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Predicting rock mass rating
ahead of the tunnel face with
Bayesian estimation

Xiaojun Li, Ziyang Chen, Li Tang, Chao Chen, Tao Li,
Jiaxin Ling*, Yanyun Lu and Yi Rui*

Department of Geotechnical Engineering, Tongji University, Shanghai, China

The rock mass rating (RMR) system plays a crucial role in geomechanics
assessments for tunnel projects. However, conventional methods combining
empirical and geostatistical approaches often yield inaccuracies, particularly
in areas with weak strata such as faults and karst caves. To address these
uncertainties and errors inherent in empirical techniques, we propose a
progressive RMR prediction strategy based on the Bayesian framework. This
strategy incorporates three key components: 1) Variogram modeling: utilizing
observational data from the excavation face, we construct and update a
variogram model to capture the spatial variability of RMR. 2) TSP-RMR
statistic model: we integrate a TSP-RMR statistical model into the Bayesian
sequential update process. 3) Bayesian maximum entropy (BME) integration: the
BME method combines geological information obtained from tunnel surface
excavation with tunnel seismic prediction (TSP) data, ultimately enhancing the
RMR prediction accuracy. Our methodology is applied to the Laoying rock
tunneling project in Yunnan Province, China. Our findings demonstrate that
the fusion of soft data and geological interpretation significantly improves the
accuracy of RMR predictions. At selected prediction points, the relative error of
our method is less than 15% when compared to the traditional Kriging method.
This approach holds substantial potential for advancing RMR estimation ahead
of tunnel excavation, particularly when advanced geological forecast data are
available.

KEYWORDS

rock mass rate prediction, tunnel seismic prediction, dynamic Bayesian framework,
multisource data fusion, geostatistical method

1 Introduction

The surrounding rock plays a vital role in tunnel engineering as it concerns both safety
and efficiency in the design and construction phases. During construction, the variety of
geological conditions might lead to serious hazards or collapses, resulting in casualties and
financial losses. Hence, an accurate rock quality assessment ahead of the tunnel surface to
dynamically revise the support schemes could decrease the hazards during construction.

To accurately reflect the quality of the surrounding rock, conventional rock mass
classification systems are still employed in current tunnel construction practice, and a
variety of rock mass classification systems have come forward to evaluate the quality
of the geological conditions. Standard rock classification methods include the Q-system
classification, rock mass rating (RMR) classification (Bieniawski, 1973), geological strength
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index (GSI) classification (Hoek et al., 1997), and the basic
quality (BQ) approach. Among them, RMR is one of the most
extensively used rock mass classification systems because of its
comprehensiveness of the indicators and convenient application.
The RMR system consists of six main indicators: the uniaxial
compressive strength (UCS) of rock material, rock quality
designation (RQD), joint and bedding spacing, joint condition,
groundwater conditions, and orientation of discontinuities for the
opening axis.

The current practice in predicting RMR involves a
comprehensive evaluation of the rock mass based on several
parameters, which typically include the uniaxial compressive
strength of the rock material, RQD, spacing of discontinuities,
condition of discontinuities (such as persistence, aperture,
roughness, infilling, and weathering), groundwater conditions, and
the orientation of discontinuities. For instance, Niedbalski et al.
(2018) calculated RMR based on the engineering properties and
quality of rock mass. In addition to various rock classification
systems, different techniques predicting lithological and structural
heterogeneities ahead of the tunnel face have also been developed
to lay a solid foundation for the revision and majorization of the
initial design scheme, one representative of which is the tunnel
seismic prediction (TSP). TSP is a non-destructive tool using the
elastic differences in the physical properties to characterize different
rock types. TSP is a seismic method specifically tailored for use
in tunneling and mining. It involves generating seismic waves
at the tunnel face, which then travel through the rock mass and
are recorded by sensors placed along the tunnel. By analyzing the
travel times and characteristics of the seismic waves, geophysicists
can construct a profile of the rock mass ahead of the tunnel face.
Figure 1 displays the equipment layout of TSP. The seismic waves
are formed by installed burst points (normally 12 points per side)
and received by two or four receivers fixed on the side walls.
Through subsequent analysis of the direct and reflected waves, it
is found that the compression wave velocities (VP) and shear wave
velocities (VS) reveal the rock properties as the propagation of

FIGURE 1
Equipment layout of TSP.

