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In the Three Gorges Reservoir area, landslide disasters occur frequently, making
scientific monitoring and risk prediction crucial for disaster prevention and
mitigation. However, most previous studies have been constrained by analysis
of singular influencing factors. In this study, we employed multi-temporal InSAR
techniques coupled with multivariate geospatial statistical analysis to monitor
and analyze the dynamic evolution of the Muyuba landslide in Zigui County,
Hubei Province, China from 2016 to 2023. The findings indicate that the Muyuba
landslide was predominantly characterized by continuous, gradual subsidence.
Key factors inducing deformation included well-developed drainage networks,
gentle slopes of 15–30°, and the orientation of rock strata. Deformation
rates in residential areas and along roadways exceeded background
levels, implicating anthropogenic activities in the heightened landslide
risk. A significant correlation was observed between landslide deformation
and reservoir water level fluctuations, as opposed to rainfall patterns,
highlighting reservoir regulation disturbances as a critical landslide triggering
factor.

KEYWORDS

time-series InSAR, Muyuba landslide, deformation monitoring, multisource statistical
analysis, Zigui county

1 Introduction

The Landslide is one of the most ruinous geological hazards in mountainous terrains
worldwide. They can cause catastrophic losses of lives and properties and substantially
impact the environmental and socioeconomic tolls. In recent years, with the increasing
frequency of extreme weather events under climate change, aligned with burgeoning
anthropogenic activities in vulnerable areas, landslide disasters have shown an increasing
trend, posing a severe threat to the safety of lives and properties of local communities
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(Zhang et al., 2021; He et al., 2023). Various additional factors
can also contribute to landslide hazards, such as pollutant
transport which can impact slope stability by altering soil
characteristics (Bai B et al., 2020), as well as hydrological
and hydrogeological processes that affect subsurface water
flows (Bai et al., 2017). These complex and interlinking
factors underline the importance of scientific monitoring,
analysis, and prediction of landslide risks across spatial and
temporal scales.

The Three Gorges Reservoir area in China, located in the
middle Yangtze River, is predisposed to landslide hazards due to
its active tectonic movements, concentrated precipitation, steep
terrain, and alterations by reservoir impoundment (Xia et al.,
2013; Tang et al., 2015). Numerous landslides have occurred
since the commencement of water level oscillations of the
Three Gorges Reservoir, causing severe casualties and property
losses (Huang et al., 2013). The Muyubao landslide, located
in the mountainous Zigui County, Hubei Province, is typical
in the reservoir area. It is situated in a region with complex
geological structures and active landform dynamics, exhibiting
significant instability (Zhou et al., 2020). The area has experienced
frequent landslide disasters in history. With the filling of the
Three Gorges Reservoir and increasing human activities in
recent years, this area is facing growing risks of reactivation
and acceleration of landslides, calling for scientific monitoring
and prediction of its dynamic evolutionary characteristics
(Sun et al., 2016).

Conventional techniques for landslide monitoring such as
ground-based surveying and GPS measurements are often limited
by sparse spatial sampling, high cost, and low efficiency when
applied to large areas. In recent years, Interferometric Synthetic
Aperture Radar (InSAR) has become an effective technique for
monitoring ground surface deformation over large areas with
high spatial resolution (Zhang et al., 2018). The Small Baseline
Subset (SBAS) InSARmethod can effectively processmulti-temporal
radar data to generate time-series deformation maps, capturing
landslide displacement behaviors with millimeter to centimeter
accuracy (Intrieri et al., 2011). By integrating InSAR results with
topographic, geologic, and hydrologic data, we can conduct
statistical analysis to reveal the kinematic behaviors of landslides
and quantify the effects of various natural and anthropogenic factors
on their activities (Intrieri et al., 2011; Bai Y J et al., 2020). Such
knowledge is essential for hazard assessment, early warning, and risk
mitigation.

In this study, we carry out SBAS InSAR analysis using Sentinel-
1A radar imagery between 2016 and 2023 to characterize the
spatiotemporal deformation patterns of theMuyubao landslide over
seasons and years. We further examine the effects of drainage levels,
slope gradients, lithology, and human factors like residential areas
and roads on the measured displacements through spatial statistical
models. The impacts of reservoir water level fluctuations and
precipitation on periodic deformation behaviors are also evaluated
by correlation analysis (Tang et al., 2015; Sun et al., 2016). We
integrated multiple data sources to capture and analyze landslide
dynamics from multiple perspectives. Our study examined the
effects of natural factors on landslide behavior, and also focused
on the role of human activities, such as residential construction
and road layout, providing a comprehensive view for understanding

and predicting landslide activity. The main objectives are 1) to
delineate the deformation characteristics of the Muyubao landslide;
2) to analyze the influence of topographic, geologic, and hydrologic
factors on landslide kinematics; and 3) to reveal the deformation
mechanisms and instability drivers, to provide scientific basis for
early warning and hazard mitigation in the Three Gorges Reservoir
area. This study can also offer a methodological reference for the
monitoring, modeling, and risk management of landslides in other
regions worldwide.

