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Methane gas flares in the forearc
basin of the Andaman-Nicobar
subduction zone

Ankush, P. Dewangan and G. Sriram*

CSIR-National Institute of Oceanography, Panaji, Goa, India

Gas hydrates deposits in the Andaman forearc basin are inferred from seismic
data and confirmed by drilling/coring during the NGHP-01 expedition. We
present new evidence of gas flares in the Andaman forearc basin, detected
through water column image (WCI), subbottom profiling, and high-resolution
seismic data acquired onboard RV Sindhu Sadhana (SSD-085) in November-
December 2021. The gas flares are located over an elongated sedimentary
ridge, featuring two prominent mounds (M1 and M2) with distinct geological
features. Compressional tectonics induced by the Diligent fault (DLF) formed the
ridge with varying slopes and elevations. Gas flares observed above the mound
M1 in WCI and sub-bottom profiler data. Seafloor samples reveal carbonate
rocks with visible pores, indicating gas/fluid migration or burrows. The regional
seismic profile delineates three sedimentary sequences: folded and faulted
strata, mass transport deposits, and horizontal-to-sub-horizontal sedimentary
layers. Additionally, we observed a bottom simulating reflector (BSR), indicating
potential subsurface gas hydrate deposits. Detailed high-resolution seismic data
revealed complex fault systems near bathymetry mounds (M1 and M2), which
may serve as pathways for vertical fluid/gas migration.

KEYWORDS

Andaman-Nicobar, methane derived authigenic carbonates, gas hydrates and mud
volcanos, mass transport deposit (MTD), methane bubble with hydrate film, Diligent
fault

1 Introduction

Submarine gas flares and cold seeps have attracted significant attention in academia
and industries, primarily due to their association with distinctive chemosynthetic
communities, bacterial mats, benthic fauna, mineral precipitation, and deep oil/gas
reservoirs (Rensbergen et al., 2007). The gas flares and cold seeps are primarily driven
by methane gas, which may be originate at varying water depths. In shallow marine
sediments, particularly in the continental shelf region, methane gas is predominantly
produced through biogenic decomposition of organic matter (Canfield, 1991), and
this phenomenon is prominently observed in seismic data (Judd and Hovland,
1992; Karisiddaiah and Veerayya, 1994; Ergiin etal, 2002; Andreassen etal., 2007;
Mazumdar et al., 2009; Dondurur et al., 2011). Methane gas, once formed, undergoes
upward migration driven by its buoyancy. This ascent is primarily facilitated by exploiting
pathways along faults, fractures, and permeable sedimentary layers (Lazar et al., 2016).
These natural conduits provide a means for the methane to migrate through geological
formations, ultimately reaching shallower depths within the subsurface or even reach
the seafloor, where it can be released into the water column in the form of methane
bubbles. The migration processes play a pivotal role in the distribution and release of
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methane within the geological environment (Cook and Malinverno,
2013; Crutchley et al., 2016; Nole et al., 2016; Hillman et al., 2020;
2017; Gullapalli etal., 2019; Hoffmann etal,, 2019). Methane
released from the seafloor leads to the formation of diffusive or
localized cold seeps under diverse geological environments (Judd,
2004; Duarte et al., 2007; Watson et al., 2019).

In deeper waters, mainly in the continental slope and rise
regions, methane may be trapped as free gas or within the gas hydrate
deposits, solid crystalline structures formed under high pressure
and low temperatures (Sloan and Koh, 2007). However, methane
(as free gas) may migrate through the gas hydrate stability zone
(GHSZ) as short-range diffusion, focused fluid flow, or advection of
methane gas (You and Flemings, 2018), leading to the development
of chemosynthetic communities and the formation of shallow
gas hydrate deposits (Meldahl et al., 2001; Petersen etal., 2010;
Krabbenhoeft et al., 2013; Mazumdar et al., 2019; Crutchley et al.,
2021; Dewanganetal, 2021). A minor fraction of abiogenic
methane can also be generated in deep waters through the
thermal decomposition of organic matter via chemical processes
occurring in the Earth’s crust and upper mantle (Kvenvolden
and Rogers, 2005).

