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Micro- and nanoplastics in
freshwater
ecosystems—interaction with
and impact upon bacterivorous
ciliates
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Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg,
South Africa

The ubiquitous occurrence of microplastics and nanoplastics in aquatic
environments is ofmajor concern as these priority pollutants are readily ingested
by a wide variety of aquatic organisms. Although quantitative data on the
interaction of microplastics and even more so on nanoplastics in freshwater
environments and their interaction with the aquatic food web are still limited,
studies have nevertheless demonstrated that even micro- or nanosized plastic
particles can be ingested by various members of the zooplankton functioning
as primary consumers. Bacterivorous ciliates are crucial members of the
microzooplankton. These fascinating microorganisms are critical components
of microbial loops in freshwater environments and are essential links between
different trophic levels within the aquatic food web. Ingestion of microscopic
plastic particles affects the ciliate cell on a cellular and even on the molecular
level. Physical and chemical characteristics such as size, density, and surface
properties influence the stability, distribution, retention, transportation, and
bioavailability of the microplastic particles for ingestion by ciliates. In turn, the
environmental fate of microplastics and nanoplastics can affect their ecotoxicity
via surface modifications, such as forming the so-called eco-corona. The
consequences of the interaction of ciliates with microplastics and nanoplastics
are the potential bioaccumulation of plastic particles through the food web
and the possible interference of these emerging pollutants with controlling
bacterial and possibly even viral abundance in freshwater environments. Due to
the limited data available, studies elucidating the environmental bacterivorous
ciliate-micro-/nanoplastics interaction are a priority research topic if we want
to holistically assess the environmental fate and ecotoxicity of these pollutants.
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microplastics, nanoplastics, pollution, ingestion, freshwater, microzooplankton,
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1 Introduction

Pollution by plastics has emerged as one of the most severe environmental threats.
The rapid increase in production and consumption of plastic materials has resulted
in large amounts of plastic waste being released into the environment; of the 400
million tons of plastic waste that is generated worldwide, only 9% is recycled,
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while about 80% accumulates in landfills or remains mismanaged
and may end up in the natural environment (Amobonye et al.,
2021; OECD, 2022; Haque and Fan, 2023; Lamichhane et al., 2023).
It is estimated that up to 14 million tons of plastic waste end
up in the ocean annually, making up 50%–80% of all marine
debris that accumulates globally, of which 70%–80% are from
land-based sources such as rivers, stormwater runoff, wastewater
discharges, or transport of land litter by wind (Jambeck et al., 2015;
Chaturvedi et al., 2020; Watt et al., 2021).

The presence of microscopic plastic materials in the aquatic
environment is a major global concern. Based on the particle
size, an important classification criterion as it can affect particle
properties and the environmental fate, they could be categorized
as microplastics if ranging from 1–1,000 µm and as nanoplastics
if ranging from 1–1,000 nm, thus matching scale and prefix, as
suggested by Hartmann et al. (2020). However, for the purpose of
this review, we adopt the size classification proposed by EFSA (2016)
when assessing the presence of micro- and nanoplastics in the
food web and Besseling et al. (2019) when addressing the ecological
risk of these microscopic pollutants, with an upper size limit of
microplastics set at 5 mm and nanoplastics defined as ranging from
1 to 100 nm. Micro- and nanoplastics are considered persistent
emerging pollutants due to their environmental and public health
impact (Lambert and Wagner, 2018; Lamichhane et al., 2023).

Micro- and nanoplastics are either derived from primary
or secondary sources. Primary plastic waste is intentionally
manufactured in microscopic sizes and is added to a wide
range of products such as household and clothing fibers,
drug delivery formulations, cosmetic products, fertilizers, and
paints for specific functions (e.g., abrasiveness, thickening,
and stability) (Toussaint et al., 2019). Primary microplastics
enter the environment through discharge from households,
agriculture runoff, and industrial waste, and they account
for 15%–30% of all plastics released into the environment
(Toussaint et al., 2019; Ter Halle and Ghiglione, 2021; Oliveira et al.,
2022). The secondary derivatives are a result of larger plastics
that undergo weathering once exposed to the environment
due to physical, chemical, and biological agents forming
plastic material of microscopic size (Thompson et al., 2009;
Gonçalves and Bebianno, 2021; Haque and Fan, 2023). Secondary
microplastics greatly contribute to microplastic pollution,
accounting for 70%–80% of all plastic released into the environment
(Mariano et al., 2021; Kiran et al., 2022).