2 Methods

2.1 Research site

The Muyubao landslide, situated within the mountainous
terrain of Zigui County in Yichang City (Figure 1), Hubei Province,
embodied the geologically complex and topographically vigorous
character of the Three Gorges Reservoir area, with its west-
to-east descending relief. The region, under the influence of a
temperate continental monsoon climate, exhibited pronounced
seasonal variability and intricate meteorological patterns. Here,
annual temperatures averaged between 16°C–18°C, with warm,
moist summers pushing averages to 28°C–30°C and peak
extremes over 40°C, while winters were cold and dry, averaging
4°C–6°C, dipping below −10°C. Precipitation ranged from
1,100 to 1,400 mm annually, peaking in July and August with
monthly tallies of 200–250 mm, and humidity held at a 70%–80%
yearly mean.

The Muyubao area’s geological instability was evident, and
its landslide susceptibility was intensified by geological processes,
hydrological impacts, and human activities. TheMuyubao landslide
was located on the bank of the Yangtze River, about 56 km
from the Three Gorges Dam. Its geological structure consisted
mainly of Jurassic Xiangxi Group quartz sandstone and siltstone
layers, which were inclined parallel to and in the same direction
as the slope. The landslide-prone region’s geology primarily
comprised mudstone, sandstone, and shale—materials susceptible
to disintegration under weathering, fostering unstable slip surfaces.
Hydrological complexity and abundant regional precipitation,
particularly during the rainy season, exacerbated landslide triggers.
Moreover, groundwater movement further undermined stability.
Human interventions, escalating with the economic surge of the
Three Gorges area, had altered land use and vegetation cover
significantly, contributing to the instability of the landslide region.
The upper part of the landslide exhibited a linear fracture surface
with an inclination angle of about 25° and a thickness of 60–90 m.
The front part was a bulging platform formed by shear sliding, with a
thickness of 80–120 m and a stratum inclination angle of about 27°.
These thickness values referred to the central part of the landslide
and may have decreased towards the boundaries. The landslide
was still active and had experienced multiple reactivation events
in recent years (Zhou et al., 2020). Therefore, it was a priority case
for monitoring, as a sudden destabilization of the landslide would
endanger the lives and properties of 140 households (500 people) in
the landslide area and threaten the road and shipping safety of the
Yangtze River.
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FIGURE 1
Location map of the study area. (A) Location of the study area in China. (B) Extent and DEM of Muyubao landslide. (C) Google image of
Muyubao landslide.

2.2 Temporal and spatial variation of
landslide deformation

In this study, we applied the Small Baseline Subset (SBAS)
approach of the Interferometric Synthetic Aperture Radar
(InSAR) technique to analyze the temporal surface deformations
of the Muyubao landslide. The SBAS InSAR method was
selected for its efficacy in detecting and monitoring large-
scale landslide deformations with high-resolution deformation
mapping capabilities. This technique involved creating a series of
interferograms from satellite images captured at different times,
focusing on pairs with small temporal and spatial baselines to
minimize atmospheric and decorrelation errors and enhance the
accuracy of ground deformation measurements.

Our dataset comprised ascending interferometric observations
captured at 90 epochs from 17 March 2016, to 13 September
2023. We processed the data using SARscape software, which
included steps such as orbit correction, interferogram generation,
phase unwrapping, and atmospheric and topographic correction. By
analyzing the phase differences in the radar signals from different
times, we measured the ground surface’s subtle displacements,
essential for understanding the Muyubao landslide’s dynamics.
The SBAS method enabled us to generate a time-series of

deformation maps, offering critical insights into the landslide’s
behavior over the 7-year observational period. The temporal
cadence of acquisitionswas approximatelymonthly, albeit with some
variability.

Utilizing ENVI 5.6.2, preprocessing of the raw radar data was
conducted to mitigate atmospheric disturbances, topographical
effects, and other accuracy-impairing factors. Subsequent
application of SBAS technologywithin SARscape software facilitated
the generation of temporal-spatial and temporal-baseline plots
(Figure 2), instrumental in evaluating data coherence and integrity.
These plots ensured that subsequent analyses were underpinned
by high-quality data, and also aided in identifying and excluding
anomalous readings or errors that could compromise our findings.
Specifically, the data points in the time-position plot were arranged
periodically and had small overall errors (represented by vertical
lines), which helped maintain high coherence and provide more
accurate deformation measurements. This indicated that the SBAS
InSAR results were good. Moreover, the baseline lengths in the
time-baseline plot were generally small, which usually meant that
the SBAS InSAR results were better (Figure 2). However, these plots
only provided a qualitative assessment.

The construction of a series of small baseline interferograms
enhanced spatiotemporal resolution and reduced phase ambiguities
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FIGURE 2
Temporal-spatial and temporal-baseline distributions for the study area. The data points are well-distributed across both dimensions, devoid of
significant discontinuities or anomalies.

due to atmospheric variability and nonlinear ground motion. Post-
interferogram generation and phase unwrapping yielded cumulative
displacement information of the surface changes.The resulting time-
series displacement data underwent further analysis, quantifying
the characteristics and trends of surface deformation. To evaluate
the accuracy of the InSAR results, we analyzed the frequency
distribution of the root mean square error (RMSE), which is an
attribute data of the points reported by the ENVI processing. We
then compared the RMSE values of three types of land use data in
the study area and examined the differential effects of land use on the
accuracy of the results. Additionally, we validated the reliability of
the InSAR deformation results by incorporating Global Navigation
Satellite System (GNSS) data from other studies in the same research
area (Zhou et al., 2020).

