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The seismic stability assessment of slopes is important for the evaluation of slope
instability, so an accurate estimation of the seismic stability level of slopes is vital.
However, many factors affect the seismic stability of slopes, and their instability
has a certain fuzziness and randomness. The principal component analysis–cloud
model is introduced at first to assess the seismic stability of slopes. Second, the
index coefficients are calculated using the principal component analytical
method. Then, the characteristic value of the normal cloud model is obtained
based on the classification standards of different indexes, and the relevant
evaluation model is established. The conclusions are drawn that the method is
feasible for the accurate assessment of the seismic stability of slopes, and its
accuracy is very high. So, the suggested model can be widely applied in many
fields, and a new approach can be provided for the future seismic stability
assessment of slopes.
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1 Introduction

As the main type of landslide in the western mountain area of China, the earthquake
landslide is a kind of main secondary disasters triggered by a strong earthquake that has the
characteristics of wide distribution, strong burst, and large quantity; it often causes road
disruption, river blockage, house collapse, lifeline project damage, etc. So, it seriously hinders the
rescue work after the earthquake and aggravates the impact of earthquake disasters (Azarafza
et al., 2021; Nanehkaran et al., 2021; Cemiloglu et al., 2023; Nanehkaran et al., 2023).

The losses caused by earthquake-induced landslides in many earthquake-prone
countries are often more significant than those directly caused by earthquakes. For
example, in the last century, landslides caused by earthquakes at home and abroad have
killed tens of thousands of people and caused losses of one billion million yuan (Azarafza
et al., 2021). In 1964, seismic landslides in Alaska caused a loss of $640 million, which
accounts for 64% of the total loss. Furthermore, the total death toll reached 130. In total,
48 people died in landslides triggered by the earthquake (Nanehkaran et al., 2023). In
addition, in China, there are also many examples of earthquake-induced landslides, one
notable instance being the large-scale landslide caused by the MS8.5 earthquake in Haiyuan,
Ningxia Province, on 16 December 1920 (Cemiloglu et al., 2023). The landslide covered an
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area of 31 km2. A total of 503 landslides occurred, and more than
500,000 people were killed or injured; many of them were caused by
landslides. The enormous disaster-causing capacity of earthquake-
induced landslides has been widely considered by the government
and scientific and technological circles (Nanehkaran et al., 2021).
Hence, it is of great theoretical and practical significance to predict
the seismic stability of slopes (Gu and Wu, 2019).

Many researchers (Zhou et al., 2018; Song et al., 2023) provided
variousmethods to assess the seismic stability of slopes. The quasi-static
or finite element methods for slope stability analysis are often adopted;
for example, the critical problem of dynamic analysis of slope using
FLAC3Dwas discussed in detail by Jing et al. (2022); the dynamic factor
of safety method was proposed by Gu et al. (2019) to provide the
variation in the slope factor of safety with the time history of the
earthquake; and some scholars have put forward a more suitable two-
polar method to predict the seismic collapse of slopes (Gu et al., 2021).
The first-order predictionmethod is the primary criterion of earthquake
collapse-slip (Liu et al., 2004; Zhou et al., 2015), and many methods are
proposed for the secondary prediction (Wu and Li, 2004; Zhou et al.,
2016; Jing et al., 2020). Wang Yuqing et al. (Gu and Wu, 2016; Chen
et al., 2022; Gu et al., 2022) suggested four feasible calculation schemes
for the comprehensive index method and provided two improved
formulas for the comprehensive platform index method for
predicting seismic collapse. Then, the catastrophe progression
method (GuWu and Ma, 2022) was adopted by Jin et al. to predict
the stability of seismic slopes; Gao et al. (Wang andWu, 2001) provided
a practical approach and a specific calculation process to judge the
seismic stability of slopes using the gray correlation analysis based on
the standard slope samples. In addition, Persichillo et al. (Bi et al., 2016)
assessed the impact of land use changes on shallow landslide
susceptibility in the northern Apennines region between 1954 and
2012 based on the long-term scale; Reichen-bach et al. (Zhou et al.,
2014) found a strong relationship between forest cover and slope
stability when they assessed the impact of land use change on
landslide susceptibility in northeastern Sicily, Italy, since 1954.