Microplastics are considered a major threat to aquatic
organisms. Their small size range and their varying density allow
them to occupy different areas of the water column and sediments,
making them bioavailable for interaction with aquatic organisms,
potentially enabling detrimental interactions such as ecotoxicity
and bioaccumulation along the food web (Lusher, 2015; EFSA,
2016; Rakib et al., 2023). Furthermore, the large surface area to
volume ratio of microplastics and their predominantly hydrophobic
properties renders them prone to adsorbing organic pollutants,
heavy metals, or polymer leaching that may negatively affect the
surrounding hydrosphere (Lusher, 2015; Costigan et al., 2022).
Microplastics can act as a vector for transporting pollutants to and
within the ecosystem via the food chain or by altering the solubility
of hydrophobic pollutants when adsorbed onto the plastic particle,
which may increase their transport and consequently impact their

distribution and bioavailability (Amelia et al., 2021; Gateuille and
Naffrechoux, 2022). In addition, microplastics were identified as
possible attachment sites and vehicles for bacterial pathogens,
increasing their mobility within aquatic ecosystems (Hou et al.,
2021; Pham et al., 2021; Beans, 2023).

The effect of microplastics’ interaction with aquatic organisms
and the impact on the carbon cycle is well documented for marine
environments. Ingestion has been reported for species across various
trophic levels, including zooplankton (Cole et al., 2013), copepods
(Fibbe et al., 2023), and planktivorous forage fish (Beer et al., 2018).
However, not much is currently known about the ecologically
important group of bacterivorous ciliates, key members of the
microzooplankton. Furthermore, there is still a scarcity of studies
on the impact of microplastics in freshwater environments in
comparison to studies targeting marine environments (Badea et al.,
2023). The aim of this work is, therefore, to undertake a
comprehensive review of data available on the effect of microplastics
and nanoplastics on crucial members of the freshwater foodweb, the
bacterivorous ciliates, highlight data gaps, and address the factors
influencing the bioavailability of microplastics and nanoplastics for
ingestion. To understand the environmental fate and the impact
of microplastics and nanoplastics in freshwater environments, it is
imperative to appreciate their occurrence, distribution, and behavior
within this vital ecosystem.

2 Occurrence and distribution of
micro- and nanoplastics in freshwater
environments

Freshwater environments are vulnerable to small plastic
pollution because of the vicinity of waste-generating pathways,
i.e., the wastewater treatment plants, landfills, and dumpsites.
The contribution of various sources to plastic pollution has been
poorly quantified in freshwater environments. The occurrence of
microplastics is often correlated with anthropogenic activities; thus,
high abundance is generally detected in lakes and rivers in urbanized
regions (Schmidt et al., 2020; Dalu et al., 2021; Kunz et al., 2023).
Effluents discharged from Wastewater Treatment Plants (WWTPs)
are a significant source of microplastics in freshwater environments,
as microplastics are not removed quantitatively in the current
systems (Wu et al., 2022). Thus, the number of microplastics
annually released into rivers via WWTP effluents in Germany was
estimated at 7 × 1012 (Schmidt et al., 2020), and a combined daily
release of 5 × 108–109 microplastics via treated effluent for three
wastewater treatment plants in the United States (Conley et al.,
2019). It is noteworthy that the conventional treatment processes
(i.e., stirring, mixing, and pumping) used in the majority of
wastewater treatment plants can be a potential source for plastic
fragmentation, affecting the size of microplastics and thus releasing
substantially larger amounts of much smaller plastic particles
into the aquatic environment than assumed (Gangula et al., 2023;
Indhur et al., 2023; Monira et al., 2023).

Freshwater environments are considered a major sink for
microplastics and are involved in the plastic cycle where larger
polymers are transformed, resulting in secondary micro- and
nanoplastics. Various studies have reported the occurrence of
microplastic in rivers (Horton et al., 2017; Wang et al., 2017;
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Hurley et al., 2018) and lakes (Ballent et al., 2016; D’Avignon et al.,
2022). Microplastics have also been detected in South African
rivers, with a total of 2,406 microplastics per kg detected in the
sediment across theMvudi River in Limpopo, South Africa, which is
subjected to various pollution sources, including WWTP discharge
(Dalu et al., 2021). Similarly, for the Plankenburg River in the
Western Cape province in South Africa, which receives agricultural
pollutant inputs as well as inputs through formal and informal
residential neighborhoods and industrial activities, up to 9.25
microplastic particles/L were detected in water samples and 2133.33
microplastic particles/kg in sediment samples (Apetogbor et al.,
2023). Microplastics were prevalent in the sediment samples of the
Vaal River, which supplies potable water to communities inGauteng,
at a concentration of 463.28 ± 284.08 particles/kg sediment dry
weight, with small plastic particles of <2 mm accounting for 82% of
the total plastic particles (Saad et al., 2022).