2.3 Landslide deformation and drainage
network

The drainage network levels reflected the complexity and
intensity of water flow across the landslide area, which directly
impacted the hydrological conditions within the landslide mass
(He et al., 2023). Higher-order drainage networks indicated more
extensive and interconnected water flow paths. To elucidate
the relationship between landslide deformation rates and the
hierarchical levels of drainage networks, we obtained high-
resolution digital elevation model (DEM) data for the study area
and extracted drainage networks of different levels based on
watershed analysis methods. We classified the drainage networks
into first-, second-, and third-order streams. This approach, based
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on the theory of hydrological connectivity, allows us to understand
the influence of water flow patterns on landslide deformations.
Drainage network levels were treated as categorical variables,
while deformation rates served as the response variable. Boxplots
were generated for each level of the drainage network to display
the distribution of deformation rates at each hierarchical tier.
Comparative analysis of these boxplots across drainage network
levels allowed for the assessment of the correlation between
deformation rates and the network hierarchy.

For the analysis of temporal trends in cumulative landslide
deformation, we employed error bar charts. These charts depicted
the mean cumulative deformation over time, with error bars
representing the 95% confidence intervals to illustrate data
variability. We first calculated the mean cumulative deformation
and standard error at each time point for every drainage network
level. Subsequently, error bar charts were plotted with the x-axis
signifying time and the y-axis denoting cumulative deformation,
where different lines represented varying levels of the drainage
network hierarchy.

2.4 Landslide deformation and geological
geomorphology

In our investigation, we probed the correlation between
landslide deformation rates and slope gradients to pinpoint
susceptibility intervals. The dataset, encompassing observations at
809 locales, detailed deformation velocities (mm/year) alongside
slope angles (degrees). Employing box plots, we graphically
articulated the distribution of deformation velocities across varying
slope intervals. This method, grounded in descriptive statistics,
offered insights into the central tendency and dispersion of data,
crucial for understanding geomorphological influences. Slopes were
segmented into deciles, spanning from 0° to 50°, in increments of
5°. For each interval, we computed mean deformation rates and
their 95% confidence intervals. The box plots served to visualize
velocity distributions within slope categories, with boxes delineating
interquartile ranges, whiskers capturing variability, and outliers
marked individually (García-Ruiz et al., 2010).

Complementing this analysis with detailed geological insights,
we referenced the stratigraphic information fromZhou et al. (2020),
which informed our analysis of the stratigraphic configuration
within the landslide zones. Additionally, we generated new
stratigraphic cross-section diagrams to vividly illustrate the
potential linkages between geological structures and deformation.
By overlaying landslide deformation rates and cumulative
deformations onto these diagrams, we provided an enhanced visual
representation of the stratigraphic influences on deformation and
the underlying mechanisms of landslide occurrences.

2.5 Landslide deformation in areas of
intense human activity

To elucidate the spatial relationship between landslide
deformation and human infrastructure, we compared deformation
rates within residential zones, a 30-meter buffer surrounding
roadways, and across the entire study area. We obtained the vector

data of the study area from Google Earth software, and imported
it into ArcGIS. We then used the Buffer tool to generate a 30-
meter buffer around the roadways, and manually delineated the
residential zones. We employed advanced visualization techniques,
including boxplots and density plots, backed by statistical theories
of data distribution and variability, to elucidate the characteristics
of landslide deformation. These methods allowed for an in-depth
analysis of how human activities influence landslide patterns.
Boxplots served to identify principal trends, outliers, and potential
anomalies in the data distribution, with quartiles and medians
facilitating a rapid assessment of data centrality and dispersion.
Density plots were instrumental in delineating the shape of data
distribution, providing insight into the prevalence of data across
varying ranges. Data processing and analysis were conducted
within a Python framework, leveraging open-source libraries
such as Pandas, Seaborn, and Matplotlib, ensuring the precision
and integrity of our analysis. This synergistic application of
analytical tools underpins the veracity of our results, offering
robust data support for subsequent geological research and disaster
mitigation efforts.

2.6 Interplay of precipitation and reservoir
levels on landslide deformation

In an endeavor to decipher the interplay between precipitation,
reservoir water levels, and landslide deformation trends from 2016
to 2023, our investigation meticulously harnessed daily mean water
level and rainfall data from meteorological and water resource
departments, complemented by approximately monthly intervals of
landslide deformation records. The nearest rainfall station, located
in Yichang, Hubei Province, China, had coordinates of 30.73°N,
111.367°E. The Muyubao landslide, 90 km northwest of the station,
was influenced by the reservoir water level and precipitation. We
obtained daily water level data of the Three Gorges Reservoir from
the publicly availableHubei ProvinceCommonHydrological Report
website (http://113.57.190.228:8001/#!/web/Report/RiverReport),
andmatched themwith rainfall data for the same period. A stringent
data preprocessing regime was enforced—encompassing cleansing,
standardization, imputation of missing values, outlier exclusion,
and normalization—to ensure data integrity and uniformity.
Specifically, linear interpolation was employed to infill gaps in the
temporal landslide deformation dataset. Employing the Python
programming language and the Matplotlib visualization library, we
integrated the variables into a time-series graph, a methodological
approach based on time-series analysis principles. This approach
allowed us to observe patterns over time and understand the
dynamic relationship between environmental factors and landslide
deformation, demarcated by distinct colors and line styles, and
augmented with standard deviation bands of landslide deformation
trends for an intuitive representation of their interrelations and
data variability insights. Through the meticulous scrutiny of the
resultant charts, a compendium of pivotal findings and insights was
distilled.Our comprehensivemethodology and interpretive analyses
elucidated how reservoir water levels and rainfall synergistically
impact landslide deformation, thereby unveiling the underlying
mechanisms and their implications.
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2.7 The correlation between rainfall and
reservoir water levels with landslide
deformation