The Andaman-Nicobar subduction zone is part of Southeast
Asia’s active subduction system. Gas hydrate deposits in the
forearc basin have been confirmed through both seismic studies
(Satyavani et al., 2008; Prakash et al., 2010; Nandi and Samanta,
2011) and ground verification achieved through drilling/coring
aboard the JOIDES Resolution during the NGHP-01 expedition
(Kumar etal., 2014). However, the presence of gas flares or
cold seeps in the Andaman-Nicobar subduction zone remains
unreported. This study introduces the identification of gas flares
within the Andaman forearc basin, aiming to explore the underlying
geological conditions that have given rise to these gas flares.
By doing so, this research offers significant insights, enhancing
our understanding of how the structural features within the
forearc basin influence the migration of gas and fluid through the
sediment layers.

2 Geology of the Andaman-Nicobar
subduction zone

The Andaman-Nicobar-Sumatra Subduction Zone (Figure 1A)
exemplifies a classical accretionary-type subduction zone, exhibiting
distinctive geological features including a trench, accretionary
prism, forearc high, forearc basin, volcanic arc, and backarc basin
(Roy and Das Sharma, 1993). The region is seismically very active
driven by the ongoing oblique subduction of the Indo-Australian
plate beneath the Southeast Asian plate. The complex plate tectonic
history has led to the development of a network of fault systems,
comprising of strike-slip or reverse West Andaman Fault (WAF),
normal Eastern Marginal Fault (EMF), a backthrust Diligent Fault
(DLF), and a strike-slip sliver fault system (Singh etal., 2013),
as depicted in Figure 1A. The sliver fault system (Figure 1A;
highlighted in red) includes the Sagaing fault in the North, the
Andaman transform fault (ATF), the Andaman backarc spreading
center (ABSC), the Andaman-Nicobar fault (ANF), and the Great
Sumatra Fault (GSF) in the South (Curray, 2005). Notably, the ANF
and WAF effectively separate the Andaman-Nicobar region into
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discernible backarc and forearc basins (Kamesh Raju et al., 2007;
Cochran, 2010; Singh et al., 2013).

Our primary focus in the Andaman basin is on the forearc
region encompassing accretionary prism sediments, a forearc
high, and a forearc basin. This region spans roughly 50 km
east-west and extends ~900 km north-south, stretching from the
southern extremities of the Irrawaddy Delta to the northern reaches
of Sumatra (Pandey etal.,, 2017). The forearc basin (Figure 1B),
situated to the north of Nicobar Island, contains 3-5 km thick
sedimentary layers, primarily shaped by the interplay of tectonic
forces and sediment deposition over roughly 60 million years
(Dickinson and Seely, 1979; Moeremans and Singh, 2015). The
forearc basin’s western boundary is defined by a pronounced
V-shaped depression, formed by EMF (Figure 1B), a currently
dormant fault that exhibits a normal faulting behavior (Singh
and Moeremans, 2017). The forearc basins eastern boundary is
demarcated by the Invisible Bank (IB; Figure 1B), speculated to
be an inclined and elevated continental crust that developed
during different phases of the plate tectonic evolution (Pal et al.,
2003; Singh etal.,, 2013; Moeremans and Singh, 2015). Within
the forearc basin, a northeast-trending structural high, resulting
from the back thrust Diligent fault (DLF), is observed (Singh
and Moeremans, 2017). Despite the oblique subduction process,
compression prevails within the forearc basin, signifying substantial
slip partitioning between the lateral strike-slip movement along
the Andaman and Nicobar Fault and the megathrust fault in the
Andaman-Nicobar segment of the subduction zone (Moeremans
and Singh, 2015).

The Andaman-Nicobar forearc basin comprises five significant
sedimentary groups (Rodolfo, 1969; Pal et al., 2003; Curray, 2005;
Awasthi et al., 2020). The basement consists of pelagic sediments
and volcanic-plutonic rocks from the Late Cretaceous Ophiolite
Group, which is approximately 95 million years old (Pedersen et al.,
2010). Overlying the basement is 1.4 km thick Eocene Mithakhari
Group composed of coarser ophiolite fragments and pelagic trench
sediments found in the accretionary prism (Allen etal., 2008;
Moeremans and Singh, 2015). A 3-km thick Andaman Flysch Group
(AFG) overlie the Mithakhari Group. AFG represents upper Eocene-
Oligocene sediments characterized by three distinct lithofacies
(Moeremans and Singh, 2015). The Archipelago Group (AG)
comprises sediments ranging from the Miocene to Pliocene epochs,
which are thought to have been deposited unconformably overlying
the AFG in an open marine setting on the outer shelf (Chakraborty
and Pal, 2001). The Mithakhari Group exhibits complex deformation
and displays a wide range of bedding orientations, in contrast to the
AFG and AG (Pal et al., 2003). Lastly, the Nicobar Group within the
Andaman strata comprises Pleistocene limestone, beach deposits,
unclassified volcanic rocks, and tuff, forming a distinct lithological
unit (Curray, 2005; Awasthi and Ray, 2019).