The above-mentioned models have promoted the development
of the seismic stability of the slope. However, its influential factors
exhibit a considerable degree of randomness and uncertainty, and
the rock and soil parameters have the characteristics of spatial
uncertainty. The spatial variability determines that the rock and
soil mechanics parameters do not have certain values, and their
parameter mechanical values change within an uncertain range;
furthermore, this range exhibits fuzzy uncertainty (Ye et al., 2019).
However, the randomness and fuzziness of the occurrence of seismic
landslides are not taken into consideration (Zhou and Yang, 2007) in
the above methods. So, the principal component analysis–cloud
model is introduced in the paper; for this method, not only the inner
relationship between fuzziness and randomness is described but also
the conversion between qualitative concepts and quantitative features
is considered (Gao and Wang, 2005; Persichillo et al., 2017); the
principal component method and cloud model are combined, and
their respective advantages are sufficiently utilized. Therefore, the
application of this method can improve the predictive accuracy and
stability of seismic slopes. The suggested model has enormous
application prospects in the future; it can provide a new method
and perspective for the stability assessment of seismic slopes.

In Section 1, the engineering background in the study area is
introduced. The remainder of this paper is organized as follows: in

Section 2, a new predicting theory of seismic slope is correlated
based on the principal component analysis–cloud model; in Section
3, the correlated model is established and the results are analyzed;
and in Section 4, conclusions are drawn.

2 Methodology

2.1 Principal component analysis

The principal component analysis was introduced by Pirsson
(Reichenbach et al., 2014) in 1901. The calculative procedure is as
follows: assuming there are n samples andm variables in one sample,
matrix X is expressed as follows:

X �
x11 . . . x1m

. . . . . . . . .
x1n . . . xnm

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (1)

where xnm denotes the mth variable in the nth sample. Assuming
that new variables z1 z2 z3 , . . . , zt (t≤m) are the synthetic
index of dimensional reduction, they can be met with

z1 � l11x11 + l12x12 + ... + l1mx1m

z2 � l21x21 + l22x22 + ... + l2mx2m

...
zm � lm1xm1 + lm2xm2 + ... + lmmxmm

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (2)

where the means of coefficients l satisfy the following conditions: (1)
the square sum of coefficients in the formula is equal to 1, (2) the
principle components are independent, and (3) z1 is the maximum
variance of all the linear combinations for the variable x1, x2, ..., xm;
z2 is irrelevant of z1.

According to the relevant matrix, the weight coefficients of
different indicators can be expressed as follows (Zhou XP.
et al., 2012):

1) The normalization of the sample matrix is as follows:

Xij � xij − xj

si
i � 1, 2, ..., n; j � 1, 2, ..., m( ), (3)

xj �
∑n
i�1
xij

n
, s2j �

∑n
i�1

xij − xj( )
n − 1

, (4)

where xij denotes the normalized jth index of the ith sample and xj

and s2j , respectively, denote the mean and variance of the jth index.

2) The relative coefficient matrix R can be expressed as

R � rij( )
m×m

i � 1, 2, ..., m( ), (5)

where rij is the relative coefficient between the ith and jth index; rij
is expressed as

rij �
∑m
k�1

xki − xi( ) xki − xj( )��������������������∑m
k�1

xki − xi( )2 xki − xj( )2√ . (6)

3) Calculating eigenvalues and eigenvectors of the relevant
coefficient matrix R.
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4) Calculating the number of principal components: The
accumulative contribution rate is expressed as

]s � λs/∑m
s�1
λs

s � 1, 2, ..., m( ), (7)

]sumk � ∑k
s�1
λs/∑m

s�1
λs

k � 1, 2, ..., m( ), (8)

where ]s is the contribution rate and ]sumk is the contribution rate of
accumulative variance.

5) The coefficient matrix can be expressed as

Uk � p1, p2, ..., pk( ). (9)

6) Calculation of different index weights ω:

ω � Uk × ]k/]sumk

∣∣∣∣∣∣ ∣∣∣∣∣∣/∑k
i�1

Uk × ]i/]sumk

∣∣∣∣∣∣ ∣∣∣∣∣∣. (10)

2.2 Normal cloud model

The cloud model, introduced by Li et al. (Zhou et al., 2008a) in
the 1990s, is a cognitive model used for the two-way conversion
between qualitative concepts and quantitative data. It can deal with
vague and random events; the cloud model has found successfully
applications in various fields (Zhou et al., 2008b).