The progressive breakdown of plastic debris results in nano-
sized plastic particles, changing the plastic properties, reactivity,
and impact; thus, nano-sized plastics may have a greater ecological
impact than larger polymers such as microplastics. Nanoplastic
particles, however, present a technical difficulty in sampling,
identifying, and analyzing these smallest plastic particles in the
environment (Koelmans et al., 2015; Mariano et al., 2021), even
though new analytical techniques have been reported (Mogha
and Shin, 2023; Zhang et al., 2023). Nonetheless, nanoplastics have
been detected in the North Atlantic Sea, representing a mixture
of polystyrene, polyethylene, terephthalate, and polyvinylchloride
(Ter Halle et al., 2017) and in surface waters from lakes and
streams of Siberia and Sweden at average concentrations of
51 μg × L−1 and 563 μg × L−1, respectively (Trevisan et al.,
2022). Although data are lacking, wastewater treatment plants
are considered a major source of releasing nanoplastics into the
environment. It is assumed that 25% of the nanoparticles that enter
the environment are released from wastewater treatment plants
(Mohana et al., 2021).

The distinct physicochemical characteristics of micro- and,
even more so, nanoplastics have a major influence on their
behavior, transportation, and distribution. Microplastics are
unevenly distributed within the aquatic environment. The vertical
distribution of plastic particles in the aquatic environment is
determined by the polymer type, size, shape, density, and chemical
composition (Duis and Coors, 2016). Plastic particles with a
lower density (< 1 g/cm3) than water tend to float on the surface
of the water or are suspended within the water column, while
particles with a higher density (> 1 g/cm3) tend to sink to the
bottom; thus, sediments can be a significant sink for microplastics
in aquatic environments (Bellasi et al., 2020; Leiser et al., 2021;
Viitala et al., 2022). Nanoplastics, conversely, tend to float on the
surface or remain suspended in the water column due to the
low density and thus may have a shorter retention time in the
river systems.

Once they enter the aquatic environment, micro- and
nanoplastics are prone to aggregation with either similar
particles (homoaggregation) or different types of particles
(heteroaggregation). Smaller-sized microplastics are more likely
to aggregate than larger-sized microplastics, and such aggregation
can change the size, shape, or density of the resulting particle
aggregate; this, in turn, has a major influence on the stability

and mobility of such aggregates in waterbodies (Wang et al.,
2017; Issac and Kandasubramanian, 2021). Nanoplastics have
high colloidal stability due to the negatively charged carbon-
containing polymers with many functional groups exposed on
the surface, which play a vital role in the formation of aggregates
(Kim et al., 2022). Again, aggregation increases their density
and may cause them to settle in the sediment. The exposure of
Chlorella pyrenoidosa to 500 nm polystyrene particles increased
the secretion of extracellular polymeric substances and resulted
in homo- and heteroaggregation by enabling the attachment
of particles to algal cells (Nigam et al., 2022). As extracellular
polymeric substances are involved in the auto-flocculation of
microalgae, enhanced sedimentation of micro- and nanoplastics
would be expected along with that of microalgae floc formation
(Li et al., 2023). Several studies have reported on the interaction
of nanoplastic particles with minerals in aquatic environments,
which affects the environmental stability and transport of
nanoplastics (Kim et al., 2022; Zhang et al., 2022). Thus, Nie et al.
(2023) reported the heteroaggregation of negatively charged
polystyrene nanoplastics with positively charged iron and aluminum
hydroxide minerals.

When released into the aquatic environment or taken up
by aquatic organisms, micro- and nanoparticles are subjected to
biomolecules resulting from the metabolic activities of aquatic
organisms that adsorb onto the surface of the particles, forming a
biomolecular-coated layer called eco- or bio-corona (Nasser et al.,
2020; Ekvall et al., 2021). Such a coating of the micro- and
nanoplastics by an eco-corona would affect the hydrodynamic
diameter as well as particle surface properties and reactivity
(Giri and Mukherjee, 2021), as it provides a barrier between the
reactive surface of plastic particles and the aquatic organisms
(Natarajan et al., 2020; Xu et al., 2020; Liu et al., 2022). However,
the impact on the ecotoxic properties of environmentally aged
micro- and nanoparticles sporting a bio-corona might not be
straightforward, as both increased and decreased ecotoxic effects
have been reported. Giri and Mukherjee (2021) showed that
biocoating of 200 nm polystyrene particles representing different
surface chemistries with algal EPS reduced the ecotoxicity for cells
of Scenedesmus obliquus, based on various endpoints. Similarly,
Saavedra et al. (2019) demonstrated that exposure of the same
particle type to alginate and river humic acid reduced the
acute toxicity of such particles for Daphnia magna. In contrast,
the biocoating of polystyrene nanoparticles with an eco-corona
consisting primarily of proteins increased the acute toxicity of the
particles for D. magna when compared to non-coated particles
(Nasser and Lynch, 2016). The increased toxicity could have
been due to increased particle size resulting in higher uptake or
increased resemblance to food particles due to surface coating.
Interestingly, nanoplastics exhibiting an eco-corona persisted longer
in the gut, thereby reducing the feeding capacity of D. magna
for algae. Therefore, more studies considering the potential
impact of eco-corona formation on ecotoxic endpoints are needed
for crucial members of the aquatic food web. This applies
particularly to bacterivorous ciliates that might be negatively
affected if a protein-based coating ofmicro- and nanoplastics occurs
in the environment, rendering these particles potentially more
attractive due to increased size and a surface coating mimicking
natural prey.
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3 Effect of microplastics and
nanoplastics on aquatic organisms