In our investigation, we scrutinized the impact of precipitation
and reservoir water levels on landslide displacement, quantified
by the negative values of landslide deformation trends. Our
study harnessed observational data spanning from 2016 to 2023,
employing correlation coefficients to quantify inter-variable
relationships. Preliminary data processing involved rectifying
missing entries, standardizing date formats, and resolving
inconsistencies. Notably, we navigated through three distinct date
columns corresponding to observations of rainfall, reservoir levels,
and landslide deformation trends. A harmonization process was
applied to the dates associated with rainfall and reservoir levels,
while the landslide deformation trend dates underwent separate
analysis. Post-cleansing, we computed a correlation matrix, a
statistical tool based on correlation theory, to measure the strength
and direction of the relationship between variables.The visualization
through heatmaps provides an intuitive understanding of these
relationships, enhancing the interpretability of our findings. The
computation of correlation coefficients, based on Pearson’s metric,
ranged from −1, signifying a perfect inverse relationship, to
+1, denoting absolute positive correlation, with 0 indicating no
correlation.

3 Results

3.1 Time-series InSAR deformation analysis
and landslide deformation

Landslide deformation was characterized as a persistent
subsidence process, with high deformation zones displaying spatial
clustering (Figure 3). Deformation values predominantly ranged
from −100 to 0 mm, exhibiting a distinct left-skewed distribution
(Figure 4A), indicative of prevalent subsidence throughout the
observation period. The frequency of deformation values escalated
with decreasing magnitude, particularly dense within the −50 to
0 mm interval (Figure 4A), suggesting that minor to moderate
subsidence events were more common within the landslide
region. Mean deformation values fluctuated notably, oscillating
approximately between −20 and 0 mm. Similarly, the standard
deviation trends mirrored these fluctuations, underscoring the
variability of deformation over time. Overall, the mean deformation
throughout the observation period stood at −9.27 ± 14.43 mm,
confirming the landslide’s dominant subsidence behavior with
relatively significant fluctuations in deformation values.

3.2 Drainage hierarchy influence on
landslide deformation rates

Analysis of the drainage network hierarchy revealed that
landslides at level 5 exhibited the most pronounced deformation
rates, averaging −17.01 ± 3.65 mm/yr as shown in Figure 5B.
Landslides within the first and second hierarchy levels displayed
comparable rates of deformation, measuring −12.79 ± 0.97 and

−12.05 ± 1.48 mm/yr, respectively. The least deformation was
observed at level 3, with an average rate of −7.60 ± 1.75 mm/yr.
Moreover, during the study period, cumulative deformation in
areas of drainage network level 5 reached a striking −139.77 mm.
In comparison, cumulative deformations for levels 1 and 2 were
closely matched at −106.58 mm and −100.88 mm, respectively,
while level 3 registered a cumulative shift of −67.06 mm. These
disparities are likely attributable to the region’s inferior geological
conditions and anthropogenic activities. The findings indicate a
consistent rise in cumulative landslide deformation across all levels
of drainage networks, with the rate of increase being significant over
time. Despite the generally similar upward trend across different
levels, variations were noted, particularly highlighting the positive
correlation between higher drainage network levels and enhanced
landslide deformation.

3.3 Slope gradient and geology: Dissecting
landslide deformation patterns

Within the more modest incline brackets (0°–5° and 5°–10°),
landslide deformation rates were lower and exhibited a concentrated
distribution. For slopes ranging from15° to 30°, deformation rates of
landslides spanned a broader spectrum, with a notable incidence of
extreme values, indicating increased susceptibility to deformation in
these segments. Conversely, on steeper slopes (40°–45° and 45°–50°),
landslide deformation rates remained comparatively consistent and
were predominantly clustered around lower values.

The Muyu Fort landslide was situated within a geological
stratum that not only paralleled but also inclined in the same
direction as the slope. This stratum comprised alternating layers
of Jurassic Xiangxi Group quartz sandstone and siltstone, as
depicted in Figure 7A. The sliding plane, mainly identified in
the mudstone with an approximate dip of 27°, was overlain
by a loose sediment structure of colluvial soils and collapsed
boulders. Below, the plane was predominantly constituted by
layered quartz sandstone. At the landslide’s forefront, a raised
platform had formed, resulting from shear sliding, characterized by
persistent undulatory uplifts as shown in Figure 7C. In contrast, the
central region of the slide displayed continuous subsidence. During
the period of investigation, the cumulative subsidence exceeded
200 mm, particularly in the mid-section of the landslide, where
rates surpassed 30 mm/yr. The intrinsic stratification of the rock
formations compounded the potential for landslide disasters in
this region.