TABLE 1 Formulas denoting the relation between RMR and wave velocity
in the literature.

No. Empirical formula Reference

1 S = (s1, s2, s3...sm) Nourani et al. (2017)

2 S = (s1, s2, s3...sm) Nourani et al. (2017)

3 S = (s1, s2, s3...sm) Esmailzadeh et al. (2018)

4 S = (s1, s2, s3...sm) Esmailzadeh et al. (2018)

seismic velocity depends on various parameters, including density,
rock strength, water conditions, weathering, and the type of filler
material for discontinuities (Montalvo et al., 2015; Bu et al., 2018;
Li et al., 2019a). Accordingly, the relationship between rock mass
rating and seismic wave velocity can be quantified, as demonstrated
in Table 1 by previous studies.

Many research studies (Von and Ismail, 2017; Zhou et al., 2017;
Li et al., 2019a; Hou et al., 2019; Lu et al., 2020) have proven that
the seismic wave velocity information acquired by TSP can reflect
the geological conditions in front of the tunnel face. To be specific,
a portion of studies (Montalvo et al., 2015; Von and Ismail, 2017;
Zhou et al., 2017; Bu et al., 2018; Li et al., 2019b; Hou et al., 2019;
Shan et al., 2019; Lu et al., 2020) have revealed the link between the
rock quality index and seismic wave, in particular engineering cases.
For instance, Esmailzadeh et al. (2018) proposed a statistical model
for RMR and TSP data. Bu et al., 2018 introduced an optimization
method for classifying the advanced surrounding rock based on
TSP data. Chen et al. (2017) proposed a geostatistical method for
inferring RMR ahead of tunnel face excavation using dynamically
exposed geological information. However, such an interpretation
of refined geological data depends on the engineer’s experience,
and the interpretation results are usually qualitative (Santos et al.,
2015; Esmailzadeh et al., 2018). A handful of research studies have
focused on the mutual link between the rock mass rating and the
seismic wave velocity (Nourani et al., 2017). Moreover, considering
the site characteristics, most of the models fitting the relationship
between the surrounding rock quality and wave velocity have been
hypothesized and optimized, which means that the estimation
error of these fitting models will increase when the engineering
environment changes.

Due to the ability to consider uncertainty, geostatistical
approaches have been gradually adopted to estimate the RMR
in different engineering projects. At present, extensive studies
(Chen et al., 2018; Zhang and Zhu, 2018; Li et al., 2019b; He et al.,
2020) are using the Kriging method to directly interpolate the
RMR value of the whole area based on the surface exploration
data and borehole data. However, these studies use limited data in
the early survey stage without adopting the geological information
obtained during construction. Such a phenomenon is worse in
mountain tunnels as boreholes are scattered for economic reasons
(Chen et al., 2017). As a result, there is a significant error in the
estimation of the quality of the surrounding rock utilizing typical
empirical methods. It is well-known that tunnel excavation is a
dynamic process, and with the advance of the tunnel, new tunnel
faces are exposed, which creates an opportunity to gather more
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FIGURE 2
Progressive exposure characteristics of the tunnel’s surrounding rock.

detailed and accurate geological information. However, previous
studies fail to take newly exposed geological information into
account. Therefore, the main research gap this study aims to
fill is how to integrate on-site data, which includes advanced
geological prediction data and tunnel face data, during tunnel
construction to reduce the prediction error and uncertainty of the
surrounding rock.

The spatiotemporal Bayesian maximum entropy method
has been successfully applied in data fusion problems in civil
engineering (Li et al., 2013; Hayunga and Kolovos, 2016; Jat and
Serre, 2016; Zhang et al., 2016; Gelman et al., 2017; Hu et al., 2021).
However, the relation of seismic wave velocity in surrounding rock
is not clear, and the BME method cannot be used to fuse the
wave velocity data directly. To enhance the forecasting accuracy
of rock mass quality in front of the tunnel face, it is necessary
to study the prediction method that can integrate TSP wave
velocity data.

