression (Ta-Td in °C) and the standard
deviations of temperature (Ta,sd), relative humidity (RHw,sd), and
pressure (Psd) were also computed for each 1-min interval. The six
original measured and four computed variables altogether formed
10 parameters (Table 1), which were selected based on literature
reviews and physical concepts related to fog formation.

The dataset was filtered to contain observations with PR <
0.05 mm h−1, due to the fact that rain may confound the prediction
of visibility arising from fog, since the impact of rain on visibility

TABLE 1 Summary statistics of the measurements used for ML analysis.

Variable Minimum Median Maximum

Vis (m) 76.25 387.5 9999.8

Ta (°C) 8.5 16.1 24.112

Ta,sd (°C) 0 0 0.2439

Ta-Td (°C) 0.01704 0.066958 3.3306

RHw (%) 82.215 100 100

RHw,sd (%) 0 0 0.37948

P (hPa) 993.03 1,014.2 1,019.9

Psd (hPa) 0 0.079173 0.45375

ϴdir (°) 0.15274 215.75 359.95

Uh (m s-1) 0.021129 6.4165 13.447

can be as large as fog (Gultepe and Milbrandt, 2010). Then, the data
was thresholded only to have observations satisfying either, 1) Vis
<10 km, to assess how the nowcasting would perform when there is
a combination of high and low visibility; and 2) Vis <1 km, to assess
how nowcasting would perform when fog is present according to
the official definition (American Meteorological Society, 2012). For
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all variables and analyses, the time resolution of 1 min was enforced
to mitigate any further data aggregation.

All 10 variables were initially analyzed using the t-SNE
projection method (Maaten and Hinton, 2008). The t-SNE method
essentially represents the similarities amongst observations in the
high dimensional space in a lower dimensional space (typically
2D or 3D) using the t-distribution, where the fitting procedure is
guided by the Kullback-Leibler divergence loss function (Maaten
and Hinton, 2008). The t-SNE method, while similar to the multi-
dimensional scaling method (Torgerson, 1952), is more effective
at exposing nonlinear relationships within the data. The additional
benefit of using t-SNE is that it hints at whether clustering methods
(e.g., spectral clustering) can successfully find groupings within the
data, i.e., “pre-clustering” (Linderman and Steinerberger, 2019). The
2D embeddings obtained from t-SNE were visualized and assessed

FIGURE 4
Shows an example of how time series data can be restructured for use
in ML regression models for direct forecasting. The example shown
uses a lag of 2 timesteps to predict 5 timesteps into the future.

as to whether the data was organized or grouped in any meaningful
way related to Nd.

2.3 Relevant variable selection

To determine which variables would be the most relevant for
visibility nowcasting, all 10 variables (Table 1) in the thresholded
dataset at Vis <10 km were used for a pairwise correlation analysis
and visualized as a heatmap. Only the variables Uh, RHw, Ta-
Td, were selected because they all had a statistically significant
correlation (p < 0.001) and a moderate magnitude of correlation (r
> 0.30) with Vis (Ratner, 2009). Additionally, the variable choices
are viable in a meteorological context, e.g., it is expected that the
RHw is negatively correlatedwithVis since decreasingRHw indicates
the removal/dissipation of fog droplets (Gultepe et al., 2019). RHw,sd
had a moderately positive correlation with Vis, but was not included
in nowcasting models because it seemed to capture the same
correlation information as RHw, and using fewer variables would
make the ML regression models more parsimonious. Similarly, Uh
(advecting moisture and warm air over cold ocean surface) and
Ta-Td are also good indicators of fog formation because Ta-Td is
strongly related to RHw which is a function of both Ta and Td. Note
that wind direction is not included in the ML nowcasting because
the correlation with Vis was low (r = 0.05).

