Abstract
Subsidence refers to the gradual lowering or sudden sinking of the ground surface and is known to impact human lives in terms of damages to the infrastructures, utility lines, and buildings as well as changes in the surficial drainage systems and groundwater conditions. The impacts of land subsidence will be greater in the future, considering the sea level rise, population growth, intensification of coastal erosion and extreme events, as well as increase in flood risk or freshwater salinization, mostly in coastal cities. The main aim of this work is to provide an open-source, peer-reviewed, and comprehensive database identifying the main and secondary causes of land subsidence in 143 coastal cities. We highlight the potential impacts of subsidence that are still unknown in some at-risk cities and non-existence of mitigation measures. The database additionally shows that mitigation measures, specifically those addressing subsidence due to groundwater extraction, have proven successful in the past. The proposed database aims to increase the knowledge on the subsidence phenomenon and also global awareness of land subsidence issues among researchers, the scientific community, stakeholders, and policymakers in terms of urban planning and development.
1 Introduction
Land subsidence refers to the gradual lowering or sudden sinking of the ground as a result of natural and human-induced factors (Poland, 1984; Galloway and Burbey, 2011). Over the long-term duration, land subsidence could have severe impacts in terms of damages to infrastructures, utility lines, and buildings as well as changes in the natural surficial drainage systems (Barlow and Eric, 2010; Eggleston and Pope, 2013; Margat and Van der Gun, 2013; Schmidt, 2015), while the populations in the areas that may potentially be flooded are rising globally (Zhong et al., 2023). The natural and anthropic drivers of subsidence include sediment consolidation, peat oxidation, earthquakes, tectonics, karst phenomena, groundwater exploitation, hydrocarbon extraction, geothermal activities, mining of ore materials or tunneling, and building and infrastructure loads (Poland and Hamilton, 1984; Huang and Jiang, 2010; Margat and Van der Gun, 2013; Higgins et al., 2014; Minderhoud et al., 2015; Omoko et al., 2018; de Glopper and Ritzema, 2023).
The geological settings as well as anthropic activities in an area play important roles in land subsidence (Momotake, 1996; Galloway et al., 1999; Allis, 2000; Hu et al., 2004; Caramanna et al., 2008; Tularam and Krishna, 2009; Lorphensri et al., 2011; Tomás et al., 2014; Mastin et al., 2018; Solari et al., 2018; Loupasakis, 2020; Calabrese et al., 2021; Hamdani et al., 2021; Sarah et al., 2021; Satriyo, 2021; Budiyono et al., 2022; Kurniawan and Deviantari, 2022; Sadjadi, 2022). For instance, given its geological context, Italy is prone to slow natural subsidence phenomena that may be accelerated, especially along the coasts and in urbanized areas, by anthropogenic factors, i.e., groundwater overexploitation, urban expansion, and geothermal activities (Solari et al., 2018). Land subsidence is also attributable to multiple factors that may make it difficult to disentangle the contribution of one cause over another, since these vary highly over space and time (Poland and Hamilton, 1969). Methods to mitigate subsidence include regulation, reduction, or abandonment of groundwater extraction, artificial recharge of aquifers, repressuring of aquifers through wells, or geotechnical measures to reduce ground lowering (Omoko et al., 2018).
Reliable and accurate techniques to measure the magnitude and distribution of land subsidence over time are available; for instance, ground-based monitoring techniques (leveling, global position systems, extensometers, and geodetic surveys) can be combined with remote sensing (interferometric synthetic aperture radar or InSAR) (Jensen, 2009; Grgić et al., 2020; Fabris et al., 2021; Cenni et al., 2021; Raspini et al., 2022). Indeed, InSAR can detect ground movements over wide areas and has often been helpful in discovering unknown subsidence features (Strozzi et al., 2001; Omoko et al., 2018; Solari et al., 2018; Radutu and Vlad-Sandru, 2023). The impacts of land subsidence are expected to become greater issues in the future considering the increasing sea level, population growth, intensification of coastal erosion and extreme events, and increases in flood risk and freshwater salinization (Klein et al., 2003; Nicholls et al., 2007; Eggleston and Pope, 2013; Hallegatte et al., 2013; Erkens et al., 2015). Owing to their positions and low elevations, cities in coastal or deltaic environments are more vulnerable to these phenomena (Nicholls et al., 2007), which are further worsened by proneness to subsidence of their sedimentary deposits induced by natural or anthropic causes or both (Poland, 1984; Galloway et al., 1999).