Hence, in this study, the BME method integrating the TSP
method is proposed to describe the relationship between newly
exposed geological information and TSP data. Moreover, the
observed and predicted values of RMR are compared and verified
to estimate the effects of various physical parameters. Then, the
performances of ordinary Kriging (OK) and BME approaches are
also compared in uniform formation and the fault fracture zone
to highlight the influence of the data used in RMR prediction.
This study focuses on employing a dynamic Bayesian framework
to quantitatively estimate RMR values in advance of the excavation
face throughout tunnel construction. The main contributions of
the study are summarized as follows: (1) A progressive prediction
strategy for a tunnel’s surrounding rock quality was proposed.
(2) The TSP-RMR statistic model was established by the Bayesian

sequential update framework. (3) The uncertainty of the RMR
prediction results was quantified and compared with traditional
geostatistical methods. Results show that the prediction results
can be improved by 15% by integrating soft data from geological
interpretation.

2 Methodology

This section begins by introducing the characteristics of
TSP data and explaining how to utilize TSP data for predicting
the RMR value (Subsection 2.1). It then analyzes the spatial
structural variability of RMR data (Subsection 2.2). Subsequently,
based on the actual measurement data from the excavation
face and the TSP forecast data, soft data on seismic wave
velocity are obtained through Bayesian sequential updating
(Subsection 2.3). Finally, the data undergo dynamic Bayesian
maximum entropy fusion to yield the RMR classification results
(Subsection 2.4).

2.1 RMR prediction by integrating TSP

As the tunnel excavation progresses, the geological body is
exposed round by round. More accurate geological information
can be obtained by a series of advanced technologies, as shown in
Figure 2. The assumptions of the approach to predict RMR ahead
of the excavation face include the following: (i) the geological
conditions change only along the excavation direction; (ii) the
RMR values obtained from the tunnel face are accurate. The
design of the tunnel support structure is mainly based on the
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FIGURE 3
Framework of the progressive prediction strategy for the surrounding rock quality of the tunnel.

FIGURE 4
Processing of soft data based on Bayesian sequential updating.

grade of the tunnel’s surrounding rock during the excavation,
and it is easy to collect rock information on the tunnel face.
Therefore, the above two assumptions can be accepted in the
actual construction procedure of the tunnel. Assuming that
S = (s1, s2, s3...sm) represents the excavation position, the RMR
of the surrounding rock parameters at the xth position can be
denoted as RMR(sx).

For the position of Sq, RMRmeasured = RMR(s1, s2, ..., sx|x < q)
represents themeasured RMRvalue.The forecast for the geophysical
parameters can be denoted as (s1, s2, ..., sq−1, sq, sq+1, ..., sq−n),
where n is the advanced prediction detection range. Such
data can be divided into two parts: Vmeasured = V(s1, s2, ..., sq−1)
represents the values of the measured seismic wave velocity at
the given location, and Vprediction = V(sq, sq+1, ..., sq+n) portrays
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FIGURE 5
Framework of the Bayesian maximum entropy approach.

FIGURE 6
Location of the Laoying tunnel in China.

the geophysical parameters in front of the tunnel face. At this
point, there is no measured RMR value in the process. The
predicted value of RMR before tunnel excavation can be expressed
as follows:

RMRprediction = RMR(sq, sq+1, ..., sq+n). (2.1)

Accordingly, a Bayesian stochastic analysis framework is
proposed for inference RMR values in front of the tunnel face. Two
types of information are used in the following prediction process:
(1) RMR values measured and calculated from excavation sketches
and (2) geophysical data obtained from the tunnel seismic prediction
(TSP), including VP and VP/VS. Depending on the uncertainty of
the data, these two types of data can also be divided into hard data
(measured value such as RQD) and soft data (seismic interpretation
result). The conceptual workflow of the RMR prediction procedure
is outlined in Figure 3.

The progressive prediction strategy of RMR can be separated
into the following three steps:

1) RMR spatial correlation analysis and construction of
a variogram.

2) TSP-RMR statistical model based on the Bayesian
updating framework.

3) RMR prediction based on the BME approach.

The RMR values were calculated, and the corresponding
theoretical variogram model was fitted accordingly. The range of
the variogram can be used to determine the locations of the data
points used in the prediction. All steps are described in the following
sections in detail.