2.4 Lagged features and train-test split

To effectively use ML regression models with time series data
for forecasting or nowcasting, the data itself must be transformed to
reflect the autoregressive structure of the time series.One of themost
effective strategies is to create lagged versions of the input and output
variables (Figure 4) and use a regression model to directly predict
the desired time step (Hyndman and Athanasopoulos, 2021). In this
study, to predict Vis at the 30 and 60 min lead times, 120 min of lag
was used for each of Uh, RHw, Ta-Td, and Vis. The simple heuristic
that the time lag of variables should be twice as long as the longest
lead time was used, thus a lag of 120 min was chosen. The principle
here is that the regression model should have a sufficiently large
lookback window to determine which elements of the lapsed data
are relevant for prediction.

TABLE 2 Summary of datasets used for nowcasting for Vis <1 km and Vis
<10 km.

Visibility level

Vis <1 km Vis <10 km

Total time (days) ∼7.0 ∼9.7

Train time (days) ∼5.6 ∼7.8

Test time (days) ∼1.4 ∼1.9

Window dim. size ( for 30 min) 599 599

Window dim. size ( for 60 min) 719 719
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FIGURE 5
The train and test split for the time series of the Vis <10 km data at the 60 min lead time is shown.

The total lookback window size for each variable is
w = lag+ leadtime–1. All 3 ML regressionmodels used in this study
implement L2 regularization, which reduces the effect of irrelevant
variables. Finally, the data were split into training and testing sets
at both visibility levels using the common split of 80% train and
20% test (Hastie et al., 2009). A summary of each visibility dataset
is given in Table 2. Figure 5 shows the train and test split for the Vis
<10 km data at the 60 min lead time.

2.5 Nowcasting with ML regression

Three types of ML regression models, with increasing levels of
model flexibility/parameters (Hastie et al., 2009), were employed
to demonstrate the effectiveness of direct nowcasting/forecasting
(Elsayed et al., 2021; Hyndman and Athanasopoulos, 2021).
The hyperparameters (i.e., regularization level, # of training
phases, etc.) used in all three models were chosen based
on values that are commonly known to be effective in a
high-dimensional setting.

Of the three models used, the least complex method is
considered to be SVR. It maps input training feature vectors into a
higher dimensional space, in which a linearly separating hyperplane
that minimizes the residuals of the data points beyond the margin
of the hyperplane is fitted (Smola and Schölkopf, 2004; Hastie et al.,
2009; Ho and Lin, 2012). The margin parameter in SVR is similar
to that of support vector machines, except that it is adapted for
regression rather than classification (Hastie et al., 2009). When the
dimensionality of the input data is high, as in our case with either
599 or 719 dimensions, using a linear kernel is very efficient and
achieves high accuracy despite not using a complex nonlinear kernel,
such as a radial basis function (Fan et al., 2008; Hsu et al., 2021).
The SVR is implemented with a high amount L2 regularization
with λ = 0.0001 to account for the high dimensionality of
the input data.

Gradient boosting using the least squares loss function (LSB)
was the second implemented regression model due to its popularity
and ability to achieve a high level of performance for many tasks,
particularly for visibility classification and regression (Yu et al.,
2021; Kim et al., 2022a; 2022b; Ding et al., 2022; Vorndran et al.,
2022). LSB successively fits many weaker regression trees on
the residual error (Hastie et al., 2009). The learning rate (the
L2 regularization parameter in boosting) was set to 0.1, the

FIGURE 6
The t-SNE plot of the observed Vis. The plotted clusters show that
despite having the same level of Vis, the observations may be
reflecting the underlying distribution of the Nd and LWC values
although they were not used in any analysis for this study.

number of learning cycles was 2000, and the weak learner used
was a tree.

