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Introduction: Heatwaves (HWs) are the serious natural disaster that exert great
impacts on human health and social economy. Projecting future changes in HWs
is crucial for the development of effective adaptation strategies.

Method: This study investigates the variations of HWs in Xinjiang for
three time periods (near-term, mid-term, and long-term) under four Shared
Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) using
multi-model ensemble (MME). To enhance confidence in HWs projection, we
evaluate the performance of 17 climate models in simulating HWs in terms
of interannual variability and spatial patterns using interannual variability skill
score (IVS) and distance between indices of simulation and observation (DISO),
respectively, and generate MME using the overall performance.

Results: Compared to the observed data, the overall performance of MME
outperforms most of individual models, although many models effectively
capture the characteristics of HWs. Projections indicate that HWs in Xinjiang
will become more longer lasting and severe. Specifically, heatwave frequency
(HWF) and heatwave duration (HWD) are projected to reach 7.5 times and
61 days, respectively, in the long-term under the SSP5-8.5 scenario. The spatial
distribution of HWs exhibits significant heterogeneity, with high value regions
primarily distributed in eastern Xinjiang and the eastern part of southern Xinjiang.
Although the HWs area is projected to expand under all scenarios, the spatial
pattern is anticipated to remain largely unchanged.

Conclusion: These findings provide a comprehensive assessment of future
variations in HWs, which are necessary for improving regional adaptive capacity
to extreme heat risk.
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1 Introduction

Heatwaves (HWs) are broadly defined as periods of abnormally high temperatures
(Schoetter et al., 2014). Over the past few decades, severe HWs have occurred in many
regions, such as Europe (2003), Australia (2009), Russia (2010) and China (2013)
(Joughin et al., 2004; Barriopedro et al., 2011; McEvoy et al., 2012). In certain areas, HWs
are considered the deadliest natural hazard, causing greater economic damage, loss of
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life, and property destruction than any other natural hazard
(Anderson and Bell, 2011; Xiao et al., 2017). In addition, HWs can
result in crop failure and increased fire risk (Zampieri et al., 2017;
Libonati et al., 2022). According to the Sixth Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change (IPCC),
the global surface temperature has risen by approximately 1.09°C
from 2011 to 2020, compared to the period of 1850–1900 (IPCC,
2021). This will increase the frequency, intensity and duration of
HWs in most regions (Argüeso et al., 2016). While the increase in
HWs is a widespread problem, regional disparities exist in terms of
frequency and duration.

Global climate models (GCMs) serve as reliable tools for
comprehending the climate system, reproducing its historical
patterns, and projecting future changes (Eyring et al., 2016).
The Coupled Model Intercomparison Project (CMIP) represents
the most extensive database of climate models and forms the
foundation for the IPCC assessment reports. Currently, CMIP
is in Phase 6 (CMIP6), which boasts a more comprehensive
experimental design compared to its predecessors, incorporating
enhancements in physical processes and higher spatial resolution
(Stouffer et al., 2017). Although CMIP6 models have an increased
degree of freedom by including more processes and couplings,
they still exhibit regional biases when compared with observations
(Gutmann et al., 2014; Koteswara Rao et al., 2022). For instance
(Hirsch et al., 2021), evaluate CMIP6 models’ capability to simulate
global HWs characteristics over the period 1950–2014 and
find that most models underestimate frequency while showing
regional underestimations or overestimations of duration, average
intensity, and cumulative intensity. To address these limitations,
the NASA Earth Exchange Global Daily Downscaled Projections
(NEX-GDDP) expands the set of variables through the statistical
downscaling method and releases the latest version of NEX-
GDDP data (NEX-GDDP-CMIP6), based on the GCM output
from the CMIP6 (Thrasher et al., 2022). The NEX-GDDP-CMIP6
significantly contributes to climate change projection studies and
offers higher temporal and spatial resolution than other climate
data products like HadEX3 or the Berkeley Earth daily climate
(Murali et al., 2023). In short, the NEX-GDDP-CMIP6 dataset has
been widely used in regional climate change research, especially in
extreme climates (Al-Bakri et al., 2021; Shao et al., 2023). Thus, this
study aims to project regional scale HWs by using the latest released
NEX-GDDP-CMIP6 dataset.