2.2 RMR spatial correlation analysis and the
built of the variogram

In the hypothesis of the geostatistical theory, adjacent geological
data show similar properties (Chen et al., 2017); therefore, RMR
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FIGURE 7
Data measured from the tunnel face.

data from similar areas can be used to forecast the quality of
the surrounding rock at unknown points. This spatial correlation
of the geological condition of the excavation face at different
positions can be expressed by a variogram. The variogram is
defined as the expectation of the variance of regional variables
as follows:

2γ(x,h) = var[Z(x) −Z(x+ h)] = {E[Z(x) −Z(x+ h)]}2, (2.2)

where Z represents a stationary random function, including
the known mean m and variance σ2, which is independent
of location; therefore, m(x) =m and σ2(x) = σ2 for all places
x in the research region. The RMR of the tunnel excavation
surface can be treated as a one-dimensional variable along
the tunnel axis. The spatial correlation is obtained by
calculating the experiment variogram and fitted using theoretical
variogram models (i.e., spherical model, exponential model, and
Gaussian model).

Due to that, the peculiarities of the geological data are gradually
revealed during tunnel excavation, and a series of observation data
are utilized to build a variogram model for each prediction point.
The range and sill are two essential components in the variogram
function.The hard data beyond the range will not be included in the
prediction.

2.3 TSP-RMR statistical model based on
the Bayesian updating framework

2.3.1 Dynamic Bayesian framework
Assume that the relationship between RMR and wave velocity

can be shown by.

f(x) = xTw,y = ax+ b+ ε, (2.3)

a ∼ N(μa,σ
2
a),b ∼ N(μb,σ

2
b),ε ∼ N(0,σ

2
t ), (2.4)

where x is the wave velocity data (VP or VP/VS), y shows the
observed performance,w = {a,b} are the regression parameters, and
ε represents the uncertainty variable, describing the observation
error. The model parameter w is assumed to be a normal or
lognormal distribution. The Gaussian error with zero mean and
variance σ2t is used to represent the observation error ε.

The Bayesian method can use observation samples to update
model parameters. The posterior distribution of model parameter
θ = {w,ε} can be obtained by integrating prior information and the
likelihood function from the observation values, which is expressed
in Eq. 2.5.

P(θ|x,y) =
P(y|x,θ)P(θ)

∫P(y|x,θ)P(θ)dθ
= kP(y|x,θ)P(θ), (2.5)

where k is a normalization constant to ensure that the
posterior probability density function (PDF) P(θ|x,y) is
valid. P(θ) is the prior PDF of parameters, which can be
obtained through previous engineering information and expert
experience. P(y|x,θ) is the likelihood function, reflecting the
observation conditional probability of y. P(θ|x,y) represents the
posterior PDF.

Figure 4 demonstrates the basic principle of the Bayesian
updating framework, and P(θ) is updated in each step of the
prediction. Its implementation can be summarized as considering
the posterior distribution of the parameters predicted in the previous
step as the prior distribution of the parameters updated in the next
step. According to the Bayesian theorem, the posterior distribution
of the stage is expressed as follows:

P(θ|DATAI) = KIP(DATAI|θ)P(θ). (2.6)

Due to the complexity of the likelihood function and integral
term, an analytic representation of posterior distribution is difficult
to obtain directly. Thus, it is gained through the numerical
integrationmethod or samplingmethod. In this paper, the sampling
method based on the Markov chain Monte Carlo (MCMC)
simulation is suitable for deriving the posterior PDF. MCMC is
a numerical method to generate random sample data to obtain
distribution parameters. The Gibbs sampling algorithm is used in
MCMC to generate the equivalent sample.

Tunnel excavation is a process in which the measured data
gradually increase. The measured RMR data and wave velocity
information gradually revealed can be used as a dataset to calculate
the likelihood function of the new stage. Therefore, in the Bayesian
sequence updating framework, each excavation process of the tunnel
can be regarded as a new updating stage.
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TABLE 2 Measured RMR values on the tunnel faces.