The most complex model in terms of the parameter space was
the DL regression, composed of multiple stacked fully-connected
feedforward neural network layers, i.e., a multilayered perceptron
(MLP). The hyperparameter setup of the DL model was: 1) loss
function as the mean absolute error (MAE); 2) batch normalization
applied before the activation layer; 3) activation function of all
intermediate hidden layers set to ReLU (Nair and Hinton, 2010); 4)
L2 weight regularization at λ = 0.0001; 5) number of epochs = 40; 6)
mini-batch size = 64; 7) ADAM optimizer (Kingma and Ba, 2014);
and 8) learning rate of 0.001.The above choice of hyperparameters of
the DLmodel was inspired by (Jha et al., 2019), which demonstrated
the key aspects of effective regression using deep neural networks.
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The hidden layer dimensions of the DL network at the 30 min and
60 min lead times were [256, 128, 64, 32] and [256, 256, 128,
64, 32], respectively. In each model, the final layer is an output
node with a dimension 1, which is the regression output at the
relevant lead time.

For all 3 ML regression methods, L2 regularization was used.
This is similar to performing ridge regression, which has an
additional L2 regularization term (λ∑jw

2
j ) in the loss function

of a linear regression model. The L2 term in ridge regression
and aforementioned ML methods mitigates model weights from
dominating each other by constraining the magnitude of the
weights, by scaling them using the λ parameter (Hastie et al., 2009).
Furthermore, to implement the ML regression models effectively,
normalization of data is necessary due to the different scales of
the variables. Prior to all regression analyses, z-score normalization
was applied to both train and test datasets. However, a critical
detail of this procedure is to apply the mean and standard
deviation from the training dataset to the test dataset, rather than
compute the mean and standard deviation separately (Coates et al.,
2011). This is commonly overlooked in many implementations
and leads to poor model performance due to the fact that the
test data is not in the same feature space as the training data
(Coates et al., 2011).

2.6 Nowcasting performance evaluation

Root mean squared error (RMSE) was used to assess the
nowcasting performance across all 3 ML models for both Vis

thresholds (Vis <1 km and <10 km) and lead times (30 and 60 min),
which is calculated as below,

RMSE = √∑1
n

(V̂is(t) −Vis(t))2

n
(1)

The RMSE was used in three different settings: 1) overall RMSE,
2) RMSE for Vis ≤400 m, and 3) RMSE for Vis >400 m. The RMSE
of Vis ≤400 m is of particular interest due to the fact it is generally
considered the threshold for dense fog, which can impede maritime
activities and military operations (Kelsey, 2023; Yang et al., 2010;
Mack et al., 1983). Thus, for each nowcasting case, three RMSE
values are reported. For the overall RMSE of the nowcasting at the
Vis <10 km threshold, the RMSEwas weighted proportionally to the
number of timesteps that were Vis ≤400, to account for the fact that
accurately predicting dense fog ismore critical. For the overall RMSE
of the nowcasting at the Vis <1 km threshold, such an adjustment
was not made since the majority of the timesteps were Vis ≤400.

To further assess the validity of the nowcasts, naive prediction
(Hyndman and Athanasopoulos, 2021) of the Vis time series
was performed using two types of persistence. The first type of
persistence nowcast, referred to as Per, was calculated as,

Vis(t+ h) = Vis(t) (2)

where h is either 30 min or 60 min (Hyndman and Athanasopoulos,
2021). The second type of persistence nowcast, referred to as PerW,
was computed as,

Vis(t+ h) = (Vis(t−w) +…+Vis(t))/w (3)

FIGURE 7
Heat map of the meteorological parameters used in the ML analysis. When r > 0.3, variables are considered to be significant and used in the analysis.
The variables Uh, RHw, Ta-Td were selected for analysis as they had statistically significant correlation (p < 0.001) and a moderate magnitude of
correlation (r > 0.30) with Vis.
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TABLE 3 RMSE (in km) of the ML regression nowcasting for Vis <1 km and Vis <10 km.