The presence of plastic particles in the freshwater environment
is a major concern for this ecosystem due to their small size,
which occupies the same size range as microscopic plankton,
making them bioavailable for ingestion by a wide range of
organisms. Ingestion of microplastics has been reported in
organisms such as Copepods (Centropages typicus) (Cole et al.,
2013), zooplankton (D. magna) (Scherer et al., 2017), freshwater
Tubifex worms (Tubifex tubifex) (Hurley et al., 2017), freshwater
gastropod (Lymnaea stagnalis) (Weber et al., 2021), freshwater
fish (Rutilus rutilus) (Horton et al., 2017), and omnivorous fish
(Puntioplites proctozysron) (Kasamesiri and Thaimuangphol,
2020) leading to reduced food intake, delayed growth, tissue
damage, oxidative stress, behavioral abnormalities, neurotoxicity,
changes in lipid metabolism and mitochondrial bioenergetics,
and growth retardation (Botterell et al., 2019; Bhuyan, 2022).
However, the sensitivity of different aquatic species—unfortunately
not including bacterivorous ciliates—to micro- and nanoplastic
exposure differs substantially, as was illustrated by species’
sensitivity distributions (Besseling et al., 2019). Upon ingestion,
plastic particles can be transferred along the aquatic food web
by the interaction of predator and prey representing the same or
different trophic levels (Setälä et al., 2014). This was observed in the
freshwater diving beetle Cybister japonicus after the consumption
of zebrafish exposed to microplastics, which affected the diving
beetle behavior and predation (Kim et al., 2018). Consequently, the
potential for bioaccumulation increases with a decrease in plastic
particle size.

Ingestion of nanoplastics has been reported in aquatic
organisms such as brine shrimp larvae (Artemia franciscana), which
affected their feeding, behavior, and physiology (Bergami et al.,
2016), marine bivalves (Mytilus galloprovincialis), which induced
immunomodulation and apoptotic processes (Canesi et al., 2015),
and zooplankton (Daphnia pulex) causing immobilization,
reproduction, and stress defense (Liu et al., 2019). Nanoplastics
exhibit higher toxicity than microplastics due to the increased
surface area, which enables the particles to be absorbed through
tissues and organs, cross biological barriers, and even penetrate
membranes (Liu et al., 2021). The buildup of nanoplastics has
been detected in various organs of gills, brain, heart, liver, yolk
sac, gonads, and digestive organs of vertebrate and invertebrate
species, especially at sizes below 100 nm (Trevisan et al., 2022).
Thus, Kashiwada (2006) observed polystyrene nanoplastics
(39.4 nm diameter) distributed in gills and viscera, but also in
testis, liver, and blood after ingestion by the Japanese rice fish
(Oryzias latipes).

Microplastics and nanoplastics can be readily taken up by
aquatic organisms; however, the degree of ingestion is largely
influenced by the organismal feeding mode. Suspension or filter
feeders are especially prone to ingestion of micro- and nanoplastic
particles because they feed mainly on suspended particulate matter,
and their feeding mechanism does not differentiate between food
and non-food particles of the same size (Gonçalves et al., 2019;
Benson et al., 2022). Setälä et al. (2014) reported higher amounts of
polystyrene microplastics (2 and 10 μm diameter) in filter feeder

bivalves (Mytilus trossulus and Macoma balthica) than in deposit
feeders (Monoporeia affinis and Marenzelleria spp.). A study by
Scherer et al. (2017) reported an ingestion rate of 6 180 particles
h−1 for a filter feeder, D. magna, 27 times (226 particles h−1) and
52 times (118 particles h−1) more than the ingestion rate for a
collector-gatherer, Chironomus riparius and surface grazer, Physella
acuta, respectively. Again, the formation of a bio-coronamight affect
uptake rates and residence time in the filter feeder exposed tomicro-
and nanoplastics in the environment, as highlighted above, with
potentially adverse toxic effects. Even in non-filter feeding aquatic
organisms from higher trophic levels, feeding traits might affect
the microplastic uptake, as round goby (Neogobius melanostomus,
a zoobenthivore) contained more microplastics in the gut than an
omnivore (Pimephales promelas, fathead Minnow) fish of a similar
size (McNeish et al., 2018).