The reliability of future climate change projections is heavily
influenced by uncertainties in GCMs (Khan et al., 2020). Multi-
model ensemble (MME) is considered one of themost effective ways
to reduce uncertainties (Mehr and Kahya, 2017). Various methods
for generatingMME exist, with equal-weighted average and unequal
weighted average being commonly employed. In the former, each
model within the ensemble is assigned an identical weight.The latter
method utilizes the historical relationship between observations and
simulations to determine the weights, which reflect the simulation
level of the model (Smith and Chandler, 2009). Although equal-
weighted average has been used in some projection studies, it has
often been questioned for not taking into account differences in
uncertainty among ensemblemembers (Plecha and Soares, 2020). In
the research by Christensen et al. (Christensen et al., 2010), climate
change information generated through regional climate models
performance metrics does not provide sufficient evidence that the

weighted average provides a better description of the mean climate
state than equal-weighted average. Despite the dispute, the climate
modeling community generally agrees that all IPCC-recognized
models have weaknesses and strengths, and their performance is
similar at the global scale while significantly different at the regional
scale (Chen et al., 2017). Consequently, the approach of weighting
climate models according to their performance is more prevalent in
regional studies.

HWs in Xinjiang are characterized by a wide range of effects,
long duration, high intensity, early occurrence, and late termination
(Mao et al., 2016; Liu et al., 2021). The melt snow and ice floods
triggered by HWs in July 2014 caused 6 deaths, 300 hm2 of
grassland damage, and economic losses amounting to 1.4 million
(Zhang et al., 2021). In addition, HWs can result in reduced
yields of growing crops such as cotton and corn, as well as
increased energy consumption forwater and electricity in (Xin et al.,
2008). The occurrence of extreme climate events in Xinjiang has
far-reaching consequences, not only affecting the local natural
environment and socio-economic factors but also impactingCentral
China and Eastern China (Zhang et al., 2013; Yu et al., 2014).
Accordingly, the projection of HWs in Xinjiang holds significant
importance for sustainable socio-economic development. However,
it is noteworthy that most climate extreme projections in Xinjiang
have predominantly focus on extreme temperatures. For instance
(Zhang et al., 2022), find that CMIP6 reasonably reproduces the
temperature in Xinjiang, and (Guan et al., 2022) project an increase
in extreme warm events in Xinjiang based on CMIP6 model
simulations. Several large regional scale projection studies have
also suggest the higher likelihood of more frequent, prolonged,
and intense HWs in Xinjiang as global warming (Guo et al.,
2016; Yang et al., 2020). Nonetheless, the systematic examination
specifically targeting the variability of HWs in Xinjiang has been
lacking. Furthermore, previous studies have primarily considered
temperature alone in definingHWs, overlooking the critical factor of
relative humidity within the context of the warming-wetting trend.

Hence, this study aims to systematically project the variations
of HWs in Xinjiang, incorporating both air temperature and
relative humidity considerations. The objective of this study is
to investigate the variation of HWs in Xinjiang, utilizing the
high-resolution observation dataset and the latest release of the
NEX-GDDP-CMIP6. Firstly, the HWs simulation capability of
the 17 climate models is evaluated using a high-resolution daily
gridded meteorological dataset. Secondly, MME is generated using
a weighted average based on the interannual variability and spatial
patterns performance of individual models. Finally, the variation of
HWs in Xinjiang is projected under the warming climate. These
findings of this study aim to furnish a scientific foundation for
enhancing the disaster prevention and mitigation capabilities in
Xinjiang while promoting sustainable development in the region.