RMSE (km)

Visibility level
(km)

Lead time
(min)

ML
method

Fog intensity level

All ≤400 m >400 m

Vis <1

30

SVR 0.161 0.083 0.282

LSB 0.182 0.106 0.308

DL 0.206 0.204 0.344

Per 0.164 0.128 0.239

PerW 0.147 0.101 0.231

60

SVR 0.182 0.086 0.325

LSB 0.172 0.120 0.269

DL 0.224 0.226 0.369

Per 0.187 0.142 0.277

PerW 0.156 0.106 0.248

Vis <10

30

SVR 2.565 0.727 3.553

LSB 2.403 1.139 3.202

DL 2.834 1.221 3.587

Per 2.256 1.088 2.998

PerW 3.175 2.290 3.862

60

SVR 3.384 1.330 4.597

LSB 2.924 1.695 3.772

DL 2.995 1.566 3.935

Per 3.235 2.601 3.764

PerW 3.621 2.717 4.340

which is the mean of the Vis in the lookback window w (Hyndman
and Athanasopoulos, 2021). The RMSE calculations of both Per
and PerW follow the same aforementioned structure as the
ML regressions. Using the persistence RMSE calculations as the
reference RMSE (RMSEref) in Eq. 4, the skill scores (SS) were
calculated as,

SS = 1−
RMSEnowcast

RMSEref
(4)

where an SS of 1 indicates perfect nowcast with no error, an
SS of 0 indicates the same performance as persistence, and a
negative SS indicates worse than persistence (Wilks, 2006). Thus,
for each nowcasting setting, two sets of SS were obtained, SS
using Per (SSPer) and SS using PerW (SSPerW). To determine
whether a positive SS indicated significantly better nowcasting than
persistence, one-sided permutation tests were performed between

the squared residual errors of the ML and persistence nowcasts
using 10,000 permutations, at a significance level of α = 0.05
(Good, 2013). Specifically, the null hypothesis (H0) assumes that
there is no difference between the means of the squared residual
errors of the ML and persistence nowcasts, whereas the alternate
hypothesis (HA) assumes that the actual ML nowcast has a smaller
mean squared residual error than the persistence nowcast. The null
distributionwas constructed by obtaining differences inmeans from
randomly permuted and grouped sets of squared residual errors
from the ML and persistence nowcasts (Storch and Zwiers, 2003;
Wilks, 2006).

All methods were implemented using MATLAB 2022b on a
system with Ubuntu 20.04 LTS Linux OS, Intel Core i9-10980XE
3.0 GHz 18-Core Processor, 256 GB RAM, and dual NVIDIA
Quadro RTX 5000 GPUs.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2023.1321422
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Gultepe et al. 10.3389/feart.2023.1321422

TABLE 4 SS of the ML regression nowcasting for Vis <1 km and Vis <10 km.

Visibility
level (km)

Persistence
type

Lead time
(min)

ML
method

SS

Fog intensity level

All ≤400 m >400 m

Vis <1

Per

30

SVR 0.019 0.351∗ −0.182

LSB −0.110 0.166∗ −0.289

DL −0.255 −0.598 −0.441

60

SVR 0.025 0.392∗ −0.172

LSB 0.080∗ 0.155∗ 0.028

DL −0.198 −0.597 −0.332

PerW

30

SVR −0.097 0.183∗ −0.222

LSB −0.241 −0.051 −0.333

DL −0.404 −1.014 −0.490

60

SVR −0.165 0.185∗ −0.306

LSB −0.099 −0.132 −0.082

DL −0.432 −1.139 −0.484

Vis <10

Per

30

SVR −0.137 0.332∗ −0.185

LSB −0.065 −0.047 −0.068

DL −0.257 −0.122 −0.196

60

SVR −0.046 0.489∗ −0.221

LSB 0.096∗ 0.348∗ −0.002

DL 0.074 0.398∗ −0.046

PerW

30

SVR 0.192∗ 0.683∗ 0.080∗

LSB 0.243∗ 0.503∗ 0.171∗

DL 0.107∗ 0.467∗ 0.071∗

60

SVR 0.066 0.511∗ −0.059

LSB 0.192∗ 0.376∗ 0.131∗

DL 0.173∗ 0.424∗ 0.093∗

For each SS, bolded values indicate a positive SS., Values starred with (*) indicate a statistically better nowcasting skill than the reference prediction, determined by permutation tests at a
significance level of α = 0.05.