In the future, increasing numbers of people living in coastal areas will be exposed to higher risks of flooding due to sea level rise and climate change than those living in non-coastal areas (Hanson et al., 2011; Higgins, 2016). In 2005, about 13 of the 20 most populated cities of vital economic importance globally were port cities (Nicholls, 2008). A total of 136 possibly at-risk cities were identified by Nicholls (2008) based on their marine flood vulnerability, and this number is expected to increase with demography and socioeconomic future evolutions of the cities, their vulnerability to sea level rise due to climate changes, and human-induced subsidence effects (Nicholls, 2008; Hallegatte et al., 2013); with population growth, socioeconomic growth and urbanization would be the most important drivers of the exposure rate (Nicholls, 2008). Hallegatte et al. (2013) additionally quantified the economic losses expected by 2050 from increased flood risks in these 136 coastal cities by considering the growing populations, changing climates, and rough estimates of land subsidence. The demand for drinking water is also expected to increase over the next few decades due to population and economic growths, which will result in groundwater depletion (Famiglietti, 2014; Water, 2022) and consequently lead to potential subsidence that threatens almost 12 million km2 (8%) of the global land surface with a probability exceeding 50%, according to Herrera-García et al. (2021).
Other authors have previously investigated existing literature on land subsidence; for instance, Buffardi and Ruberti (2023) conducted a bibliometric analysis of the abstracts, keywords, and titles of published works; although their work highlights the most commonly investigated research topics, it does not provide site-specific information on the drivers of subsidence. The database proposed by Bagheri-Gavkosh et al. (2021) analyzes subsidence around the world, including metropolitan areas; however, many of the cities that were identified by Nicholls (2008) as expected to grow in relation to the demography and socioeconomic future were not included in their research. Additionally, since the authors investigated subsidence in both coastal and non-coastal areas, their bibliographic review of each site is not comprehensive, whereas the aim of the present work is to provide a thorough overview of land subsidence in each selected city.
Given this framework, the present study aims to provide an open-source, peer-reviewed, and comprehensive database of the land subsidence phenomenon in 143 major coastal cities. Moreover, we aim to facilitate future research on land subsidence in both previously identified cities and cities where further research is still needed.
The main novelties of the present work are as follows:
• To respond to the need for an exhaustive database of land subsidence in 143 major coastal cities, which can be shared with the scientific community, stakeholders, and policymakers;
• To identify the most common lithological classes and groundwater resource classes (aquifer types and productivity) among the chosen coastal cities;
• To identify the main and secondary causes of land subsidence in each of these coastal cities;
• To pinpoint selected cities that lack adequate research on land subsidence, especially cities where subsidence has been detected and whose causes are yet to be identified.
The proposed database is expected to expand the knowledge on land subsidence and its causes while increasing global awareness of this phenomenon among researchers, the scientific community, stakeholders, and policymakers by providing land subsidence information at the city scale as well as proneness to land subsidence that can also be useful in urban planning and development. Furthermore, the free availability of the database aims to promote cooperation among researchers globally, so that the database can be updated and missing information on land subsidence in major coastal cities can be supplemented.
2 Data and methods
The flowchart in Figure 1 explains the overall methodology of this study. The first step involved identifying the importance of tackling land subsidence through a literary review on land subsidence; this process allowed us to identify the main causes of land subsidence and the geological settings in which subsidence occurs. It was also possible to identify sites that were potentially vulnerable to both subsidence and sea level rise (Nicholls, 2008; Hallegatte et al., 2013; Solari et al., 2018), which resulted in the selection of 143 cities around the world (Supplementary Table S1), including the 136 cities reported by Hallegate et al. (2013). An exclusive literary review of scientific papers was conducted to ensure high reliability of the information on the selected 143 coastal cities (Figure 2; Supplementary Table S1), and these data were collected in a database. For each city, the following information was extracted: main and secondary causes of land subsidence, lithological class, and groundwater recharge class.
FIGURE 1

Flowchart of the methodology used in this work.
FIGURE 2

Locations of the coastal cities considered in this work.