4 Ingestion of microplastics and
nanoplastics by ciliated
microzooplankton

Studies on the ingestion of microplastics by zooplanktons
demonstrate that plastic particles can pose a threat to organisms
at the base of trophic levels in aquatic environments (Landry and
Décima, 2017). However, studies have reported mainly on the effect
of microplastics on mesozooplankton. One group of organisms that
is frequently overlooked is the ciliated protozoans, recognized as the
main group of microzooplankton.

Ciliated protozoans are filter feeders that can ingest
microplastics readily. Microplastic particles >1 µm usually require
phagocytosis to enter eukaryotic cells (Liu et al., 2021). Thus,
such microplastics enter the ciliate cell by phagocytosis, are
internalized, and packaged in food vacuoles (Nilsson et al., 1979).
Consequently, microplastic particles (2 µm) were detected in
food vacuoles of Paramecium aurelia after 10 min of exposure to
fluorescent polystyrene beads (Nugroho and Fyda, 2020). Similarly,
polystyrene beads (1 and 2 µm) were detected after exposure in
the spirotrich ciliates Blepharisma japonicum, Spirostomum teres,
and Euplotes sp. (Budzial and Fyda, 2023). Feeding studies have
demonstrated that the number of food vacuoles in ciliate cells
increases concomitantly with the number of particles ingested
(Sherr et al., 1987; Bulannga and Schmidt, 2022). A marine
oligotrich ciliate, Strombidium sulcatum, ingested polystyrene
microplastics with diameters of 0.5, 1.07, 2.14, and 5 μm, which
had a negative impact on the abundance and biomass of the ciliate
(Geng et al., 2021). The carbon biomass of Uronema marinum
was reduced after ingestion of polystyrene microplastics (2.14 µm
diameter) at high concentrations. At the same time, that effect
was not observed at low microplastic concentrations (Zhang et al.,
2021). A study by Bulannga and Schmidt (2022) reported that
two holotrich ciliates, Paramecium sp., and Tetrahymena sp.,
ingested microplastics of 2, 5, and 10 μm diameter at the same
rate as biological prey of similar size. Nałęcz-Jawecki et al. (2021)
reported that secondary micro- and nanoplastics prepared from
household materials of PET, PS, PVC, and PhR (<100 µm) were
ingested at the same degree as primary plastic particles (5 µm
diameter) by the ciliate Spirostomum ambiguum, though at a lesser
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extent compared to nutritional food particles (yeast cells). Earlier
groundbreaking studies by Fenchel (1980a; 1980b) reported uptake
of latex beads of size 0.09–5.7 µm in fourteen ciliates isolated
from freshwater environments. More recently, it was shown that
Paramecium bursaria exhibited a change in swimming patterns, a
reduction in swimming speed, and an increase in oxidative stress
when exposed to Carboxy YG microspheres of 1 µm diameter
compared to unexposed ciliate cells (Zhang et al., 2022). However,
studies comparing the impact of environmentally aged micro- and
nanoplastics exhibiting altered hydrodynamic size and surface
properties on the feeding pattern of bacterivorous ciliates are
unfortunately missing.

Research on nanoplastics is in its infancy. Thus, there is still a
lack of quantitative data on nanoplastics in the aquatic environment
and their impact on aquatic organisms. However, some studies
have described the toxic effect of nanoplastics and/or particles of
a similar size range. Compared to microplastics, nanoplastics can
be ingested directly or indirectly and can exhibit higher potential
risks due to their smaller size and larger surface area, causing
toxic effects at cellular and even molecular levels (Gong et al.,
2023). Mortimer et al. (2016) detected carbon nanotubes 500 nm
in length and 36.5 nm in diameter in the food vacuoles of
Tetrahymena thermophila after 2 h of exposure in a rich growth
medium. The growth of T. thermophila was inhibited when
exposed to polystyrene nanoplastics of 20.8–24.1 nm diameter
due to induced calcium homeostasis, consequently increasing
mitochondrial permeability and the generation of reactive oxygen
species (Wu et al., 2021). Paramecium caudatum ingested starch-
coated multi-core magnetite nanoparticles of 200 nm diameter,
which acted as a chemoattractant and internalized them within
its food vacuoles (Mayne et al., 2019). Ingestion of non-nutritious
particles can affect the feeding behavior of ciliates, as observed on
a Paramecium, which effectively eliminated the cyanobacterium
microcystis but with the ingestion rate drastically reduced
when the ciliate was exposed to 0.1 mg/L ZnO nanoparticles
(Zhang et al., 2022).