3 Data and methodology

High-resolution seismics, subbottom profiles, multibeam
bathymetry, and water column image (WCI) data were acquired
in the forearc basin onboard RV Sindhu Sadhana (SSD-085)
during Nov-December 2021 (Figure 2A). Multichannel high-
resolution seismic data were collected using an air-gun (G-Gun;
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FIGURE 1

Overview of the Study Area and Tectonic Features in the Andaman-Nicobar Sumatra Subduction Zone with Global Bathymetry. (A) Regional tectonic
map of Andaman-Nicobar which highlights the major tectonic features like, Eastern Margin Fault (EMF; Blue dashed); Diligent Fault (DLF; Blue dashed);
West Andaman Fault (WAF; Blue dashed); Andaman-Nicobar Fault (ANF; Red dashed); Aceh Fault (ACF; Red dashed); Seulimeum Fault (SLF; Red
dashed); Andaman backarc spreading center (ABSC; Red dashed) with segments A-D; Great Sumatra Fault (GSF); Mentawai Fault (MNF; Red line);
Andaman Transform Fault (ATF; Red line); Invisible Bank (IB); Indian Plate (IND); Burmese Plate (BUR); Sunda Plate (SUN); Alcock Rise (ALR); Sewell Rise
(SWR); Barren Island (Bl); and Narcondam islands (NI). (B) The zoom-in of the Andaman Forearc basin within EMF and ANF. The red polygon highlights
the specific study region in focus. The solid star refer to Site NGHP-01-17 drilled during NGHP-Expedition-01.

60 cu. in.) source, and a 150 m long hydrophone streamer (48
channels with a group interval of 3.125m). Data were collected
with an 8-s shot interval, which is equivalent to a 16 m shot
interval, enabling us to achieve a maximum CDP fold of six using
this specific source-receiver geometry. The near offset and the
sampling rate were 28 m and 2 ms, respectively. The seismic data
exhibits a dominant frequency of 120 Hz. Data were processed
using the SeisSpace software package. The processing sequence
commenced with the assignment of marine geometry in the
P1/90 format followed by several processing steps to improve
the signal-to-noise ratio. Initially, a bandpass filter (70-80-270-
300 Hz) was employed to effectively remove background noise.
Swell corrections were applied to enhance the continuity of
reflectors. To enhance the overall signal-to-noise ratio, the prestack
data were subjected to an f-k filter. Furthermore, to mitigate
unwanted effects such as bubble pulse and multiple reflections,
we utilized predictive and spiking deconvolution techniques with a
delay of 40 ms and an operator length of 2,000 ms. However, it’s
important to note that due to constraints related to maximum
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offset (<175m), we were unable to conduct velocity analysis.
Therefore, we used a constant velocity of 1,600 m/s for stacking
as well as for Kirchhoff time migration to accurately position the
reflectors.

The Hydrosweep DS-3 multibeam echosounder (MBES) system
was utilized for the acquisition of seafloor bathymetry and water
column image (WCI) data. The system operated at a central
frequency of 15.5 kHz, covering the entire ocean depth range, and
delivered depth measurements with an approximate uncertainty
of 1% relative to the water depth. Both data acquisition and
subsequent processing were performed using Teledyne PDS software
v4.3, resulting in the creation of a digital terrain model with a
grid resolution of 100 m. Additionally, a Seabird CTD profiler was
employed to conduct CTD and sound velocity profiling in the study
region. Depth corrections for the multi-beam data were performed
using salinity, temperature, and SVP data. Water-column data was
collected for each ping, enabling the detection of gas flares. In the
initial stages of processing water column images (WCI), specific
techniques like threshold filtering, speckle noise reduction, and
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flares: 1to 5).

Illustrates the multibeam bathymetry and slope characteristics of the study area, focusing on Mounds M1 and M2. (A) The multibeam bathymetry map
showcases the NE-SW-oriented Sedimentary Ridge (SR) with annotations of key features such as the regional seismic profile (P1; depicted by the yellow
line), high-resolution seismic (HRS; highlighted by yellow lines with black dots), subbottom profiles (depicted by black lines), interpreted High
Amplitude Reflector (BSR; shown in red), and five locations of gas flares (indicated by green circles). (B) The slope map emphasizes the topography of
the sedimentary ridge (SR). (C) A zoomed-in view of Mounds M1 and M2 along with gas flare locations identified through water column image (Gas
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manual editing were applied to enhance the quality and accuracy
of gas flare identification (Veloso et al., 2015; Dewangan et al., 2021;
Sriram et al., 2023).