2 Data and methods

2.1 Study area

Xinjiang is located in the hinterland of the Asia-Europe
continent, far from the sea, and is an important part of the arid
Central Asia. As the largest province in China, Xinjiang covers

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1286012
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Dong et al. 10.3389/feart.2024.1286012

FIGURE 1
Maps of the study region. (A) The location of Xinjiang and the distribution of meteorological stations. (B) Population density of Xinjiang in 2020. (C)
Land-use types of Xinjiang in 2020.

an area of 166 × 104km2, and occupies one-sixth of the total
land of China. The region has the temperate continental climate
with low precipitation, sufficient sunshine and strong evaporation.
The topography is characterized by “Three Mountains and Two
Basins,” with the Kunlun Mountains, the Tarim Basin, the Tianshan
Mountains, the Junggar Basin and the Altay Mountains (Figure 1).
According to the topography, Xinjiang is usually divided into the
southern Xinjiang (SXJ), northern Xinjiang (NXJ), and eastern
Xinjiang (EXJ). The Taklimakan Desert in the Tarim Basin (China’s
largest desert) and the Gurbantunggut Desert in the Junggar Basin
(China’s second-largest desert) are themain heat sources inXinjiang.
As an important supply base for grain and cotton production
and the largest province for animal husbandry in China, Xinjiang
is very sensitive to climate change (Wang et al., 2014; Shi et al.,
2022; Zeng et al., 2022). Therefore, strengthening the knowledge of
climate patterns and improving the response capacity to climate
change is crucial to the sustainable development of Xinjiang.

2.2 Datasets

2.2.1 Observed climate data
To evaluate the ability of the model in simulating HWs

during the reference period (1995–2014), we employ the CN05.1
gridded daily maximum temperature and relative humidity by
the China Meteorological Data Service Center (http://data.cma.
cn). This dataset offers high spatial resolution (0.25°×0.25°) is
produced by Wu and Gao based on meteorological observations
frommore than 2,400 stations inChina by interpolation of thin-plate
smoothing splines and angular distance weighting method (Wu and
Gao, 2013). Due to the long time series and the high quality of the
data, CN05.1 has been widely used in previous research on climate
change and extreme events in China (Zhu et al., 2020; Zhang 
et al., 2023).

2.2.2 NEX-GDDP-CMIP6
Projection data are obtained from the latest version of the

NASAEarth ExchangeGlobalDailyDownscaled Projections dataset
(NEX-GDDP-CMIP6, https://www.nccs.nasa.gov/services/data-
collections/land-based-products/nex-gddp-cmip6), with a
resolution of 0.25°×0.25°. The NEX-GDDP-CMIP6 dataset is
based on the GCMs output from the CMIP6 (Thrasher et al.,
2022). The dataset includes 4 Shared Socioeconomic Pathway
(SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for
the period 2015–2100. In this study, 17 models available for each
scenario in the dataset (Table 1) are used to generate MME for
projection.

2.3 Methods

2.3.1 Heatwave definitions and characteristics
HWs are abnormally hot weather process that lasts for several

days.This study adopts the heat wave index (HI) proposed byHuang
et al. (Huang et al., 2011) as the judge of HWs. The index can be
calculated as follows:

HI = 1.2× (TI−TI′) + 0.35
N−1

∑
i=1

1/ndi(TIi −TI′) + 0.15
N−1

∑
i=1

1/ndi + 1

(1)

Where, TI is the torridity index of the current day, TI’ is the
critical value of torridity, TIi is the TI of the i-th day before the
current day, ndi represents the number of days from the i-th day to
the current day, and N is the duration of HWs (days).

The torridity index (TI) can be obtained as follows:

TI{
1.8×Tmax − 0.55× (1.8×Tmax − 26) × (1− 0.6) + 32 RH ≤ 60%
1.8×Tmax − 0.55× (1.8×Tmax − 26) × (1−RH) + 32 RH > 60%

(2)
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TABLE 1 Basic information for the NEX-GDDP-CMIP6 dataset used in this study.