3.4 Comparative Analysis of landslide
deformation rates within residential areas
and roads

Landslide deformation rates exhibited a differential distribution
(Figures 8A, B), with residential and road areas experiencing
average rates of −10.18 and −14.09 mm/yr, respectively. The overall
deformation rates in road areas outpaced those in residential zones,
largely due to significantly faster deformation at certain localities
(Figure 8A). Density plots further elucidated the probability density
distribution of the data, revealing a more dispersed distribution
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FIGURE 3
Time-series InSAR deformation in the study area during the survey period. For the sake of brevity, only the data for June and December of each year
are shown.

in residential areas and a sharper, more concentrated distribution
within a 30-m buffer zone of roads, with a more gentle distribution
across the entire region. This indicates that road areas were subject
to greater deformation impacts, followed by residential areas.

3.5 Influence of rainfall and reservoir water
levels on landslide deformation

Landslide deformation exhibited cyclic fluctuations correlated
with variations in precipitation and reservoir water levels. During
non-flood seasons, reservoirs were typically filled to normal storage

levels to conserve water resources. Approaching the flood season,
levels were methodically reduced below flood prevention thresholds
to free up flood storage capacity in anticipation of potential floods
(Figure 9). During the rainy seasons, an increased settlement was
observed, while during water storage periods, landslide deformation
stabilized, with instances of slight uplift.The settlement fluctuations
in the rapid deformation zones of landslides paralleled the overall
deformation trends but were of a greater magnitude, indicating a
pervasive influence of rainfall and reservoir water levels on landslide
deformation.

The correlation between rainfall and landslide settlement
was notably weak (correlation coefficient of −0.03) (Figure 10A),
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FIGURE 4
Time-series InSAR deformation analysis of the investigated landslides. (A) Frequency distribution of deformation at all deformation points. (B) Error bar
graph of deformation trends, with error bars indicating one standard deviation.

indicating a minimal impact of rainfall on landslide settlement.
Likewise, the correlation between reservoir water levels and
landslide settlement was minimal (correlation coefficient of 0.16)
(Figure 10A). When the analysis was focused on rapid deformation
zones, there was almost no correlation between rainfall and
rapid landslide settlement (correlation coefficient of −0.03), and
only a marginal increase in correlation with reservoir water
levels (correlation coefficient of 0.16) (Figure 10B). These findings
suggested that significant deformations within landslides were more
responsive to reservoir water levels. The overall weak correlations
pointed to the possibility that landslide settlement was the result
of a complex interplay of multiple factors, which required further
investigation to uncover the underlying mechanisms.

4 Discussion

4.1 Drainage networks and deformation
dynamics

Thefindings of this study underscore that theMuyubao landslide
is an ongoing subsidence process, exhibiting pronounced spatial and
temporal deformation disparities (Figure 3). Enhanced deformation
rates and cumulative deformation values (Figure 5) are correlated
with higher drainage network orders, suggesting a contributory role
of drainage network grading in landslide deformation. Particularly,
increased deformation rates in downstream drainage networks are
observed, which is generally associated with the augmentation of
internal pore water pressure due to water convergence, thereby
diminishing the shear strength and stability of the landslide mass,

a precursor to landslide initiation or acceleration (Zhang et al.,
2021). Accumulation of water adds to the weight of the slope
(Pearce and O’Loughlin, 1985), potentially increasing the driving
force of landslides, especially in poorly consolidated or loose
materials characteristic of our study area. Moreover, the confluence
of watercourses elevates the moisture saturation and pore water
pressure within the landslide body, undermining its stability.
Sliding at the landslide’s tail induces reactivation and downslope
movement in the central and frontal portions, thus creating a
positive feedback loop encompassing water accumulation, pressure
escalation, deformation transfer, rock failure, and slippage (He et al.,
2023), perpetuating the landslide’s reactivation and acceleration.
Zhou et al. (2020) analyzed the deformation rate and spatial
distribution of the Muyubao landslide and found that the upper
part of the eastern side deformed most significantly, while the
western side deformed relatively less, consistent with our findings.
Moreover, Deng et al. (2023) used various monitoring methods,
including meteorological, hydrological, GNSS monitoring, and
field inspection, and found that although the Muyubao landslide
continued to deform, its movement rate gradually slowed down,
indicating a low possibility of large-scale sliding, but requiring
continuous monitoring and further research.