To acquire data related to subsurface geology, we utilized
the hull-mounted ATLAS Teledyne Parasound P35 sub-bottom
profiler (SBP) system. This equipment operated in parametric
mode, producing two distinct acoustic frequencies: 18 kHz and
23.5 kHz. Furthermore, through non-linear acoustic interferometry,
two secondary harmonics were generated at 40 kHz and 4 kHz.
Notably, the primary high-frequency (PHF) data provided
crucial information about the presence of gas flares within
the water column (Dewangan etal, 2021; Sriram etal, 2023).
Seabed samples were collected over the gas flare’s region using a
spade-corer system.

4 Results

4.1 Seabed morphology using bathymetry
data

The study area (Figure 2A), is located in the southern part
of the Andaman forearc basin ~74 km from Car Nicobar Island.
Multibeam bathymetry data in this region reveals a 17 km long and
0.6 km wide sedimentary ridge (SR) oriented in the north-south
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direction. This ridge rises from the surrounding seafloor depth of
1,800 m to about ~1,500 m (Figure 2A). The ridge exhibits varying
slope, ranging from 2° to 20° as it extends east-west from the
axis towards the flanks (Figure 2B). In contrast, the axial region
generally displays gentle slopes (<3°) in the north-south direction.
Along the ridge axis, two prominent mounds (M1 and M2) were
observed, which are separated by ~1.5 km and encompass an area
of about ~1.5km? (Figure 2C). Mound M1 has a diameter of
~487 m, with slopes ranging from 2° to 12° within its central
area (Figure 2B).

4.2 Gas flares detected using WCI| and
sub-bottom profiler data above mound M1

Water column image (WCI) over mound M1 reveals intense
backscattering, possibly attributed to gas flares over the mound
(Figure 3). Detailed analysis of multiple transects in this area
shows five distinct gas flares near mound M1, distributed
within a 400 m radius (Figure 2C). Gas flares observed over
the mound M1 (Figure 3D) have been re-confirmed using sub-
bottom profiling (PHF) data (Figures 3A-C). These gas flares
rise vertically to a depth of 700 m from a surrounding seafloor
depth of 1,550 m. PHF data, acquired at various time intervals and
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of two gas flares along Mound M1 (4 and 5).

Subbottom profiling and multibeam water column image (WCI) conducted across Mound M1. (A) Subbottom profile (PHF1) oriented SSW-NNE,
intersecting Mound M1, revealing gas flare 4 within the water column extending up to 700 m from the seafloor depth of 1,540 m. The overlay includes
a methane hydrate + seawater phase curve generated using Miles (1995) equation and temperature-depth data from CTD at the gas flare location on
Mound M1, indicating the upper limit of gas hydrate stability zone (GHSZ). (B) Subbottom profile (PHF2) oriented SW-NE across Mound M1, highlighting
gas flare 4 within the water column. (C) Subbottom profile (PHF3) oriented NW-SE spanning Mound M1, distinctly displaying two gas flares (4 and 5)
within the water column. (D) Stacked representation of water column image (WCI) sonar wedges from multibeam mapping, emphasizing the presence

orientations (PHF1 (SSW-NNE), PHF2 (SW-NE), and PHF3 (SE-
NW) in Figure 2B), illustrate flare characteristics (Figures 3A-C).
The upper limit of hydrate stability, derived for methane and
seawater (Miles, 1995) and CTD temperature-depth information,
is about 700 m, which matches with the flare termination
(Figure 3A).