Model
number

Model
name

Institution Horizontal
resolution
(Lon×Lat)

1 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Australian Research Council
Centre of Excellence for Climate System Science (ARCCSS), Australia

192×144

2 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia 192×145

3 CanESM5 Canadian Centre for Climate Modeling and Analysis, Canada 128×64

4 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change, Italy 288×192

5 EC-Earth3 EC-Earth Consortium, Europe 512×256

6 EC-Earth3-Veg-
LR

EC-Earth Consortium, Europe 320×160

7 GFDL-ESM4 NOAA/Geophysical Fluid Dynamics Laboratory, Earth System Model version 4, United States of America 288×180

8 INM-CM4-8 Institute for Numerical Mathematics, Russian Academy of Science, Russia 180×120

9 INM-CM5-0 Institute for Numerical Mathematics, Russian Academy of Science, Russia 180×120

10 IPSL-CM6A-LR Institute Pierre Simon Laplace, France 144×143

11 MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (University
of Tokyo), and National Institute for Environmental Studies, Japan

256×128

12 MPI-ESM1-2-
HR

Max Planck Institute for Meteorology, Germany 384×192

13 MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 192×96

14 MRI-ESM2-0 Meteorological Research Institute, Japan 320×160

15 NorESM2-LM Norwegian Climate Centre, Norway 144×96

16 NorESM2-MM Norwegian Climate Centre, Norway 288×192

17 TaiESM1 Research Center for Environmental Changes, China 288×192

in which Tmax is the daily maximum temperature (°C), and RH
represents the daily relative humidity (%).

The critical value of torridity (TI′) is used to judge whether it
is hot weather. When TI is greater than TI’, it means that the given
day reaches the high temperature state and is considered as hot
weather. The quantile method is used to calculated TI’, the following
formulas are used:

Q̂i(p) = (1− γ)X(j) + γX(j+1) (3)

j = int(p× n+ (1+ p)/3) (4)

γ = p× n+ (1+ p)/3− j (5)

Where Q̂i(p) represents the i-th quantile, p is the quantile (0.5 in
this study), j is the j-th TI, X denotes the sample sequence of the TI
in ascending order.

We focus on the variability of HWs in terms of both
frequency and duration. Heatwave frequency (HWF) is

the number of heatwaves that occur in a year. Heatwave
duration (HWD) is defined as the longest yearly heatwaves
(Dong et al., 2021).

2.3.2 Interannual variability skill score
The interannual variability of the simulations relative to the

observations is assessed by the interannual variability skill score
(IVS) (Chen et al., 2011), which is calculated as follows:

IVS = (
STDm

STDo
−

STDo

STDm
)

2
(6)

Where STDm denotes the interannual standard deviation of
simulated variables and STDo is the STD of observed variables.

IVS is a symmetric variability statistic used to measure the
similarity of interannual variation between model simulations and
observations. Smaller IVS values indicate better simulation of
interannual variability.
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FIGURE 2
Multi-model ensemble flowchart.

FIGURE 3
(A) Bias in simulating heatwaves between individual models and observations, and (B) model skill scores of the interannual variability.

2.3.3 Distance between indices of simulation and
observation

Distance between Indices of Simulation and Observation
(DISO) is a new comprehensive statistical index which can quantify
the overall performance of the different models against the observed
values (Hu et al., 2019). Compared with the widely used Taylor
diagram, DISO can quantitatively describe the accuracies of the
models in different perspectives by statistical metrics, such as the
correlation coefficient (R), the absolute error (AE), and the root-
mean-square error (RMSE). These statistical metrics are calculated
using the following equations:

R =

n

∑
i=1
(ai − a)(bi − b)

√
n

∑
i=1
(ai − a)

2√
n

∑
i=1
(bi − b)

2

(7)

AE = 1
n

n

∑
i=1
(bi − ai) (8)

RMSE = √ 1
n

n

∑
i=1
(bi − ai)

2 (9)

Where the observed values (A =(a1,a2,…,an)) and the model-
simulated values (B =(b1,b2,…,bn)). Where a and b is the mean of
A and B, respectively, and n is the length of data.