4.2 Vegetation and hydrological influence
on landslide behavior

Vegetation affects soil hydraulic properties and hydrological
response through soil structure development, thus delaying
landslide initiation (Fan et al., 2022). Indeed, vegetation stabilizes
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FIGURE 5
Drainage network and deformation. (A) Drainage network generated using a Digital Elevation Model (DEM). (B) Deformation rates of different
hierarchical levels of the drainage network. (C) Temporal deformation of different network levels during the survey period. The data represent mean
values ±95% confidence intervals.

slopes by increasing soil shear strength and reducing rainfall
infiltration.However, in our study area, vegetation covered the upper
and middle parts of the landslide deformation zone (Figure 8B),
and the radar signal here was incoherent and the deformation
result was inaccurate (Li M et al., 2021). However, based on the
significant deformation under the vegetation, we infer that different
degrees of sliding exist here. Notably, vegetation also increases soil
weight and moisture content, thereby increasing landslide driving
force. Moreover, vegetation alters soil physical properties, such as
porosity, permeability, and soil saturation, which facilitate landslide
deformation (Li M et al., 2021). Additionally, vegetation type and
distribution have important effects on soil stability. Deep-rooted
plants usually enhance soil stability more effectively, while shallow-
rooted plants may provide less support under gravity (Jiang et al.,
2023). Overall, although the artificially planted trees in our study
area mitigate landslide deformation, some extreme rainfall events
increase gravity by preventing rapid drainage of water from the

landslide mass, which further aggravates landslide hazard risk.
Therefore, we argue that the influence of water flow on landslides
depends on whether it can be smoothly and quickly drained from
the landslide mass. On the other hand, previous studies have shown
that faults and fractures in the landslide zone allow reservoir water
to infiltrate deeply into the rock mass, exacerbating the effect of
water level fluctuations on landslide stability (Zhou et al., 2020).
This indicates that the influence of water on landslide deformation
is complex.

4.3 Slope angle and landslide susceptibility

Slope angle also influences landslide deformation, with the
15°–30° range being relatively more unstable and susceptible
to deformation. Studies suggest steeper slopes bear a larger
component of gravitational force on the materials, fostering their
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FIGURE 6
Slope gradient and deformation. (A) Slope gradient map, the dashed rectangular area is a continuous gentle slope on the slope. (B) Deformation rates
of different classes of drainage networks.

downslope motion (Bai B et al., 2020). However, slope steepness
modulates water flow and drainage on slopes; steeper regions
typically exhibit superior drainage, whereas gentler slopes may
engender water retention, increasing landslide risk. Our survey
pinpointed continuous gentle slopes as areas corresponding to
significant landslide subsidence (Figure 6A). Similarly, García-
Ruiz et al. (2010) identified the 15°–30° slope range as highly prone
to landslide deformation, proposing that soil stability decreases
dramatically above 30°, prone to sliding even under dry conditions,
while below 15°, soils remain stable even when saturated.

4.4 Impact of moisture on shear stress and
stability in landslide zones

At the micro-scale, the sandy mudstone layer has higher
clay and moisture content compared to the overlying quartz
sandstone layer.The increasedmoisture weakens the intermolecular
bonds between clay particles in the muddy sandstone, causing
clay aggregation, pore water pressure build up, and reduction of
effective stress (Hu et al., 2018). This leads to the development
of a micro-scale slip surface along the sandy mudstone layer.
Additionally, the differential hardness and brittleness between
the quartz sandstone and underlying sandy mudstone results
in a discrepancy in strain response and shear strength under
gravitational loading.The brittle sandstone layer accumulates elastic
strain energy and undergoes fracturing, while the softer sandy

mudstone layer deforms plastically via particle rearrangement
and sliding (Petley et al., 2005). This mismatch in elastic-plastic
response generates shear stress concentrations along the interface,
further propagating the slip surface (Pearce and O’Loughlin, 1985).
At the pore-scale, moisture infiltration into the sandy mudstone
elevates matric suction and pore water pressure (Urciuoli et al.,
2016). This reduces the effective normal stress across potential
shear planes per the principle of effective stress. Moreover, wetting
induces physicochemical changes in clay minerals within the
mudstone, especially montmorillonite. The hydration of interlayer
cations causes swelling and softening (Pötzl et al., 2018), degrading
the shear strength. Furthermore, cycles of wetting and drying
can gradually alter the mudstone fabric and macro-porosity
(Hu et al., 2018), enhancing deformability. Moreover, after the
landslide sliding, the high-water-content mudstone remaining in
the landslide body continued to soften and weaken, resulting
in the landslide body not stabilizing quickly, but rather slowly
sliding and expanding (Zhang et al., 2017). This implies that the
landslide will persist unless the frictional force inside the mudstone
reaches a new equilibrium. These factors exacerbate the shear
stress disparity across the slip surface, diminishing landslide
stability. Furthermore, moisture influences the internal stress
distribution and deformation characteristics of the landslide body,
as evidenced by the observed frontal uplift and sustained central
subsidence in the landslide mass (Figure 7), likely attributable to
variable lubrication or expansion effects induced by moisture in
different areas.
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FIGURE 7
Stratigraphic and geomorphic differentiation of landslide deformation. (A) Stratigraphic information along the profile. (B) DEM and landslide
deformation rate. (C) DEM and cumulative deformation. Note that in segments (B) and (C), “x” axis denotes the percentage distance along the
A-A′ transect.