Indirect ingestion of nanoplastics can occur through ingesting
natural prey with nanoplastics adsorbed on the prey cell.
Tang et al. (2022) reported the penetration of nanoplastic particles
into bacterial cells across the cell envelope, with nanoparticles
accumulating inside the bacterial cells. The same authors observed
a large number of 100 nm nanoplastic particles adsorbed and
aggregated on the surface of Acinetobacter johnsonii AC15, which
significantly increased the growth of bacteria, while Dai et al.
(2022) observed 80 nm sized positively charged polystyrene
embedded into the cell envelope of Escherichia coli with no
apparent effect on the bacterial cell. Importantly, smaller-
sized nanoparticles of ≤ 10 nm can easily penetrate the cell
membrane (Frankel et al., 2020; Liu et al., 2023). The translocation
through the cell membrane is determined by the surface
charge of the particle; positively charged particles display more
favorable electrostatic interactions with bacterial membranes
than negatively charged particles (Tang et al., 2022). Indirect
ingestion of nanoplastics has been reported for filter-feeding
invertebrates such as D. magna, which ingested Chlamydomonas
reinhardtii with nanoplastic particles of 51 nm attached to the
surface of the algal cell (Chae et al., 2018). Thus, the ingestion
of microscopic prey carrying nanoplastics can be reasonably

expected to contribute to nanoplastics uptake and accumulation in
bacterivorous ciliates.

5 Impact of micro- and nanoplastics
without ingestion

The long retention of micro- and nanoplastics in the
environment can have a negative impact on aquatic organisms.
Microplastics may constitute a source of exposure to chemical
pollutants due to additives contained in the microplastics. The
chemical additives are usually of low molecular weight and weakly
bound to the polymers, and they leach into the surrounding
environment with the progressive weathering of the plastic polymer.
The leaching rate is determined by environmental factors, such as
temperature, light exposure, salinity, and turbulence (da Costa et al.,
2023). Several studies have reported that microplastic leachates
reduce microbial abundance and diversity, alter microbial
communities, and affect metabolic activities (Li et al., 2020;
Yang et al., 2023; Zhang and Liu, 2023). Different types of
micro- and nanoplastics would elicit different toxic effects on
the microorganisms based on the type of chemical additive on
the surface of plastic particles (Brehm et al., 2022). Recycled PET
fragments, which are described to contain the most chemical
additives, were found to display the strongest ecotoxic effect on
a mussel (Dreissena bugensis) (Brehm et al., 2022). The emergence
success of the freshwater dipteran C. riparius and the reproduction
in D. magna were reduced when exposed to PVC leachates
(Scherer et al., 2020; Zimmermann et al., 2020). Even at the base
level of the aquatic food web, exposure of Raphidocelis subcapitata
to polyethylene terephthalate, polyvinyl chloride, and polystyrene
microparticles affected the synthesis of biomolecules such as
protein, lipid, and carbohydrate (Abinandan et al., 2023), and PVC
microplastics shifted the bacterial community of anaerobically
digested waste and activated sludge in the direction against
hydrolysis-acidification and methanation (Wei et al., 2019). Ciliates
are generally sensitive to chemical contaminants, and some ciliate
species are considered efficient bioindicator organisms for detecting
pollutants in aquatic ecosystems (Bogaerts et al., 2001; Láng and
Kőhidai, 2012). Similarly, ciliates would be affected by microplastic
leachates, although their response may differ from the responses
reported for other non-ciliate plankton members present in aquatic
ecosystems.

6 Bioaccumulation of microplastics
and nanoplastics in the aquatic food
web through ciliates

Ciliated microzooplankton are an integral component of the
freshwater planktonic food web and ciliates are described as
voracious feeders of bacterio- and phytoplankton, serving as an
essential food source for larger zooplankton from higher trophic
levels, thereby connecting different trophic levels (Finlay and
Esteban, 1998; Montagnes et al., 2010; Setälä et al., 2014). Moreover,
ciliated protozoa are an essential source of nutrients for the early
stages of fish larvae; thus, there is a direct link between themicrobial
loop and the fish level within the food web (Montagnes et al.,
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2010; Zingel et al., 2019). A trophic link between picoplankton and
benthic suspension feeders was reported when the bacterivorous
ciliate Uronema sp. was grazed by the oyster Crassostrea gigas
(Le Gall et al., 1997).

Ciliates can be an important route for transferring microplastics
present in the water body to organisms in the aquatic food
web (Setälä et al., 2014; Carbery et al., 2018; Saeedi, 2023).
Transfer of microplastics in the aquatic food web has been
demonstrated with Silverlake larvae (Menidia beryllia), which
ingested a marine tintinnid ciliate, Favella sp. containing
polyethylene particles (10–20 µm) after 1 h of exposure to plastic
particles (Athey et al., 2020). This study further demonstrates
that microplastics can be a vector for the transfer of adsorbed
pollutants in the food web as ciliates containing microplastics
treated with the insecticide DDT were ingested by and detected
in the larvae at higher rates than ciliates containing untreated
microplastics. Stienbarger et al. (2021) reported that fish larvae
of Centropristis striata ingested higher numbers of low-density
polyethylene microspheres (10–20 µm) through ingestion of the
ciliate Favella sp. than direct ingestion of the plastic particles
from seawater.