The cloud model is defined as follows: x, Y, C is assumed as a
common quantitative set, where Y is called the domain; in this
context, x ∈ Y, C is the qualitative conception in domain Y. If x
satisfies x ~ N(Ex, En,2) and En satisfies En, ~ N(En,He2), then
u(x) can be expressed as

u x( ) � exp − x − Ex( )2
2En,2

[ ], (11)

where the distribution definitive degree u(x) in the domain Y is
named the normal cloud. For the seismic stability assessment of
slopes, expectation Ex, entropy En, and hyperentropy dx(1)

dt + ax(1) �
u in the cloud model are depicted as

Ex � c+ + c−

2
, (12)

En � c+ − c−

6
, (13)

He � k1, (14)
where c+ and c− are, respectively, the upper and lower bounds
corresponding to the specific index; k1 is set as 0.01 in the investigation.

3 Study area

The investigation area is located in Qingchuan County, Sichuan
Province, China (it is plotted in Figure 1). Its location is on the northern
frontier of the Sichuan Basin, and its coordinates are east longitude
104°36′–105°38′ and north latitude 32°12′–32°56’. Its area is 3269 m2,
and its terrain is high in thewest and low in the east. Themountains run

through, and the valleys are steep. The cutting depth of the terrain is
between 500 m and 1,500 m; it is divided into erosional alluvial valleys
and erosional tectonic topography according to geomorphology. The
area belongs to the subtropical moist monsoon type; the annual rainfall
arrives at 1,021.7 mm.

Except for the lack of Cretaceous strata in the study area, there
are all other types of strata. The exposed area of the Devonian and
Silurian strata is the largest. The different stratum systems are
distributed along the structural line in a strip pattern. Magmatic,
metamorphic, and clastic rocks are widely distributed in the stratum.
Due to new and old tectonic movement, soft and hard lithologies
often occur alternately. Fault structures developed in the study area:
two significant faults are running through the territory.

4 Establishment of the
assessment model

4.1 Construction of the index system

Many factors contribute to the stability of seismic slopes; according
to Zhou Xiao-Ping et al. (2012); Song et al. (2021), the seismic stability
of slopes is affected by six assessment indices: the value of the
characteristics of rock and soil mass (X1), value of the characteristics
of neotectonic movement (X2), slope height (X3), slope angle (X4),
average annual rainfall (X5), and earthquake intensity of the site (X6).
These indices are quantitative; the risk assessment is classified into five
levels: extremely stable (I), stable (II), medium stable (III), unstable (IV),
and extremely unstable (V), as shown in Table 1.

4.2 Construction of the assessment frame

The slope’s seismic stability not only affects the normal
operation of road traffic but also endangers people’s life security.
Consequently, the risk evaluation of the seismic stability of the slope
has great significance.

FIGURE 1
Location of the survey area.

Frontiers in Earth Science frontiersin.org03

Li et al. 10.3389/feart.2023.1330966

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1330966


The flowchart of the assessment frame is shown in Figure 2. Its
calculative process is listed as follows:

(1) The evaluation index and corresponding classification level of
the assessment index are determined.

(2) The weighting coefficient of the assessment index is
determined using the principal component analytical
method using Eqs 3–10.

(3) The characteristic parameters Ex, En, and dx(1)
dt + ax(1) � u in

the cloud model are calculated using Eqs 12–14.
(4) The membership degree of each assessment index is

determined when the characteristic parameters are
instituted into Eq. 11.

(5) The synthetic membership degree M of each level for
different samples can be calculated using the
following equation:

M � ∑n
i�1
uiωi. (15)

(6) The level corresponding to the maximum synthetic membership
degree is regarded as the final risk grade of seismic slopes
according to the maximum membership degree criterion.

4.3 Determination of index weight
coefficients

The abnormal cloud model is constructed because of the
randomness and fuzziness of seismic landslides. To evaluate the
weight coefficients of each assessment index, the original data of six
assessment indexes are shown in Table 2.