DISO = √(R− 1)2 + (RMSE)2 + (AE)2 (10)

The smaller value of DISO, the model performs better and
vice versa.

2.3.4 Comprehensive rating metric
The overall performance of models is evaluated by the

comprehensive ratingmetric (CR).Themethod used to calculate the
CR for models is the same as employed in Chen et al. (Chen et al.,
2011). We first obtain Si for 17 models based on a simple sum of
the DISO and IVS rankings. Then the model reliability factor (Ri) is
calculated for each model based on the inverse of the normalized Si
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FIGURE 4
Spatial distribution of annual mean heatwave days in Xinjiang from observations and 17 climate model simulations during the period 1995–2014.

FIGURE 5
Statistical metrics of 17 climate models in capturing spatial patterns of heatwaves in Xinjiang during the period 1995–2014.

to measure the comprehensive rating of the model. Finally, the CR is
calculated. The Ri and CRi are as below:

Ri =

N

∑
i=1

Si

Si
(11)

CRi =
Ri
N

∑
i=1

Ri

(12)

MME is generated based on the CR (Figure 2), the larger values
of CR indicate better performance of the simulation.
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FIGURE 6
Rader maps of weights based on the performance of the 17
climate models.

3 Results

3.1 Models performance evaluation

The performance of simulation models is usually evaluated
by comparing their outputs with historical observations before
projecting future climate change. Figure 3A illustrates the bias
in simulating HWs between individual models and observations
during the historical period, with biases ranging from −2.3 to
1.2 days. Most models exhibit biases of less than 1 day, with
MIROC6 displaying the largest bias and EC-Earth3 the smallest.
Figure 3B presents the model skill scores of individual models
for simulating the interannual variability of HWs in Xinjiang. All
climate models display IVS values below 0.03, the optimal model for
simulating interannual variability is GFDL-ESM4.

Figure 4 represents the spatial distribution of HWs based on
observations and 17 climate model simulations during the period
1995–2014. According to the observed data, most regions of
Xinjiang have suffered from HWs during the historical period, and
the spatial pattern of HWs exhibits significant spatial heterogeneity.
The total number of heatwave days in most regions ranging from
5 to 35 days, while regions with higher values exceeding 35 days
are primarily concentrated in EXJ and eastern part of SXJ. The
climate models generally capture the spatial characteristics of HWs
well in comparison to observations. Despite a general alignment in
the area of HWs and the spatial distribution of high value regions
between climatemodel simulations and observed data, biases persist
in certain regions. To assess the capability of individual models to
simulate the spatial patterns of HWs in Xinjiang, we employ DISO,
a statistical index that can quantify the simulation capability, by
using the metrics R, AE and RMSE. According to the magnitude
of the DISO values, the ranking of model simulation capabilities is
illustrated in Figure 5. Unlike the model with the optimal ability in
simulating interannual variability of HWs, MIROC6 emerges as the
model with the optimal ability to simulate spatial patterns.

By combining the IVS and DISO rankings, we calculate the CR
of individual models (Figure 6). The radar chart visually represents

the CR values, with larger value indicating the better integrated
simulation capability of the model. The comprehensive ability of
CanESM5, GFDL-ESM4 and MPI-ESM1-2-HR to simulate HWs
is found to be significantly better than the other models, with
weights of 0.204, 0.1 and 0.09, respectively. The MME performance
is generally considered to be outperforming individual models in
ensembles, and we will use the weights in Figure 6 to generate MME
by assigning them to individual models.

We compare the simulation capabilities of the MME both
interannual variability and spatial distribution with individual
models within the ensemble. As shown in Figure 7A, the MME
exhibits IVS value of 0.013, indicating a weaker performance
compared to CanESM5 and GFDL-ESM4 in simulating interannual
variability in HWs. Despite this, MME surpasses the vast majority
of individual models in simulating interannual variability. Assessing
the MME’s ability to capture spatial patterns of HWs, as indicated
by the DISO value, it outperforms all ensemble models except
MIROC6 and CanESM5 (Figure 7B). Combining the performance
of simulation capabilities in terms of interannual variability and
spatial patterns, MME performs better than most individual models
in simulating HWs in Xinjiang.