4.5 impact of human activities on landslide
reactivation and stability

Human activities, by altering land use and disrupting
vegetation cover, exacerbate slope erosion and denudation, thereby
diminishing the stability of landslide masses and augmenting the
likelihood of landslide reactivation (Peng et al., 2016; Jiang et al.,
2022). In the present study, we meticulously compared deformation
rates within a 30-m buffer zone encompassing residential areas
and roads in a landslide-prone region. Road construction has
been implicated in altering the natural flow of water, potentially
leading to an aggregation of moisture in certain areas and thereby
increasing landslide susceptibility (Li SH et al., 2021). Wu et al.
(2001) showed that road and tunnel construction altered the
mountain structure, hydrological conditions, and stability state,
accelerating and triggering landslides in theThree Gorges Reservoir
area (Li et al., 2019). Moreover, road and tunnel construction
increased the upper load and disturbed the original vegetation,
weakening the shear strength of the mountain, which is a key
factor for inducing landslides (Tang et al., 2019). Li et al. (2019)
analyzed the correlation between road density and landslide
occurrence frequency in our study area and found that areas with
higher road density had significantly higher landslide occurrence
frequency. However, residential zones lack the convergent water

flow characteristic of roadways, contributing to the observed
discrepancy in deformation rates—roads exhibited a significant
increase in deformation speed (−14.09 mm/yr) compared to
residential areas (−10.18 mm/yr), particularly around certain
localized sections of the roadway (Figures 8A, B). Moreover, road
construction often entails the cutting of platforms at the base of
a landslide, which can heighten shear stress within the landslide
mass (Li et al., 2020). On the other hand, the construction of
numerous new dwellings on the landslide mass (Figure 8A) has
augmented the gravitational load, thereby decreasing shear strength
and triggering the formation and movement of new landslide
bodies.

4.6 Complex interplay of reservoir levels
and landslide deformation dynamics

By examining the relationship between landslide deformation,
precipitation, and reservoir water levels, we discerned a pronounced
cyclical fluctuation in landslide deformation (Figure 9), consistent
with the variations in reservoir water levels, while precipitation
showed no significant correlation (Figure 10). Previous research
suggests that rapid declines in reservoir water levels can precipitate
marked “jumps” in deformation rates (Tang et al., 2015). This is
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FIGURE 8
Comparison of landslide deformation rates within 30 m of road buffers and residential areas. (A) Residential areas and roads in the study area with
deformation rate maps and digital surface model (DSM) in the background. (B) Deformation rate map with Google imagery in the background. (C) and
(D) Boxplots and density plots of deformation rates in residential areas, landslide deformation rates within 30 m of the road buffer versus deformation
rates for the entire study area, respectively, with boxplots showing the median (horizontal line) mean (white rectangle), quartiles, and outliers (black
dots) of the data.

attributed to the impact of reservoir level fluctuations on the
permeation pressure and effective stress in the surrounding rock,
diminishing shear strength, and inducing changes in the internal
seepage and stress on slip surfaces. Consequently, higher reservoir
levels are associatedwith greater deformation rates (Sun et al., 2016).
Our findings, however, do not corroborate this, as we observed
that rising reservoir levels corresponded with a stabilization or even
uplift phase in landslide deformation (Figure 9). The increase in
water levels could enhance the support pressure at the base of
the slide, augmenting the overall stabilizing torque, and potentially
providing a degree of support to the landslide mass. With rising
water levels, internal seepage direction shifts from downward to
upward, increasing pore water pressure at the upper portion of
the slip surface while reducing it at the lower portion. Conversely,
a decrease in water levels reverses this seepage direction, with
the accompanying stress redistribution potentially exacerbating the
differential shear stress across the slip surface, thereby promoting
deformation (Xia et al., 2013). However, it is generally accepted
that an increase in reservoir water levels also intensifies the
permeation pressure on the surrounding rock, undermines shear
strength, and increases sliding forces (Ye and Ghassemi, 2018),
indicating that the impact of water levels on landslide deformation is
multifaceted.

4.7 Reevaluating the influence of
precipitation and reservoir dynamics on
landslide deformation

Numerous studies have confirmed that precipitation promotes
landsliding, for instance, Iverson and Major (1987) noted that
rainwater infiltration, contributing to subterranean water flow,
enhances the lubrication and loading of the landslide mass,
thus inducing outward movement. During dry seasons, the
reduction in groundwater flow arrests this movement, with
the mountain’s gravitational pull inducing inward contraction.
Furthermore, greater precipitation intensity accelerates the
increase in underground water pressure, leading to more active
deformation (Hong et al., 2005). Nevertheless, our findings
regarding precipitation and landslide deformation do not fully
support this view. We hypothesize that the primary reason for
the lack of coherence may be the inverse rhythm of reservoir
water levels compared to rainfall patterns. Yang et al. (2017) also
contend that both rainfall and the lowering of water levels in the
Three Gorges Reservoir contribute to the accelerated deformation
of landslides. On the other hand, temperature and humidity are
important factors affecting landslide stability, especially in complex
geological environments such as the Three Gorges Reservoir area.
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FIGURE 9
The relationship between rainfall, reservoir water levels, and landslide deformation. The blue bar chart represents daily rainfall, the red line graph
indicates the daily water levels in the reservoir, the black dashed line shows the cumulative deformation of landslide points that exceed 30 mm/yr, and
the purple line represents the average cumulative landslide deformation. The cumulative deformation of the landslide is presented as the mean ±
standard deviation.