3 Results

In Figure 6, the clustering of the Vis observations using the t-
SNE plot demonstrates that at the lower levels of Vis (Vis ≤400 m
and 400 < Vis ≤1,000 m), there may be two physical discriminations
of Vis. Based on the definition of fog microphysical parameters, the
accumulation of the data points in the two regions at Vis ≤1,000 m

is likely due to fog microphysical conditions. Gultepe et al. (2007)
showed that Vis is the function of both LWC and Nd, and the same
Vis can be obtained by changing droplet spectral characteristics,
such as the variance and spectral gaps, both of which are critical
conditions that affect nowcasting of the Vis parameter. However,
the clusters in the t-SNE plot were obtained without using either
of the values in the analyses, which suggests that LWC and Nd
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FIGURE 8
Nowcasting for 30 min lead time with Vis <1 km using (A) SVR, (B) LSB, and (C) DL.

may be acting as latent processes in the observations used in the
current study.

Using the selected variables of Uh, RHw, and Ta-Td, which were
among the highest correlated with Vis as shown in the correlation
heatmap (Figure 7), nowcasting with SVR, LSB, and DL regression
was performed for four different cases: 1)Case 1: lead timeof 30 min,
Vis <1 km; 2) Case 2: lead time of 30 min, Vis <10 km; 3) Case
3: lead time of 60 min, Vis <1 km; and 4) Case 4: lead time of
60 min, Vis <10 km. The RMSE and SS of the nowcasts are shown in
Tables 3, 4, respectively. In Figures 8–11, the time series plots of the
Vis nowcasts against the observed Vis are shown. The Supplemental
Material contains the nowcast plots for both Per and PerW methods
in all four cases.

For Case 1, at the 30 min lead time and Vis <1 km (Figure 8),
only the SVR (SSPer = 0.019) method with an RMSE of 0.161 km had
a better overall nowcast than Per (RMSE = 0.164 km), but according
to the permutation test it was not significantly better. The other
two methods of LSB and DL performed worse than Per. Yet, the
nowcasts of both SVR (SSPer = 0.351) and LSB (SSPer = 0.166) for
dense fog were both significantly better than Per, but none of the
SSPer for the three methods were positive for non-dense fog. This
indicates that these 2 ML models are able to track dense fog, but
have difficulty in tracking less dense fog for Case 1. None of the
SSPerW (Table 4) values for the overall RMSE (Table 3) nowcasts

exceeded the PerW reference nowcasting. This is expected since
the PerW uses the mean of the lookback window and the majority
(73.8%) of the Vis values in the testing period are ≤400 m for many
consecutive time steps. As such, it is rather difficult to perform better
than PerW in this case due limited variation of the Vis. Yet SVR
(SSPerW = 0.183) was able to significantly better nowcast than PerW
for dense fog.

For Case 2, at the 30 min lead time and Vis <10 km (Figure 9),
none of the ML methods were able to exceed Per in skill
for predicting Vis, although SVR did have significantly better
nowcasting of the dense fog (SSPer = 0.332). This may indicate that
for Case 2, the ML models are not able to learn the variation in
Vis for such a short lead time. Only SVR is able to track dense
fog successfully, but is not able to track high visibility (>400 m)
better than Per (Table 4). In comparison to PerW, all three methods
performed significantly better than PerW, where the performance
of each ML method is as follows: SVR (RMSE = 2.565 km, SSPerW
= 0.192), LSB (RMSE = 2.403 km, SSPerW = 0.243), and DL (RMSE
= 2.834 km, SSPerW = 0.107). When dense fog is predicted, all
three methods have a significantly positive SS (Table 4), which
demonstrates that the mean Vis response within the lookback
window is not simply being memorized by the models. Also, for Vis
>400 m, all the models have significantly better skill than PerW, but
not as much skill as the dense fog prediction.
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FIGURE 9
Nowcasting for 30 min lead time with Vis <10 km using (A) SVR, (B) LSB, and (C) DL.