3.2 Projections of heatwave characteristics

HWF in Xinjiang during the reference period is 5.5 times, and
the HWF during the projection period shows an increase compared
to the reference period, but the change is slight (Figure 8A). The
minimum (6.3 times) and maximum values (7.9 times) of the
HWF in Xinjiang for the projection time period occur in the near-
term under the SSP1-2.6 and in the long-term under the SSP3-
7.0 scenario, respectively. The NXJ is the region with the lowest
HWF in the reference period, at 3.5 times. Over time, HWF in
NXJ demonstrates the consistent increase, with the highest value
occurring in the long-term under the SSP5-8.5 scenario, peaking
at 8.4 times (Figure 8B). The maximum HWF values in both SXJ
(Figure 8C) and EXJ (Figure 8D) are observed in the long-term,
reaching 8 and 8.2 times, respectively. In summary, HWF does not
exhibit significant differences across regions and scenarios over the
projection period.

Compared with the reference period, HWD increased in
Xinjiang during the projection period (Figure 9A). Notably, HWD
consistently exhibits higher values under the high emission scenario
compared to the low and moderate emission scenarios. Under
the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, HWD
in Xinjiang is projected to reach 13.8, 13.2, 13.7, and 15 days in
the near-term, respectively, and is expected to further increase to
16.8, 26.9, 43.9, and 61 days in the long-term. It can be observed
that the most significant changes in HWD occur under the SSP5-
8.5 scenario. Besides the evident differences in HWD between
scenarios, there are also noticeable variations between regions. For
instance, HWD in SXJ (Figure 9C) under the SSP5-8.5 scenario
is projected to increase to 72.4 days in the long-term, while in
NXJ (Figure 9B), it is anticipated to reach 38.3 days. The evaluation
of HWD under the scenarios in EXJ (Figure 9D) follows the
consistently increasing trend over time, similar to other regions.
Overall, HWD is projected to increase in Xinjiang with rising
SSP scenarios.
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FIGURE 7
Scatter diagram of the model performance. (A) IVS and (B) DISO. The horizontal dashed lines indicate the value of MME.

FIGURE 8
Temporal series of HWF in (A) Xinjiang, (B) NXJ, (C) SXJ, and (D) EXJ during 1995–2100. Solid lines denote the mean annual HWF estimated across the
17 models. The shaded area denotes the uncertainty range (±1 standard deviation range of model annual averages). From the bottom to the top of a
box, the horizontal lines represent the minimum, first (lower) quartile, mean, third (upper) quartile and maximum, respectively.

Figure 10 illustrates the probability distribution of HWF for
different periods under various scenarios. In comparison to the
reference period, it is evident that the maximum value of the
future probability density distribution consistently shifts to the right
across all regions of Xinjiang, indicating an increase in HWF in
the future. Among them, the most significant changes are observed
in NXJ. During the reference period, the maximum probability
density of HWF in NXJ is recorded at 1.1 times (Figure 10A).

However, under the SSP3-7.0 and SSP5-8.5 scenarios, the maximum
probability density of HWF significantly increases in the long-term,
reaching values between 8–12 times. In SXJ and EXJ, the maximum
probability density of HWF occurrence during the reference period
is 7.1 and 7.5 times, respectively (Figures 10B,C). In SXJ, the highest
probability density of HWF occurrence is concentrated within the
range of 6.7–9.2 times. The maximum values of the probability
density of the occurrence of HWF in EXJ are concentrated between
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FIGURE 9
Temporal series of HWD in (A) Xinjiang, (B) NXJ, (C) SXJ, and (D) EXJ during 1995–2100. Solid lines denote the mean annual HWD estimated across the
17 models. The shaded area denotes the uncertainty range (±1 standard deviation range of model annual averages). From the bottom to the top of a
box, the horizontal lines represent the minimum, first (lower) quartile, mean, third (upper) quartile and maximum, respectively.