Based on Eqs 1–9, the accumulative contribution rate of the
principle component is shown in Table 3.

It can be found in Table 3 that the accumulative contribution rate of
the former two principle components arrives at 85.889%. Its magnitude
is greater than 85%, so the former two principle components are
selected to calculate the weight of the predicting index. According to
Eqs 9, 10, the corresponding index weight is calculated as

ω � 0.254, 0.112, 0.285, 0.239, 0.007, 0.102[ ]. (16)

It can be found in Eq. 16 that indices X1, X3, and X4 have a
significant influence on the seismic stability of slopes, and the effects
of the other three indices are relatively minor.

4.4 Determination of digital features in the
normal cloud model

Based on Table 1, and in combination with Eqs 11–14, the
classification standard of normal clouds about seismic slopes is
depicted in Table 4.

TABLE 1 Classification standards of the assessment index.

Assessment index Stability level of seismic slopes

I II III IV V

X1 ≤1 2 3 4 ≤5

X2 ≤1 2 3 4 ≤5

X3 <75 125 238 400 <500

X4 <10 15 25 35 >35

X5 <400 550 850 1,250 >1,250

X6 ≤5 6 7 8 ≥8

FIGURE 2
Flowchart of the assessment frame.

TABLE 2 Synthetic parameters of seismic slopes.

Assessment object Evaluation index

Serial number X1 X2 X3 X4 X5 X6

1# sample 5 4 270 40 800 10

2# sample 5 5 100 65 750 9

3# sample 5 3 40 46 2,122 8

4# sample 5 3 90 29 2,122 7

5# sample 2 5 80 22 937 5

6# sample 2 5 120 14 937 6

7# sample 2 5 130 33 937 6

8# sample 2 5 169 25 937 5
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According to Table 1, the characters of the cloud model
corresponding to different indices are calculated using the
forward cloud generator, which is plotted in Figure 3. Its
horizontal coordinates present the magnitude of different
variables; the vertical coordinates present the magnitude of the
degree of certainty. A sub-figure in Figure 3 includes five grades:
I, II, III, IV, and V. When a certain variable is fixed, the certainty
degree of a certain point at the state grade can be obtained.

According to Tables 2, 4, and in combination with Eqs 15, 16, a
comprehensive certainty degree is obtained and presented in
Table 5. The results are then compared with those of the actual
investigation and are plotted in Figure 4.

The principal component analysis–cloud model is applied to
assess the seismic stability level of slopes. The whole set of outcomes
is shown in Table 5. It can be seen in Figure 4 that the seismic
stability levels of slopes from the 1# to 8# samples are different. The

stability level from 1# to 4# samples is V, which means that these
seismic slopes are extremely unstable, so the necessary consolidation
measurement should be performed for these slopes; on the other
hand, the stability level from 5# to 8# samples is II, which means that
these seismic slopes are stable, so no measurement is required.

According to the comparative results of the different evaluation
models in Figure 4, it can be concluded that the outcomes assessed
using the principal component analysis–cloud method are
consistent with the actual investigations for eight different
samples; its accuracy arrives at 87.5%, which is higher than the
results from the gray clustering method (75%) (Jing et al., 2020). The
conclusion is drawn that using the text model makes it feasible to
evaluate the seismic stability level of slopes.

Themodel not only achieves accurate results but also providesmore
details for the seismic stability level of slopes. For example, the stability
level of the 3# samplemore likely belongs to level V compared to 1# and

TABLE 3 Accumulative contribution rate.

Component Initial eigenvalues Extraction sums of squared loadings

Total % of variable Cumulative % Total % of variable Cumulative %

1 3.133 52.209 52.209 3.133 52.209 52.209

2 1.901 33.681 85.889 1.901 31.681 85.889

3 0.837 11.953 97.843

4 0.091 1.525 99.368

5 0.032 0.540 99.907

6 0.006 0.093 100.000

TABLE 4 Digital features of the cloud model.