4.3 Regional seismic stratigraphy over the
sedimentary ridge

The regional seismic profile, oriented in the EW direction
(Figure 4A), shows the sedimentary ridge as a folded anticlinal
structure. The regional stratigraphy consists of three distinct seismic
sequences (S1, S2, and S3; Figure 4B). Sequence S1, the oldest,
exhibits semi-parallel continuous layers that have undergone folding
and faulting due to the compression tectonics from the DLF
(Figure 1A). Sequence S2 displays chaotic seismic facies typical of
mass transport deposits (MTDs). This layer overlies sequence S1
and consists of younger sediments. The thickness of this layer is
variable, and at certain locations (e.g., CDPs 12100-12200), the
MTDs nearly reach the seafloor. A prominent V-shaped valley
is observed between CDPs 12650 and 12800. Sequence S3, the
youngest, comprises fault-free and gently folded parallel continuous
layers. It onlaps onto sequence S2 with no major tectonic activity
post-deposition. We observe a prominent high amplitude reflector
(HAR) throughout the seismic section. The reflector mimics the
seafloor, exhibits reverse polarity with respect to seafloor, and cross-
cuts sequences S1 and S2. Horizons below this reflector from CDPs
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11600 to 12050 show higher amplitude and lower frequency. Limited
penetration is observed below this reflector from CDPs 12500 to
12900 (Figure 4B).

4.4 High-resolution shallow seismic
stratigraphy across mound M1

Figures 5-Figures 7 illustrate the seismic coverage in mound
M1 through four high-resolution seismic (HRS) lines: A-A, B-
B, C-C, and D-D’ (Figure 2A). Profile A-A, oriented in the SW-
NE direction (Figure 5A), depicts the bathymetric mound (M1)
where gas flares are observed in the subbottom profiler data. The
profile exhibits two prominent seismic facies: parallel continuous
layers with minor faults and a disturbed zone with few internal
reflections. The continuous layers may correspond to the regional
seismic sequence S3. The other seismic sequences (S1 and S2)
are less discernible due to limited penetration in the HRS data.
Inclined beds are observed dipping towards the SW direction
between CDPs 2800 and 3200, while gently dipping beds are
observed towards the NE direction between CDPs 3400 and
3800. Sediments near mound M1 exhibit lower frequency and
higher amplitude, suggesting the presence of free gas, hydrates, or
authigenic carbonates (Figure 5B). The reflectors below the mound
M1 are also less discernible, indicating a potential region for fluid
migration. We observe a high amplitude reflector (HAR) mimicking
the seafloor between 2.7 and 2.8 s TWT similar to the regional
seismic profile (Figure 4B); however, the reflector is absent below
the mound M1. Additionally, a long fault extending from the top
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FIGURE 4
Regional seismic profile P1, oriented in the WE direction. (A) Uninterpreted profile. (B) The interpreted profile reveals three distinct seismic sequences:
S1 (semi-parallel, folded, continuous layers), S2 (characterized by chaotic seismic facies), and S3 (consisting of fault-free and gently folded parallel
continuous layers). The High Amplitude Reflector (HAR, green line) mimicks the seafloor with negative polarity. The rectangle box highlights the
northern segment of the sedimentary ridge (SR) in the study region. The seismic wiggle trace (CDP: 12800) highlights the positive polarity of the
seafloor vis-a-vis the negative polarity of high amplitude reflector (HAR). The Diligent fault (DLF) is highlighted using dashed vertical lines.

of the mound M1 to the depths below the HAR is observed, with
enhanced reflections observed on the NE side of the fault. Profile
B-B, oriented in the SSW-NNE direction show features similar
to profile A-A.

In the NW-SE oriented profile (C-C’; Figure 6A), seafloor
mounds (M1 and M2) are observed between CDPs 5500 and 8000.
Similar to previous observations, parallel continuous layers flank
the mounds (Figure 6B). Deformed beds are noted from 2.4 to
2.6 s beneath these layers (Figure 6B). The potential region of fluid
migration appears to rise from 2.3 s TWT, with some fractures
observed below mound M1. The HAR is observed around 2.6 s
between CDPs 2600 and 6000. Deep-seated faults are observed
beneath mounds M1 and M2. In the EW-oriented seismic profile
(D-D’; Figure 7A), the fluid migration zone is evident between CDPs
12800 and 14400, rising from 2.8 s to 2.2 s. Parallel continuous layers
of sequence S3 are observed on either side of fluid migration zone.
The HAR is observed between 2.7 and 2.9 s from CDPs 13100 to
15600 (Figure 7B).

A detailed view of seafloor mound M1 from profile A-A
(Figure 8A) shows multiple fault/fractures affecting the shallow
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sediments. Seabed samples collected using a spade core from the
gas flares region show carbonate rocks with numerous pore and
void structures (Figure 8B), potentially linked to the gas ebullition or
burrows from benthic organisms. A detailed analysis of carbonates
is underway to gain insight into their origins.'