7 and 9.5 times. Compared to the reference period, HWF exhibits
an increase in NXJ, with the most significant increase occurring
along the periphery of the Junggar Basin (Figure 11). Unlike NXJ,
HWF decreased in certain areas of SXJ and EXJ. Notably, the regions
experiencing decreased HWF are predominantly situated in areas
with frequent HWs during the reference period.

Similar to the HWF projection, the probability density of
HWD exhibits the rightward shift in future periods. The highest
values of the probability density of HWD occurrence in NXJ
vary significantly in the long-term under the SSP3-7.0 and
SSP5-8.5 scenarios (Figure 12A). In SXJ, HWD with the highest
probability density of occurrence during the reference period
is 5.2 days, which is projected to increase to between 17 and
80 days during the projection period (Figure 12B). Compared to
the reference period, the most significant changes of HWD in EXJ
are observed in the long-term under the SSP3-7.0 and SSP5-8.5
scenarios (Figure 12C).

From the perspective of spatial, HWD are projected to increase
in nearly all regions of Xinjiang (Figure 13). There is significant
spatial heterogeneity in the increase of HWD under SSP scenarios
in the near-term compared to the reference period. Regions that
had sever HWs in the reference period show notable increases
in the near-term under the SSP scenarios, such as EXJ and the
eastern part of SXJ. During the mid-term and long-term, HWD
will continually increase under the SSP scenario. In addition to
the increase in HWD in regions where HWs have historically
occurred, some regions that have never experienced HWs are likely
to be hit in the future. Overall, HWD will increase in Xinjiang
in the future, and the region affected by HWs is also expected to
expand in size.

4 Discussion

This study evaluates the capability of 17 climate models to
simulate HWs in Xinjiang in terms of both interannual variability
and spatial patterns in combination with CN05.1 data. The
results indicate that the models which perform well in simulating
interannual variability do not excel in capturing spatial patterns.
Conversely, those that capture spatial patterns well are poor
at interannual variability. In short, there is no single model
that can be considered ideal, as is the case with many of the
existing findings (Akinsanola et al., 2021; Yazdandoost et al., 2021).
To improve the accuracy of the simulation of the model, MME
is generated based on the overall performance of the model.
When comparing the MME’s ability to simulate HWs with that
of individual models within the ensemble, it is clear that MME
may not be optimal in simulating interannual variability or spatial
patterns, but its overall performance exceeds that of most of the
individual models.

Projection studies have indicated that Xinjiang is tend to
experience more frequent and severe HWs. There are increases in
HWF compared to the reference period, but the changes are slight.
However, HWD exhibits the significant and sustained increase
over time. Numerous studies on HWs projection have shown a
significant increasing trend in bothHWF andHWD (Li et al., 2019).
Differently, HWF inXinjiang varies slightly over time and under SSP
scenarios.This is related to the prolongation ofHWD,which hinders
the increase in HWF. The variation in HWF is more pronounced
in NXJ compared to the SXJ and EXJ, which may be related
to the higher temperature increase in NXJ (Zhang et al., 2023).
In addition, NXJ with higher socio-economically development
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FIGURE 10
Kernel fit to the histograms of the probability of HWF in (A) NXJ, (B) SXJ, and (C) EXJ. The black dashed line denotes the maximum density of HWF in
the reference period.

FIGURE 11
Projected changes of HWF in Xinjiang from MME under different SSP scenarios, relative to the reference period (1995–2014).
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FIGURE 12
Kernel fit to the histograms of the probability of HWD in (A) NXJ, (B) SXJ, and (C) EXJ. The black dashed line denotes the maximum density of HWD in
the reference period.

and greater human activity intensity, is more sensitive to climate
change than other regions in Xinjiang (Zhang et al., 2016). As
the SSP scenarios increase, HWs are expected to intensify in
the near future, consistent with the findings of Wei et al., 2023.
Particularly, HWD is projected to reach 61 days in the long-term
under the SSP5-8.5 scenario. This implies that the current rare
HWs will become more common in the near future under the
SSP5-8.5 scenario. Overall, HWs in Xinjiang show an increasing
trend, and the increase in HWs is mainly expressed through the
prolongation of HWD.