Risk level Digital feature X1 X2 X3 X4 X5 X6

I Ex 0.5 0.5 37.5 5 200 2.5

En 0.167 0.167 12.5 1.67 66.67 0.83

He 0.01 0.01 0.01 0.01 0.01 0.01

II Ex 1.5 1.5 100 12.5 475 5.5

En 0.167 0.167 8.33 0.833 25 0.167

He 0.01 0.01 0.01 0.01 0.01 0.01

III Ex 2.5 2.5 181.5 20 700 6.5

En 0.167 0.167 18.84 1.67 50 0.167

He 0.01 0.01 0.01 0.01 0.01 0.01

IV Ex 3.5 3.5 319 30 1,050 7.5

En 0.167 0.167 27 1.67 66.67 0.167

He 0.01 0.01 0.01 0.01 0.01 0.01

V Ex 4.5 4.5 450 52.5 1875 12

En 0.167 0.167 16.67 8.75 312.5 2

He 0.01 0.01 0.01 0.01 0.01 0.01
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FIGURE 3
Cloud of each assessment index. (A)Characteristics of rock and soil mass X1. (B)Characteristics of neotectonicmovement X2. (C) Slope height X3. (D)
Slope angle X4. (E) Average annual rainfall (X5). (F) Earthquake intensity of the site X6.

TABLE 5 Comprehensive certainty degree of the suggested model.

Sample no. Level of stability of seismic slopes Comprehensive assessment

I II III IV V

1# sample 0 0 0.001 0.056 0.152 V

2# sample 0 0.112 0.004 0 0.123 V

3# sample 0.110 0 0.001 0.002 0.203 V

4# sample 0 0.139 0.002 0.202 0.019 IV

5# sample 0 0.12 0.02 0.002 0.0016 II

6# sample 0 0.02 0.004 0.017 0.003 II

7# sample 0 0.05 0.011 0.049 0.022 II

8# sample 0.001 0.252 0.234 0.004 0.003 II
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2# because the certainty degree of the 3# sample for level IV (0.203) is
higher than that of 1# (0.152) and 2# (0.123).

In summary, the results based on the principal component
analysis–cloud model can reflect the seismic stability level of
slopes, providing a new method and thought for the stable
evaluation of seismic slopes in the future.

5 Discussion

In comparison with the other traditional models, the fuzziness
and randomness of the evaluating index are considered for the
suggested model, and interval-oriented evaluation criteria are
adopted. So, it improves the reliability of the assessment process
and enhances the predictive accuracy of assessment results. Because
the randomness and fuzziness of the evaluation index can be
expressed correctly using the provided method, it can be applied
to the assessment of many fields, such as the assessment of geological
hazards and water quality assessment. The suggested model can be
widely applied in civil engineering, hydraulic engineering, and
environmental engineering in the future. Therefore, it has great
application prospects.

However, some shortcomings still exist, for example, the great
calculative load and the neglected correlation among the indexes;
these insufficiencies limit the development of the suggested method.
However, it still provides a new perspective for the stable evaluation
of seismic slopes.

6 Conclusion

Taking into consideration the value of the characteristics of
rock and soil mass (X1), value of the characteristics of neotectonic
movement (X2), slope height (X3), slope angle (X4), average
annual rainfall (X5), and earthquake intensity of the site (X6),
a new multi-index evaluation method was introduced in this
paper to evaluate the seismic stability level of slopes using the
principal component analysis–cloud model. The different

indexes’ weighting coefficients were calculated using the
principal component analysis method. The seismic stability
level of slopes is judged using the normal cloud model.

The present model is used for the seismic stability of slopes.
The seismic stability levels of slopes from the 1# to 8# samples are
different. The stability level from 1# to 4# samples is V, which
means that these seismic slopes are extremely unstable, so the
necessary consolidation measurement should be performed for
these slopes; however, the stability level from 5# to 8# samples is
II, which means that these seismic slopes are stable, so no
measurement is needed. Finally, its outcomes are compared
with the actual investigation, and the calculated results are
obtained using the gray clustering method; its accuracy arrives
at 87.5%, which is higher than the results from the gray clustering
method (75%). Therefore, the conclusion is drawn that it is
feasible to evaluate the seismic stability level of slopes using
the text model, and the model not only achieves accurate results
but also provides more details on the seismic stability level of
slopes. In summary, the suggested method provides a new
method and thought for the future seismic stable evaluation
of slopes.
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