FIGURE 10
The correlation between rainfall, reservoir water levels, and the magnitude of landslide deformation. (A) the relationship of rainfall and reservoir water
levels with the overall landslide deformation. (B) the relationship with landslide deformation in areas of rapid deformation, which are defined by average
settlement rates exceeding 30 mm/yr.

High temperature may cause water evaporation in rocks and
soils, altering the hydrological conditions of the landslide mass
(Bai Y J et al., 2020), while high humidity may increase the weight
and reduce the friction of the landslide mass (Hong et al., 2005).
Moreover, temperature and humidity changes may affect the growth
of surface vegetation (Arnone et al., 2016), which in turn may
indirectly influence landslide stability.

4.8 Limitation

Leveraging time-series InSAR technology, our study has tracked
the dynamic subsidence of the Muyubao landslide from 2016 to
2023, attempting to unravel the composite influence mechanisms
behind deformation through statistical correlation with topographic
and geologic factors (Zhang et al., 2018). Nonetheless, our study

was subject to considerable uncertainty. For instance, the resolution
limits of InSAR in detecting surface deformation (Intrieri et al.,
2011), and the constrained sampling of deformation points which
may not reflect the entire landslide region (Handwerger et al.,
2016), this was mainly because vegetation-induced decorrelation
of the radar signal resulted in data gaps in large areas of the
landslide head and body. Moreover, the RMSE of Forest was 1.45
times higher than that of Cropland, indicating the interference of
vegetation cover on the results (Figure 11C). Another extreme case
was water bodies, which caused signal loss and extreme errors by
specular reflection and absorption of radar waves (Figure 11C).
Numerous studies have also demonstrated the interference of
vegetation and water bodies on the accuracy of InSAR results (e.g.,
Li M et al., 2021). Overall, all InSAR results showed small errors
(Figures 11A, B). Hence, we can conduct a partial assessment of
the landslide deformation using the available data. Furthermore,
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FIGURE 11
Root Mean Square Error (RMSE) of InSAR results. (A) Spatial distribution of RMSE, with land use types as the base map. (B) Frequency distribution of
RMSE. (C) RMSE for different land use types. The data represent mean values ±95% confidence intervals.

FIGURE 12
Comparative analysis of InSAR deformation and GNSS data.

potential discrepancies in rainfall boundary conditions due to
the remote location of meteorological stations, and the opaque
interconnections between influencing factors that complicate the
determination of causative relationships—all these factors introduce

varying degrees of imprecision to our findings and the reliability of
our conclusions.

To mitigate these uncertainties, future research must expand
the scope of deformation monitoring through additional InSAR
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analysis with higher resolution sensors and multi-platform data
fusion. More extensive field investigations should be conducted
to augment the spatial sampling of deformation measurements,
especially in vegetated sectors through terrestrial laser scanning.
Process-based hydro-mechanical models should be developed
to simulate seepage, pore pressure and stability conditions
within the landslide mass under dynamic external forcing.
Such numerical modeling calibrated by field data can help
quantify the relative contributions of individual factors and
predictive landslide acceleration. Furthermore, a denser network of
meteorological and hydrological monitoring stations is imperative
for reducing uncertainties in environmental boundary conditions.
Integrating these advanced monitoring, modeling and analytical
techniques can significantly bolster the reliability of findings and
underpin quantitative landslide forecasting and early warning.
Although our study has limitations, it provides a methodological
foundation and first-order insights to guide follow-up investigations
on unraveling landslide mechanisms in the Three Gorges
Reservoir area.

To validate our InSAR results, we incorporated the GNSS
data from June 2016 to September 2017. This inclusion offers
a more robust, multi-modal approach to landslide deformation
analysis. The Global GNSS data, sourced from Zhou et al. (2020),
provide a continuous time series for the Muyubao landslide.
The displacement data measured by InSAR and GNSS are
generally consistent (Figure 12), indicating that the InSAR
results are effective in reflecting the surface deformation trends.
Although at some time points, the InSAR data show slightly
larger displacements than the GNSS, this consistency suggests
that the two techniques are complementary in monitoring
landslide deformation, despite their differences in principles and
measurements.

5 Conclusion

This research represents a landslide deformation analysis
through its integrated use of time-series InSAR techniques
and multi-source geospatial statistical analysis, a approach for
comprehensively monitoring and understanding the dynamics of
the Muyubao landslide over an extended period (2016–2023). Key
innovations of this study include the detailed characterization
of spatio-temporal landslide deformation, the identification of
the specific impact of factors such as drainage networks, slope
gradients, geological structures, human activities, and reservoir
water level changes, and the unique correlation of these factors
with landslide behavior. Notably, this research highlights the
predominant influence of human activities and reservoir operations
on landslide deformation, challenging the traditional emphasis
on natural factors alone. The study’s findings pave the way
for future research directions, including the need for high-
resolution InSAR data analysis, enhanced field measurements,
and development of predictive models for landslide behavior.
Furthermore, there is a need to explore the role of vegetation and
land use changes in landslide dynamics. Extending the application
of this methodological approach to other landslide-prone regions
is vital for improving disaster prediction and management

strategies globally. This study’s methodological advancements
offer a transformative approach to landslide risk assessment and
mitigation.
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