Spatially, the distribution characteristics of HWs in Xinjiang
coincide with the unique topographic features of the “Three
Mountains and Two Basins” in the region. The topography of the
closed basin, hills, and Gobi, which easily absorb solar radiation,
result in regions of high value of HWF and HWD are mainly
located in the EXJ, southern parts of NXJ, and the Tarim Basin
(Shi et al., 2006). In this study, it is observed that high mountains
such as the Kunlun Mountains, Tianshan Mountains, and Altay
Mountains have never been affected by HWs and are projected
to be unaffected by HWs until the end of this century. This
finding is inconsistent with the results of (Liu et al., 2021), and
the disparity may be attributed to the use of different definitions
of HWs. Given the “warming-wetting” climate trend in Xinjiang,
relying solely on the relative threshold of air temperature to identify
HWs may lead to underestimating the intensity of HWs in regions
with high relative humidity and may also result in the broader
scope (Chen et al., 2020). The spatial distribution of HWs is not
only influenced by regional geographical conditions but also by
atmospheric circulation. SXJ and EXJ are in the area of subsidence

movement of the Iranian High, and when subsidence airflow
prevails, the structure of the atmosphere is stable, which is conducive
to the emergence of HWs. The spatial distribution of HWs in
Xinjiang is characterized by more occurrences in the south and
less in the north, and more in the east and less in the west. HWs
are projected to increase in most regions of Xinjiang with the
increase of the SSP scenarios and over time, with HWD in the
long-term under the SSP5-8.5 scenario expected to exceed 30 days.
This is consistent with the result that most regions of the world
produce more severe HWs in the future scenario and increase
faster in SSP5-8.5 (Sun et al., 2014). In conclusion, the affected area
and intensity of HWs in Xinjiang are projected to increase in the
future, while the spatial distribution pattern will remain basically
unchanged.

The problem of uncertainty lies at the heart of projection
studies. MME is an effective method to reduce uncertainty
(Parsons et al., 2021). The critical consideration in utilizing MME
is how to combine models, various weighting schemes include
equal weighting, performance weighting, performance weighting
with bias removed, reliability ensemble averaging, independent
weighting, and non-negative least squares regression (Elvidge et al.,
2023). In this study, to enhance the reliability of projections,
we evaluate the simulation capabilities of individual models
in terms of interannual variability and spatial patterns are
assessed. MME are subsequently generated based on the combined
performance. To further reduce projection uncertainty, future
studies should explore diverse ensemble schemes and employ
preferred ranking strategy to construct MMEs with optimal
performance.
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FIGURE 13
Same as Figure 11, but for HWD.

5 Conclusion

HWs changes and their adverse impacts have attracted
widespread attention. Studies at the regional scale are essential
to improve understanding of local HWs variability and to facilitate
the development of climate change adaptation strategies. In this
study, we evaluate the ability of 17 climate models to simulate
HWs in Xinjiang in terms of interannual variability and spatial
patterns. Additionally, we project changes in HWs under different
SSP scenarios based on the MME. The results indicate that most
models successfully reproduce HWs in Xinjiang. In comparison
to individual models, the comprehensive performance of MME
exceeds that of most of the individual models. The projections
using the MME suggest that the prolongation of HWD may lead
to more severe HWs in Xinjiang, with more pronounced variations
expected in the distant future as opposed to the near future.
Spatially, the distribution characteristics of HWs in Xinjiang are
closely related to the unique topographic features of the “Three
Mountains and Two Basins” in the region, with significant spatial
heterogeneity. The high-value regions are primarily distributed in
the EXJ and the eastern part of SXJ. In the future, we anticipate
an increase in both the extent and intensity of HWs in Xinjiang,
while the spatial distribution pattern is projected to remain largely
unchanged.
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