5 Discussion
5.1 Geophysical signature of gas hydrate
deposits and free gas in the Andaman
forearc basin

The presence of overlying gas hydrate deposits and the

underlying free gas generates a high impedance reflector known as

1 Peketi, A, Mazumdar, A., Subhashree, A., Dewangan, V., and Sriram, G.
(under preparation). Methane derived authigenic carbonates from the

forearc basin of the Andaman-Nicobar subduction zone.
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the bottom simulating reflector (BSR) in seismic data. This occurs
at depths corresponding to the base of the gas hydrate stability
zone (GHSZ; Kvenvolden, 1985; Shipley et al., 1979; Singh et al.,
1993). The identification of BSR relies on its distinct characteristics,
including its mimicking of seafloor topography, reverse polarity
relative to the seafloor, and crosscutting of pre-existing geological
layers, signifying its role as a phase boundary. The analysis of seismic
and well-logging data has confirmed the presence of gas hydrate
deposits in the northern forearc basin (Prakash etal., 2013). The
BSR-derived geothermal gradient appears to be highly variable in
the forearc basin, ranging from 25°C/km to 52°C/km, resulting in a
huge variation in the thickness of the GHSZ, ranging from 200 to
650 m (Prakash et al., 2013). Analysis of seismic attributes suggests
the existence of gas hydrate accumulations within the central forearc
basin (Satyavani et al., 2008), and drilling/coring at Site NGHP-01-
17 confirmed pore-filling gas hydrate preferentially occurring within
the volcanic ash layers (Ojha and Sain, 2013; Kumar et al., 2014).
The concentration and isotopic ratio of hydrocarbon gases suggest
mostly biogenic methane with minor traces of thermogenic methane
(Kumar et al., 2014).
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In the present study, the regional seismic profile from the
southern part of the forearc basin shows a high amplitude reflector
with characteristics similar to those of BSR. Further, the presence
of HAR near the base of the GHSZ map (Rastogi et al., 1999) leads
to its interpretation as BSR. The HAR as observed in the high-
resolution seismic data is also interpreted as BSR, and its spatial
extent is mapped in Figure 2A. The presence of BSR indicates gas
hydrate deposits in the southern part of the forearc basin. However,
BSR is not observed directly beneath the gas flare region, suggesting
unsuitable temperature or pressure conditions for gas hydrates
formation. Alternatively, limited penetration of high-resolution
seismic data may hinder the imaging of BSRs below the fluid
migration zone.

5.2 Structural and tectonic setting favoring
methane migration in the forearc region

The oblique subduction of the Indo-Australian plate beneath
the Eurasian-Asian plate results in slip distribution parallel and
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FIGURE 6
High-resolution seismic (HRS) line C-C’ oriented in the NW-SE Direction. (A) Uninterpreted HRS seismic profile across the mound M1 and M2; (B)

Profile C-C’" shows parallel continuous layers (S3) on both sides of the mounds and a potential fluid migration zone. The High Amplitude Reflector
(HAR, green line) is observed around 2.6 s, and some deep-seated faults are inferred beneath the mounds M1 and M2.

perpendicular to the trench (Fitch, 1972). Trench-parallel motion ~ Mishra et al., 2020) indicate gas migration pathways through the
is accommodated by a strike-slip sliver fault, while trench-  overburden. In certain cases, high pore-fluid pressure induced by
perpendicular motion leads to the formation of an accretionary  sedimentary overloading can expel subsurface sediments and fluids,
prism and forearc basin. Significant structural features within the  creating features like pockmarks and submarine mud volcanoes.
forearc basin include the Eastern Marginal Fault (EMF), an inactive =~ The latter are commonly observed in compressional tectonic
normal fault that bounds the basin to the west; the Invisible Bank,  settings such as the Makran accretionary wedge (Schliiter et al,
a continental sliver that bounds the basin to the east; and the DLF, 2002), the Mediterranean accretionary wedge (Camerlenghi et al.,
a back thrust fault responsible for the upliftment of older sediments 1995; Kopf, 1999), off Costa Rica (Bohrmann etal., 2002), the
(Singh et al., 2013). Similar uplifted sediments and back thrusts are ~ Barbados Ridge complex (Westbrook and Smith, 1983), the
observed in the northern Sumatra segment at 5.40°N, indicatinga  eastern Indonesian accretionary complex (Barber et al., 1986), and
compression regime within the forearc basin. the Nankai accretionary wedge of Japan (Kuramoto et al.,, 2001;
The compression regime facilitates the upward migration  Morita et al,, 2004).
of hydrocarbon gases, detectable through seismic and sonar Mud volcanoes concealed beneath the surface have been
techniques (Judd and Hovland, 1992; Colbo et al., 2014; Stott et al., documented in the northern segment of the forearc basin of
2019; Bottner et al., 2020; Kimetal, 2020). Gas presence in  the Andaman region (Basu et al., 2012a; Basu et al., 2012b). Their
sedimentary layers causes seismic attenuation, resulting in  formation is influenced by regional compression forces and the
acoustic turbidity/masking (Judd and Hovland, 1992; Taylor,  presence of overpressured shale strata and mass transport deposits
1992; Chand and Minshull, 2003; Judd and Hovland, 2007), (MTDs) within the forearc basin (Basu et al., 2012b). Usually, the
and enhanced reflections beneath the BSR (Naudtsetal., 2006;  mud volcanoes are positioned atop anticline structures, resulting
Hustoft et al., 2007). Seismic chimneys (Crutchleyetal., 2010;  from basin inversion during the Early Miocene. Mud volcanoes
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FIGURE 7