For Case 3, at the 60 min lead time and Vis <1 km (Figure 10),
both SVR (RMSE = 0.182 km, SSPer = 0.025) and LSB (RMSE =
0.172 km, SSPer = 0.080) had more skill than Per, but only LSB was
significantly better than Per (Table 4). In fact, LSB had a positive
SSPer for both dense fog (SSPer = 0.155, significant at α = 0.05)
and non-dense fog (SSPer = 0.028, not significant) predictions. This
demonstrates that LSB is able to track the overall fluctuations of Vis
throughout the test period. DL (RMSE = 0.224 km, SSPer = −0.198)
had performed poorly compared Per. Compared to PerW, as in Case
1, none of theMLmethodswere able to exceed the overall prediction
skill and only SVR was able to predict dense fog (RMSE = 0.086 km,
SSPerW = 0.185) significantly better than PerW.

For Case 4, at the 60 min lead time and Vis <10 km (Figure 11),
only LSB (RMSE = 2.924 km, SSPer = 0.096) and DL (RMSE =
2.995 km, SSPer = 0.074) methods had more skill than Per for
nowcasting the overall Vis time series, but only LSBwas significantly
better. All 3 ML methods had significantly better nowcasting of
dense fog (Table 4), but for Vis >400 m, only LSB (SSPer = −0.002)
was able to achieve similar performance to Per. This demonstrates
that LSB’s success over Per can be mainly attributed to its ability to
track dense fog. When compared to PerW, LSB (SSPerW = 0.192), DL
(SSPerW = 0.173), and SVR (SSPerW = 0.066) had positive SS for the
overall nowcasting of Vis, but only LSB and DL were significantly
better. For the specific nowcasting of dense fog, all three methods

had significantly better skill than PerW. This also was the case for
the Vis predictions >400 m, except for SVR, which was not able to
predict higher levels of Vis better than PerW.

4 Discussion

To our knowledge, this is the first study to perform nowcasting
of the time series ofmarine fog visibility using data that preserves the
high temporal resolution (e.g., 1 min sampling rate) of the observed
meteorological variables with a significant number of fog events.
This study establishes a baseline analysis using ML techniques for
modeling the time series of fog visibility. Also demonstrated in this
study is that DL regression is not necessarily a viable technique for
predicting visibility.

The results suggest that Vis nowcasting at the 60 min lead time
was best with LSB and was significantly more skillful than Per
and PerW. Specifically, using LSB the overall nowcasts at Vis 1 <
km (RMSE = 0.172 km, SSPer = 0.080) and Vis <10 km (RMSE =
2.924 km, SSPer = 0.096, SSPerW = 0.192) were better than both SVR
and DL. Also, across all four nowcasting cases, the nowcasting of
the dense fog tended to have much more skill than when visibility
was higher than >400 m. Interestingly, SVR had a significantly better
nowcasting of dense fog thanPer andPerW for all four cases even if it
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FIGURE 10
Nowcasting for 60 min lead time with Vis <1 km using (A) SVR, (B) LSB, and (C) DL.

did not always have positive nowcasting of the overall visibility. Yet,
SVR did have positive skill at the 30 min lead time and Vis <1 km
(RMSE = 0.161 km, SSPer = 0.019) although not significantly better.

Our results are similar to that of Dietz et al. (2019a), which
showed that at the 30 and 60 min lead times, using observational
data and a boosting model, the obtained skill scores of their best
model were 0.05 and 0.075, respectively. In another study,Dietz et al.
(2019b) showed that with observational data using ordered logistic
regression, the skill of their prediction at the 60 min lead time
was 0.02 and increased to 0.10 when the European Centre for
Medium-Range Weather Forecasts atmospheric high-resolution
model outputs are used with the observations. Kneringer et al.
(2019) in their comparison to persistence, showed that nowcasting
of visibility at the 30 and 60 min lead times can be challenging.
Although in these studies the visibility is discretized into four
visibility states, which minimizes the minor fluctuations in the
visibility observation (Fu, 2011; Kuhn and Johnson, 2019), the
skill scores and nowcasts were comparable. This demonstrates
that fog visibility nowcasting results can be replicated across
different data acquisition and processing schemes with independent
research teams.