7 Factors determining bioavailability
of micro- and nanoplastics for ciliates

The toxicity of microplastics and nanoplastics primarily
depends on the bioavailability of the particles for ingestion
by aquatic organisms, while the bioavailability of micro- and
nanoplastics for ciliates is determined by the size, density,
and abundance of these priority pollutants in freshwater
environments.

7.1 Plastic particle size

Ciliated microzooplankton have a typical cell size range of
20–200 µm and mainly feed on suspended bacterioplankton. They
are described as selective feeders that only distinguish food particles
based on mechanical properties such as size. Thus, the plastic
particle must be within the size spectrum that can be ingested by
the ciliate cell as regulated by the oral morphology. Ciliates have a
preferred size range of particles they can ingest, which typically is
in the bacterial cell size range (Gonzalez et al., 1990). Ingestion of
microplastics has mostly been reported for particles matching the
size range for ciliate microbial prey (Fenchel, 1980a; Pace and Bailiff,
1987; Sherr et al., 1987). Ciliates of a cell size from 20 to 40 µm show
preference for particles up to 5 µm (Bermúdez et al., 2021). The
omnivorous freshwater ciliates, Halteria cf. grandinella, had a high
grazing efficiency for planktonic prey size ranges (0.5–5 µm) with
the highest grazing rates for 2.78 µm latex beads and no significant
ingestion for 0.22 µm latex beads (Jürgens and Ŝimek, 2000). Some
larger-sized ciliates can ingest even largermicroplastics up to 10 μm,
as reported for Paramecium sp., Euplotes mutabilis, and Tintinnopsis
lobiancoi, although they showed high ingestion rates for particles up
to 5 µm (Wilks and Sleigh, 1998; Setälä et al., 2014; Bulannga and
Schmidt, 2022). Furthermore, ciliates can ingest nanosized particles,
as demonstrated with T. thermophila ingesting particles ranging in

size from 20 nm to 500 nm (Guo et al., 2022); they would, however,
require much higher concentrations of nanoplastics to induce food
vacuole formation than they would for microplastics. Interestingly,
recent studies have shown that viruses, representing the nanoplastics
size range and mostly overlooked as potential nutrient sources for
ciliates in the aquatic food web, are serving, like bacterial prey
matching the lower range of the microplastic size range, as potential
prey for ciliates, contributing to growth or at least cell maintenance
(Karalyan et al., 2012; DeLong et al., 2022; Bulannga and Schmidt,
2023; Olive et al., 2023). However, when present in aquatic
environments, microplastics and nanoplastics may form aggregates
of a size that exceeds the particle size range that ciliates can ingest,
thereby decreasing the bioavailability of these microscopic plastic
particles.

7.2 Plastic particle concentrations

Grazing studies employing ciliates have demonstrated that the
ingestion of food particles representing micro and nanoparticle size
ranges (e.g., bacterial and viral prey) is concentration-dependent.
There is a minimum concentration of prey that can induce
particle uptake and food vacuole formation, and the ingestion rate
increases with increasing prey concentration until the maximum
concentration is reached (Kivi and Setälä, 1995; Pfister and
Arndt, 1998). Similarly, the concentrations of microplastics and
nanoplastics would have the same effect on the ingestion and
food vacuole formation. As observed by Wilks and Sleigh (1998),
the number of microspheres ingested increased with increasing
concentrations in E. mutabilis, from ≤ 4 particles × cell−1 × h−1 at
a concentration from 102 to 104 particles × mL−1 to 190 particles ×
cell−1 × h−1 at concentrations from 105 to 106 particles × mL−1 for
all particle sizes tested (0.57, 1.90, 3.06, 5.66, and 10 µm diameter).
Microplastics in freshwater environments can reach concentrations
of up to 10,000 particles/L, which can be adequate for ingestion
by ciliates (Kunz et al., 2023). Plastic particles can be ingested
simultaneously with biological prey, as observed in Sterkiella sp.,
which contained both the microalgae Isochrysis galbana (at an
average cell size of 5 μm) and polyethylene microbeads (1–5 µm
diameter) (Bermúdez et al., 2021), or S. ambiguum, which contained
both yeast cells and microplastic particles in its food vacuoles
(Nałęcz-Jawecki et al., 2021).