High-resolution seismic (HRS) line D-D’ oriented in the EW Direction (A) Uninterpreted profile; (B) Profile D-D’ shows parallel continuous layers (S3) on
both sides of the mounds and a potential fluid migration zone. The High Amplitude Reflector (HAR, green line) is marked between 2.7 and 2.9 s,
spanning CDPs 13,100 to 15,600.

erupted during the Pliocene period due to the reactivation of deep- 5.3 Gas flares in the Andaman forearc
seated normal faults into reverse faults. Subsequently, the mud region
volcanoes are covered by Pleistocene to Recent sediments and are
identifiable on the seismic data as chaotic reflections (Basu et al., The bathymetry (Figure 2) highlights a prominent mound M1
2012a). Analysis of seismic and logging data suggests that the  in the southern part of the forearc basin, while the WCI, SBP
sources of mud volcanoes include shallow and deeper Miocene  data over the mound M1 (Figure 3) show the presence of gas
MTDs (Basu et al,, 2012b). flares. The significant difference in density and velocity between
In the present study, analysis of the regional seismic line  the gas bubbles and seawater creates a noticeable impedance
shows the existence of a shallow-depth MTD covered by recent  contrast (Turcoetal, 2022), facilitating its detection using
sedimentary layers within the southern part of the forearc basin  high-frequency multibeam echosounders (Greinertetal., 2006).
(Figure 4B). The MTD may be supplied with free gas originating  Geological samples collected near the base of gas flares probably
from the base of GHSZ as observed in Figure 4B, leading to over-  show authigenic carbonates (Figure 8B), which may formed by the
pressured zones within the geological strata. Detailed analysis of  interaction of methane, chemosynthetic communities, and seawater
high-resolution seismic data identifies a zone associated with the  (Foucher et al., 2009).
movement of fluidized sediment from the MTD or gas-charged According to the GHSZ map of India, methane hydrates
sediments. Multiple faults extending down to the base of the in the Andaman basin remain stable at water depths beyond
GHSZ may serve as conduits for the transportation of fluids and ~ 700-750 m (Rastogi et al., 1999). The methane hydrate + seawater
gases across geological horizons. Therefore, our study suggests an ~ phase curve and temperature profile of the Andaman basin further
initial stage of mud volcano formation in the southern forearc  confirm the stability of hydrates at depths greater than 700 m
basin, potentially evolving into fully-developed mud volcanoes  (Figure 2A). Consequently, the observed gas flares are situated
over time. within the GHSZ. It is anticipated that methane bubbles are coated
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FIGURE 8

Geological Sampling of Mound M1 in the vicinity of gas flare region. (A) Zoom in of seismic profile A-A" near mound M1 highlighting numerous fractures
(marked in cyan) which may act as the pathways of free gas migration; (B) seabed samples collected using spade core illustrate carbonate rocks with
numerous pore and void structures, potentially linked to the gas ebullition or burrows from benthic organisms.