Number Position Measured RMR value VP VP/VS

1∗ K12 + 320 45 3,051 1.79

2∗ K12 + 300 52 3,209 2.13

3∗ K12 + 280 51 3,533 1.92

4 K12 + 260 3,600 2.14

5∗ K12 + 240 32 2,872 1.62

6∗ K12 + 220 38 2,979 1.63

… … … … …

50∗ K11 + 340 39 3,056 1.57

51∗ K11 + 320 38 2,875 1.55

Note:*represents the position number with the measured RMR values.

FIGURE 8
Excavation profile of the Laoying tunnel.

2.3.2 Prior PDF parameter setting
The prior distribution of the parameters is determined by the

posterior distribution of the previous prediction results. The model
parameter w is assumed to be a normal distribution with a mean of
uw and a variance of σ2w.

w  ∼ N(uw,σ2w). (2.7)

In the first step of prediction, the prior information about the
model can be determined according to the engineering experience.
Assuming that the prior information is μa = μb = 0, σ

2
a = σ2b = 10

4

represents that model parameters can be specified in a certain range
before the observation data are obtained.

It should also be noted that the observation error is very
important in the estimate of the likelihood function.Theobservation
error (ε) is assumed to be a normal distribution with zero mean
and a standard deviation of 1.0, based on the experience in Yunnan
and the reports in the literature about measured RMR based on
photography.

2.3.3 Soft data probability distribution calculation
After the posterior distribution of the model parameters is

obtained, the RMR probability distribution from wave velocity
inversion can be calculated by Eq. 2.8:

P(y|x,DATA) = ∫θP(y,θ|x,DATA)dθ. (2.8)

In this study, the model parameters w and observation errors ε
follow the assumption of normal distribution and are independent of
each other. Therefore, the RMR soft data obtained by wave velocity
fitting also conform to normal distribution.

2.4 Bayesian maximum entropy (BME)
approach

The overall framework of the Bayesian maximum entropy
approach is shown in Figure 5. The Bayesian maximum entropy
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FIGURE 9
RMR interpretation values in different excavation stages at K11 + 360.

approach can integrate physical knowledge from different
sources, uncertainty information, and statistical moments into a
spatiotemporal random field (Christakos, 1990). The interpretation
results of RMR with TSP based on Bayesian dynamic updating
are substituted into the Bayesian maximum entropy framework as
soft data, and finally, the predicted RMR value at the unexcavated
position beyond the tunnel excavation face can be obtained.

Suppose that there are a total of m data points in the sampling
space, which contain h hard data and m− h soft data. Accordingly,
the hard data are represented as xhard = (x1, ...,xh), and the soft data
are represented as xsoft = (xh+1, ...,xh+m). The BME method is used
to predict the point values and calculate posterior PDF based on the
estimated values from the expected value. The posterior probability
of the prediction is calculated as follows:

f(xk|x1,x2, ...,xm) =
f(xk|x1,x2, ...,xm,xk)

f(x1,x2, ...,xm)
, (2.9)

xkm = ∫xk f(xk)dxk. (2.10)

The basic flow of BME (Figure 5) includes three basic steps:

1) The prior stage: at this stage, the basic knowledge (BK) is
integrated with the prior distribution, which is given using

the maximum entropy criterion. Generally, the prior PDF
of maximum entropy can be calculated by the Lagrange
optimization operator, which can be calculated as follows:

fG(x) = K
−1 exp[

N

∑
α=1

μαgα(x)], (2.11)

where fG(x) is the prior probability distribution under the
maximum-entropy condition. gα is a known function between
the random variables. μα is the Lagrange multiplier. N represents
the number of constraints, and K represents the regularization
parameter.

2) The integration stage: this phase combines the hard and soft
data to form a specific knowledge base (SK). In this paper, the
hard data come from the measured RMR on the tunnel face,
while the soft data come from the wave velocity data obtained
by TSP advance prediction and from the fitting model of the
surrounding rock parameters.

3) The posterior stage: at this stage, GK and SK are integrated.The
prior PDF obtained in the first step and the specific knowledge
base in the second step are processed by the Bayes rule to
solve the posterior PDF. Finally, the mathematical expectation
is obtained as the predicted value of the point to be estimated.
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FIGURE 10
TSP and RMR statistical parameters in excavation stage 1; (A) equivalent sample frequency distribution; (B) equivalent samples based on MCMC.