Although the feeding mechanism of ciliates mainly
discriminates food particles based on size, some species of ciliates
can regulate the uptake of non-nutritious particles by either
ingesting the particles at a slower rate or by retaining them within
the cell for only a short period of time. Moreover, some species
can sense chemical cues of their preferred prey, respond rapidly to
the point source, and chemotactically congregate at the location
(Müller et al., 1965; Sherr et al., 1988; Gruber et al., 2009). In case of
high prey concentrations where the energy requirement of ciliates
is satisfied, the toxic effect of microplastics and nanoplastics may be
reduced. However, so far, this phenomenon has only been reported
in D. magna, where the toxic effect of microplastic particles was
reduced at high food quantity and was attributed to continuous
ingestion of food particles, which increased the rate of egestion
(Lyu et al., 2022). It has been observed that once the maximal
uptake is reached in ciliates, the rate of food vacuole formation
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establishes an equilibrium where a digested food vacuole is egested
for every food vacuole formed containing ingested food (Berger
and Pollock, 1981; Dolan and Ŝimek, 1997). However, ciliates
may not encounter prey organisms at sufficiently high densities
in freshwater environments to reduce the ecotoxicity of micro- and
nanoplastics, except for polluted waters, sludge, or sediments rich
in organic matter.

7.3 Vertical distribution of plastic particles

Ciliatedmicrozooplankton exist in a vertical gradient within the
aquatic environment, and their distribution is influenced by their
nutritional and oxygen requirement and prevailing environmental
conditions such as pH, temperature, and oxygen availability. Ciliates
are categorized into planktonic ciliates that occupy the pelagic zone
with the highest abundance in the epilimnion and metalimnion
zone or benthic ciliates, which occupy the benthic zone in the
freshwater environment and account for 10% invertebrate biomass
in this zone (Finlay andEsteban, 1998;Mieczan, 2008; Sonntag et al.,
2011; Lei et al., 2014; Zingel et al., 2019). Both ciliate communities,
therefore, encounter microplastics and nanoplastics; the pelagic
ciliates aremore susceptible to nanoplastics andmicroplastics of low
density that float on the surface, suspended in the water column
and resuspended particles caused by storms and bioperturbation,
while benthic ciliates are more susceptible to microplastics of high
density and aggregated nanoplastics settling and accumulating in
the sediments.

8 Conclusion and outlook

The presence of microplastics and nanoplastics in freshwater
environments has a negative ecological impact. Their size
makes these pollutants bioavailable for ingestion by a wide
variety of freshwater organisms, including bacterivorous ciliate
microzooplankton that occupies a central position within the
microbial food loop. This review highlighted the presence and
interaction of microscopic-sized plastic particles, ubiquitous
in freshwater environments, with ciliated microzooplankton
potentially affected negatively once these pollutants are ingested.
Physicochemical characteristics such as size, density, and surface
properties (e.g., the so-called eco- or bio-corona) influence the
vertical distribution, aggregation, and retention of micro- and
nanoplastics in freshwater environments and play a key role in
determining their interaction with ciliates, ciliate prey, and their
environmental fate. At the same time, this review highlighted
the need for additional studies to improve our understanding of
the interactions between bacterivorous ciliates and micro- and
nanoplastics under conditions resembling environmental scenarios.
For example, it is presently unclear if environmental aging of micro-
and nanoplastics would affect uptake by bacterivorous ciliates and
thus interfere with feeding on nutritious prey. Similarly, there are
currently no studies available evaluating if environmentally exposed
and thus surface coated (e.g., eco-corona) micro- and nanoplastics
are more or even less toxic for these filter-feedingmicrozooplankton
members than pristine particles typically employed in laboratory
studies. The capability of ciliates to ingest microplastics and

nanoplastics implies that plastic particles that are otherwise too
small to be ingested by zooplankton may enter food webs through
the ciliates, which serve as food for other members of the aquatic
food web and thus enable the transfer of micro- and nanoplastics to
higher trophic levels. Bioaccumulation of micro- and nanoplastics
might, therefore, occur in the aquatic food web, with possible
negative consequences even for humans. Moreover, ingestion of
micro- and nanoplastics interferes with protozoans’ top-down
impact by reducing the ingestion of nutritional food particles
such as bacteria and possibly even viruses. The abundance of
micro- and, specifically, nanoplastics in aquatic environments
is still vastly underreported due to the lack of straightforward,
reliable analytical and sampling methods to detect and quantify
such particles. Evidently, more studies are needed to understand
better the effects that microplastics and, even more so, nanoplastics
exhibit on organisms near the base of the freshwater food web, such
as bacterivorous ciliates and not yet evaluated other bacterivorous
protists such as naked or testate amoebae, which will allow
environmental risk assessments of microplastics and nanoplastics
not just at the individual but also at the population and the broader
ecosystem level.
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