with a thin hydrate skin, which dramatically reduces methane volcanism during the Early Miocene (Srinivasan and Azmi, 1976;
dissolution. This hydrate coating provides protection and leads to ~ Srivastava et al., 2021) may have led to basin inversion, resulting in
the formation of tall flares within the GHSZ (Heeschen et al., 2003; the formation of shallow and deep-level MTDs (Basu et al., 2012b;
Leifer and MacDonald, 2003; Obzhirov et al., 2004; Greinert et al., Pandey et al., 2017).
2006; Judd and Hovland, 2007; Law et al., 2010; Biinz et al., 2012; Our investigation explores the geological evolution from the
Wenau et al,, 2015; Rémer et al,, 2019). In our investigation, we Mid-Miocene to the present, focusing on the Diligent Fault (DLF)
have observed tall gas flares ascending up to 700 m water depth.  growth due to compressional tectonics (Moeremans and Singh,
The 700 m depth signifies the top boundary of the GHSZ in  2015). Figure 9A illustrates the initial sedimentary depositions,
the Andaman Sea as depicted in Figure 2A. As gas bubbles rise ~ which subsequently underwent uplift and tilting, likely concurrent
vertically in the water column due to buoyancy and cross the  with or shortly after the inception of the DLF into a back
GHSZ, the hydrate skin surrounding the bubble dissociates, causing ~ thrust system. Persistent folding throughout sedimentation, as
rapid dissolution of methane and the abrupt termination of the  evidenced by downwarping and minor faulting at fold hinges
methane flare. Similar observations have been reported globally  (Figure 9B) forms a series of sediment ridges as observed in the
(Henry et al., 2002; Rehder et al., 2002; Pecher et al., 2010; Rudolph bathymetry data.
and Manga, 2010; Crutchley etal., 2013; Mazumdar et al., 2019; Methane in the forearc basin of the Andaman Sea originates
Dewangan et al., 2021). from organic matter degradation and thermogenic activity
(Prakash etal., 2013). This has resulted in the widespread
occurrence of gas hydrates within the GHSZ and free gas

54 Geological model for the origin of at its base (Satyavanietal, 2008; Ojha and Sain, 2013;
methane flares in the Andaman'’s forearc Prakash et al,, 2013; Kumar et al, 2014). Compression tectonics,
basin primarily driven by DLE facilitates the upward migration of

methane. Prominent bathymetric mounds may form atop the
We propose a geological model to elucidates the observed  sedimentary ridges and gases may seep through them leading
methane flares in the forearc basin of the Andaman Sea. Sediments  to gas flares/cold seep environments and the formation of
in the forearc basin were deposited into two distinct tectonic  authigenic carbonates on the seabed (Figure 9C). We propose
regimes: the accretionary phase (Upper Cretaceous to Oligocene)  that compression tectonics due to subduction, coupled with
and the forearc phase (Miocene to Recent) (Basuetal, 2012a).  regional and local fault systems extending to the base of the
During the forearc phase, the basin experienced subsidence, =~ GHSZ, may have facilitated the migration of methane gas
known as the ponded-fill stage, and acted as a natural trap  through the geological strata. Similar structures globally are
for sediments sourced from the Irrawaddy River and the  favorable locations for the formation of gas hydrate deposits and
Andaman Islands. Significant tectonic events such as submarine  cold seeps.
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FIGURE 9

Illustration of the geological evolution and tectonic dynamics in the study area. (A) Initial sedimentary depositions, which subsequently underwent
uplift and tilting, likely concurrent with or shortly after the inception of the DLF into a back thrust system. (B) Persistent folding throughout
sedimentation, as evidenced by downwarping and minor faulting at fold hinges forms a series of sediment ridges as observed in the bathymetry data.
The presence of BSR indicates the occurrence of gas hydrate deposits underlain by free-gas bearing sediments. (C) Compression tectonics, primarily
driven by DLF, facilitates the upward migration of methane. Prominent bathymetric mounds may form atop the sedimentary ridges and gases may seep
through them leading to gas flares/cold seep environments and the formation of authigenic carbonates on the seabed.

6 Conclusion

The geological and tectonic framework of the Andaman forearc
basin favors the upward migration of fluid/gas through an extensive
network of faults and fractures resulting from ongoing subduction
processes. In the present study, we report gas flares from southern
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forearc region of the Andaman Sea. The gas flares rise vertically
to 700 m depth from a surrounding 1,550 m seafloor depth.
Seabed sampling of the gas flare region shows probable authigenic
carbonates, indicating methane gas ebullition. The specific location
of these gas flares coincides with elevated bathymetric mounds (M1
and M2), key geological features over a sedimentary ridge formed
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due to compression tectonics. The presence of BSR observed on the
regional seismic lines and inferred from the high-resolution seismic
profiles suggests the existence of gas hydrate deposits and free gas-
bearing sediments in the southern part of the Andaman forearc
region. The regional fault system serves as a plausible conduit for
the migration of fluid/gas migration from deeper reservoirs up to
the seafloor.
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