FIGURE 11
Variogram function fitting: (A) K11 + 900 variogram model, (B) K11 + 760 variogram model, (C) K11 + 480 variogram model, and (D) K11 + 360
variogram model.
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FIGURE 12
K11 + 900 soft data and hard data location distribution.

TABLE 3 Cross-validation criteria for different excavation stages (VP as
soft data).

Prediction location Nugget Range(m) Sill

K11 + 900 5.27 95.54 155.17

K11 + 760 28.19 124.44 103.25

K11 + 480 21.17 261.93 98.88

K11 + 360 44.87 448.83 85.76

FIGURE 13
Frequency distribution histogram of measured RMR.

3 Case study of the Laoying tunnel

3.1 Project overview

A case study was performed to validate the RMR prediction
method proposed in this study.The Laoying rock tunnel is a separate
rock tunnel constructed by the drilling and blasting method in
Baoshan, Yunnan, China (see Figure 6). The study area is located
between the mileages K12 + 320 and K11 + 320, with a total

length of 1,115 m. The maximum buried depth of the Laoying
tunnel is approximately 1,264 m. The underground space traversed
by the project mainly contains rock layers such as sandstone and
limestone, and the preliminary survey reveals five large faults along
the tunnel axis.

3.2 Data collection

A series of photogrammetry and field tests were performed to
obtain the value of RMR on the tunnel face as hard data. The new
tunnel face, which was exposed by tunnel drilling and blasting,
created opportunities for engineers to inspect the rock masses. In
this study, the surrounding rock evaluation parameters in RMR
are collected herein. As shown in Figure7, the integrity index
(RQD value, joint spacing, and joint condition) of the tunnel face
was obtained by the photogrammetry-based mapping technique
(Li et al., 2016), and the UCS of the rock mass can be obtained
through the rebound tests of the rock mass. Ground water (GW)
data are obtained by field observation. A part of the measured RMR
values of the tunnel faces is given in Table 2.

During tunnel construction, a total of nine TSP tests were
conducted in the designated location from K11 + 320 to K12 +
320 (see Figure 8). Each TSP seismic wave forecast can observe
the seismic p-wave and s-wave velocities in the rock mass within
100–120 m in front of the tunnel face. By analyzing the wave velocity
inversion results of the nine TSP predictions, VP and VS of the rock
mass were collected every 20 m from the position of K12 + 320.
In the selected study area, the tunnel passes through a fault zone,
which is approximately located between K11 + 470 and K11 + 320,
according to the preliminary geological survey.

4 Results and discussion

4.1 Probabilistic characteristics of RMR
with wave velocity fitting

Figure 9 displays the RMR values of K11 + 360, as interpreted by
VP and VS/VS, respectively. A total of 10,000 equivalent samples of
the statistic parameters were generated using the proposed Bayesian
sequential updating approach to ensure that the MCMC method
achieves a stable convergence state. The RMR value at K11 + 360
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FIGURE 14
(Continued).

was interpreted when the tunnel was excavated to K11 + 880,
K11 + 740, K11 + 480, and K11 + 340, referring to excavation
stages 1, 2, 3, and 4, respectively. Figure 10 displays the MCMC
equivalent sample and statistical diagram of the parameter at K11
+ 360 under the conditions of the first excavation stage. Therefore,
as the excavation continues, the available measured data gradually
increase, and the predicted variance decreases. For each prediction
point, soft data select the interpretation results of the stage in
which the excavation position is closest to the prediction point. In

excavation stage 4, where the excavation faces reachK11+ 340, when
VP and VP/VS are used to interpret RMR, the mean and variance
of K11 + 360 interpretation data are (39.7032, 3.509) and (38.5254,
3.387), respectively. These two values are used as soft data at K11 +
360, when the excavation position is closest to the prediction point
as many measured data can be employed. The soft data forecasting
the rest of K11 + 360 also employed MCMC statistics from this
construction phase. Correspondingly, when predicting K11 + 900,
K11 + 760, and K11 + 480, the parameters of the excavation stage
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FIGURE 14
(Continued). BME prediction result at different excavation stages ((A, B): excavation stage 1; (C, D): excavation stage 2; (E, F): excavation stage 3; (G, H):
excavation stage 4).