There were various uncertainties related to observations,
which can affect the outcome of the work suggested here.

First, meteorological observations can have issues related to Vis
calibrations in marine environments. Although instruments were
calibrated by the manufacturer, salt particles can severely affect Vis
measurements and Vis biases can increase up to 30% when Vis >
1–2 km. Comparisons between various Vis sensors (Gultepe et al.,
2017) suggested Vis measurements can include large uncertainties,
especially at the cold temperatures, but this is not an issue here.
Second, sea spray during high wave conditions can also affect the
sensors used in the analysis. The affected measurements include
wind, RHw, and Ta, as well PR and Vis. The response of all these
sensors can be different for breaking wave conditions, which was not
considered here.

Furthermore, there were also some limitations with respect
to the preprocessing steps of the observational data. Thresholding
the data at a specific visibility threshold, as is common in other
studies (Zhu et al., 2017; Yu et al., 2021; Kim et al., 2022b; 2022b;
Ding et al., 2022), can eliminate valuable information regarding
the time evolution of the fog formation. For these studies, this
may have not been important because their goal is to achieve
either binary classification of fog/no-fog or just predict visibility
level. However, the overarching goal of our study is to set up an
analysis scheme for exploring the underlying mechanisms of fog
life cycle. Therefore, for future studies, rather than thresholding the
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FIGURE 11
Nowcasting for 60 min lead time with Vis <10 km using (A) SVR, (B) LSB, and (C) DL.

visibility at specific levels, contiguous portions of the time series
data with the desired visibility characteristics would be analyzed
specifically. It may also be possible to apply a hierarchical approach
to analyzing the visibility at the different levels through hierarchical
neural networks.

Also, rather than using commonly accepted best practices
for ML model setups, an extensive hyperparameter search could
have been performed to achieve the best possible RMSE values.
Although this would have possibly increased the accuracy of
our nowcasting models, it would not have necessarily eased
our future goal of exploring the underlying mechanisms of
fog formation using ML methods. Our results have indeed
established that ML methods can nowcast fog time series at specific
visibility levels. Future work may explore whether alternative deep
learning architectures or hyperparameters may yield improved
nowcasting of Vis.

5 Conclusion

In the analysis, extensive observations ofmarine fog collected by
the meteorological instruments and platforms during the FATIMA
field campaign in July of 2022 were used in the ML analysis for fog
occurrence and Vis predictions. Training data in the analysis was

based on 1 min sampling intervals using 2 h of lag. Nowcasting lead
times at 30 and 60 min were used for nowcasting at visibility levels
of 1 and 10 km. The SVR, LSB, and DL methods were tested using
high-frequency observations over a total of approximately 10 days,
leading to the following conclusions:

• Vis nowcasting at the 60 min lead time was best with LSB and
is significantly more skillful than Per and PerW.

• SVR had significantly better nowcasting of dense fog Vis than
Per and PerW for all nowcasting cases, despite not always
skillfully predicting the overall Vis response.

• DLwas theworst performingmodel across all nowcasting cases.
• t-SNE visualization showed that at the 1,000 m threshold,

there is a separation of visibility types due to the underlying
fog microphysics and turbulence interactions. This was
critical for future work and microphysical parameterization
developments.

In future studies, we will consider not only ship meteorological
data for the analysis, but also microphysical observations from the
Sable Island and wave gliders. This will increase the quality of
analysis and decrease uncertainty in Vis and fog predictions. In
addition to observed 1 min meteorological variables, observations
of fog microphysical instruments (e.g., FM120) to match with NWP
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model simulations (e.g., using theWeather Research andForecasting
model) of LWC, droplet size, and number concentration will also be
considered in the future analysis.

Overall, ML techniques can help to evaluate model-based
simulations of the fog life cycle and visibility, leading to improved fog
nowcasting for aviation, marine, and transportation applications.
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