1, stage 2, and stage 3 are used, respectively. In order to increase the
prediction accuracy, all available hard data are used in this process.

4.2 Hard data spatial variability

Figure 11 shows the results of the variogram calculation by
fitting the positions of the four predicted points to the spherical

theoretical variogram. The variogram function reflects the spatial
variability of the surrounding rock parameters. The data range and
sill are listed in Table 3, and the data points outside the range will no
longer participate in the prediction.

The variogram function changes as the measurement data
increase, which can be seen from the fitting results.The range grows
with more measured data, indicating that more hard data need
to be included to yield more accurate results in the limited area.
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TABLE 4 Cross-validation criteria for different excavation stages (VP as soft data).

Criterion Excavation to K11 +
900

Excavation to K11 +
760

Excavation to K11 +
480

Excavation to K11 +
360

MD 10.11 8.14 3.85 1.82

ME −1.78 1.63 0.156 1.64

RMSE 5.11 4.68 2.50 1.65

TABLE 5 Cross-validation criteria for different excavation stages (VP/VS as soft data).

Criterion Excavation to K11 +
900

Excavation to K11 +
760

Excavation to K11 +
480

Excavation to K11 +
360

MD 10.10 11.42 5.63 1.52

ME −1.63 0.133 1.64 0.69

RMSE 5.11 5.36 3.13 0.93

FIGURE 15
Result comparison of Kriging and BME methods.

TABLE 6 Relative errors of different prediction methods.

Criterion Method

BME (VP) BME (VP/VS)

ME 1.05 0.344

RMSE 2.91 2.35

However, the nugget increases with a larger sample size, proving that
the influence of the aggregate error of the sampling measurement
increases accordingly. The prediction deviation caused by the
internal randomness of the surrounding rock mass parameters
will be more evident in the regions that do not conform to the
hypothesis of second-moment stability, such as the fault fracture
zone. Therefore, it is necessary to perform advanced geological
prediction to improve the prediction accuracy.

4.3 Exploratory spatial data analysis

Figure 12 shows the data location for the prediction of mileage
K11 + 760. A total of 17 hard data and 22 soft data were collected for
advanced geological prediction. The prediction point lies between
the measurement position of the hard data and soft data. The
measured values of RMR ranged from 22 to 57, the mean is
40.8, and the standard deviation is 9.69. Figure 13 also illustrates
the frequency distribution histogram of RMR. The Shapiro–Wilk
method was used to test the normality of the RMR data distribution.
The results show that the measured values of RMR do not reject the
normal distribution at the significance level of 5%.TheBMEmethod
requires the hard data used to follow the normal distribution, so the
hard data used for the other predicted positions are also tested for
the normal distribution.

4.4 Comparison and analysis of the
prediction results

4.4.1 Comparison and verification with the
measure values

The prediction results of different excavation stages are
summarized in Figure 14, where a prediction that considers VP as
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TABLE 7 Validation criteria for two BME prediction strategies.

Geological conditions Homogeneous formation Fault fracture zone

Prediction location K11 + 900 K11 + 760 K11 + 480 K11 + 360

Relative error (%)

Kriging method 8.89 8.51 27.78 41.94

BME (VP) 8.21 4.07 4.82 9.14

BME (VP/VS) 5.82 2.13 7.28 3.37

soft data and a prediction that considers VP/VS as soft data are
presented separately.The performancemetrics, maximumdeviation
(MD), mean error (ME), and root mean squared error (RMSE) are
used for evaluating the prediction accuracy. As shown in Table 4 and
Table 5, these evaluation parameters should be as small as possible.
The predicted accuracy increases with the amount of hard data.
At excavation stage 1 (from excavation to K11 + 900), when the
number of the measured data is 12, the RMSE of the predicted result
is 5.11. At excavation stage 4, when the number of the measured
data increased to 30, the RMSE of predicted result is 1.65, which
causes a smaller RMR prediction uncertainty compared with that
of excavation stage 1.

Moreover, as illustrated in Table 4 and Table 5, the RMR
prediction results using VP and VP/VS have almost similar
estimation accuracies in terms of MD, ME, and RMSE
values. However, from the perspective of the discretization
and volatility of the prediction results, the volatility of the
prediction results is smaller when VP/VS is used as soft data.
For example, when the construction reaches K11 + 900, the
sample variances of the two prediction methods are 5.94 and 3.32,
respectively.

4.4.2 Comparison and verification with the
measure values

For the Kriging method (Hayunga and Kolovos, 2016;
Zhang et al., 2016; Gelman et al., 2017; He and Kolovos, 2018),
the measured value of RMR for each excavated surface is taken
as sample points, and the variogram function in Figure 11 is used
for the fitting prediction. In the Kriging prediction framework,
only hard data from the excavation face are included in the
prediction. The RMR prediction uncertainty can be quantified
by considering the model uncertainty and spatial variability.
The estimation with the 68% confidence interval of RMR can
be represented as follows: [μlower − σ,μupper − σ]. As illustrated in
Figure 15, the blue line represents the actual measured RMR at
the excavated positions, and the purple and red lines represent
the predicted RMR value using the OK and BME methods,
respectively.

As is shown in Figure 15, the BME-based approach shows a
smaller prediction error than the OK-based method, and such
a phenomenon is more obvious in the fault area. According to
the tunnel preliminary geological survey, the area between K11 +
470 and K11 + 320 is located in a fault. It is tough to forecast
the accuracy of drastic changes in geological conditions in bad
geological sections such as faults. Therefore, it is necessary to

apply an advanced geological prediction to assist in predicting the
geological conditions. Table 6 indicates the relative errors of the
three prediction approaches in the formation of relatively uniform
sections, such as the K11 + 900 and K11 + 760 forecast points. The
relative errors of the three methods are reasonably minor, and the
relative errors of the predicted results are less than 15%. However,
the relative error predicted by the Krigingmethod is up to 30%when
the local layer varies significantly in fault fracture zones, such as
at K11 + 480 and K11 + 360. At this time, the prediction results
have a larger deviation, which proves the previous hypothesis. It
is difficult to capture large strata changes using traditional Kriging
methods. In comparison, the two BME prediction results, which
combine the wave velocity of the surrounding rock in advance,
have better prediction results at the fault layer. Two performance
metrics, ME and RMSE, are used to assess the overall predictive
accuracy. The ME should approach zero. The RMSE shows the
difference between the predicted and the measured values, which
needs to be as small as possible. As shown in Table 7, RMSE for BME
(VP) and BME (VP/VS) are 2.91 and 2.35, respectively. Therefore,
VP/VS information as soft data in the research area has a relatively
higher accuracy.

5 Conclusion

This paper proposes a statistical method based on the Bayesian
maximum entropy framework, which uses geological information
on the tunnel face and TSP geological prediction to quantitatively
infer the RMR value of the unexcavated rock mass. The proposed
method is applied in the Laoying rock tunnel in Yunnan,
China. The RMR values at each excavation position of the
tunnel are obtained by photogrammetry and other complementary
methods. Additionally, the variances of different measured data are
calculated.

Second, two parameters, the s-wave velocity and p-wave
velocity ratio of surrounding rock, were selected to fit the RMR
of the surrounding rock, and the least square fitting interval
of the 95% confidence level was selected as the wave velocity
measurement point to participate in the Bayesianmaximum entropy
prediction.

Finally, the Bayesian maximum entropy and traditional Kriging
methods are used to analyze the prediction results of the normal
uniform formation and the fault fracture zone in the study area.
Meanwhile, the prediction results using p-wave velocity and p-wave
velocity ratio as soft data are compared. The results show that the
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Bayesian maximum entropy can integrate the advanced geological
prediction data, and the prediction accuracy is higher in the sections
where the geological conditions change significantly, such as the
fault fracture zone. In comparison, VP/VS information as soft data
has a relatively higher accuracy.

The results indicate that the fusion of soft data and geological
interpretation can make the prediction of RMR more accurate. The
relative error of themethod is less than 15%at the selected prediction
points compared with that of the traditional Kriging method. This
method shows significant potential for estimatingRMRvalues ahead
of tunnel excavation with advanced geological forecast data.
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