The research papers were collected from researchgate.net, scopus.com, and scholar.google.com using keywords such as “satellite name (for example: ERS-1/2, Radarsat-1/2, Sentinel-1)+city name,” “land subsidence+city name,” “land subsidence+country name,” “GPS+city name,” “ground deformation+city name,” and “insar+city name.” The proposed database collected papers published until the end of 2022. Articles and books published in English, Italian, French, Dutch, and Spanish were also considered. The geological settings for each city were derived from the Global Lithological Map Database (Hartmann and Moosdorf, 2012) and Groundwater Resources of the World (Richts et al., 2011). The Global Lithological Map Database is composed of 16 classes: unconsolidated sediments, basic volcanic rocks, siliciclastic sedimentary rocks, basic plutonic rocks, mixed sedimentary rocks, carbonate sedimentary rocks, acid volcanic rocks, metamorphic rocks, acid plutonic rocks, intermediate volcanic rocks, water bodies, pyroclastic rocks, intermediate plutonic rocks, evaporates, no data, and ice and glaciers. The Groundwater Resources of the World map was organized under three main groups: major basins, complex structures, and local/shallow aquifers. Each group was classified on the basis of groundwater recharge (mm/year). For the major basins group, the classes include very low (<2), low (2–20), medium (20–100), high (100–300), and very high (>300) recharge. The complex structures group included classes like low to very low (<20), medium (20–100), high (100–300), and very high (>300) recharge. The local/shallow aquifers comprise classes like medium to very low (<100) and very high to high (>100) recharge. Additionally, a more detailed analysis was carried out in cities where groundwater extraction is or has been the main driver of land subsidence.
3 Results
We collected 679 published articles on the 143 coastal cities around the world (Table 1) to compile the database, which is freely available at https://doi.org/10.5281/zenodo.8349293 (Pedretti et al., 2023). The oldest report on subsidence in one of the 143 cities was published in 1909 about land subsidence in the Netherlands (Molengraaff, 1909), and no further works were published until the late 1940s, when some reports were published on land subsidence in Los Angeles (Harris and Harlow, 1948; Gilluly and Grant, 1949; McCann and Wilts, 1951; Berbower, 1959). The first paper in the database on an African city was published in 1953 regarding subsidence in South Africa (King, 1953); the first paper on subsidence in Asia was published in 1969 (Poland and Davis, 1969), while the first report from Oceania was in 1993 (Belperio, 1993) and that from South America was in 1988 (Aubrey et al., 1988).
TABLE 1
| Continent | No. of cities | No. of articles | Year range |
|---|---|---|---|
| Africa | 19 | 42 | 1953–2022 |
| Asia | 54 | 346 | 1969–2022 |
| Europe | 23 | 178 | 1909–2022 |
| Oceania | 6 | 21 | 1993–2022 |
| North America | 25 | 104 | 1948–2022 |
| South America | 16 | 22 | 1988–2022 |
Brief overview of the collected bibliographies for each continent.
Reports on land subsidence published before the 2000s account for only 13% of all papers found, while those published between 2000 and 2009 amount to 19% and papers published between 2010 and 2022 constitute 69% of the total. As seen in Figure 3 (number of publications per year), there is an increasing number of articles published over the last few years, with nearly 200 articles being published between 2020 and 2022 alone. Table 2 summarizes the causes of land subsidence commonly found in literature, which were adopted in the database. The main causes of subsidence identified for each continent are shown in Figure 4. In Africa, 26% of subsidence is unexplained, while 20% of the subsidence in North America is due to groundwater extraction; in South America, 31% of incidents are unexplained, while 44% of the incidents in Asia are due to groundwater extraction; in Europe, 26% of incidents are due to artificial loading, and 50% of the incidents in Oceania are due to groundwater extraction.
FIGURE 3

Graph representing the number of articles published per year.
TABLE 2
| Cause | Description |
|---|---|
| Artificial loading | Settlement due to the weight of the infrastructures |
| Clay shrinking/swelling | Subsidence due to the shrinkage and swelling of clays |
| Consolidation | Subsidence due to the consolidation of sediments |
| Groundwater extraction | Subsidence due to the extraction of groundwater |
| Hydrocarbon extraction | Subsidence due to the extraction of hydrocarbons |
| Karst | Subsidence (sinkholes) due to karst phenomena |
| Mining | Subsidence due to extraction of ore materials |
| No data | No data available |
| Others | Subsidence due to other causes |
| Peat oxidation | Subsidence due to peat oxidation |
| Tectonics/earthquakes | Subsidence due to tectonics or earthquakes |
| Tunneling | Subsidence due to extraction of materials due to underground excavations |
| Undetected | No subsidence detected based on literature review |
| Unexplained | Cause of subsidence is unexplained |
Summary and explanation of causes for land subsidence commonly found in the literature.
FIGURE 4

Main causes of land subsidence in each continent according to the literature.
The main causes of subsidence identified in the 143 coastal cities are shown in Figure 5. In about 28% of these cities, groundwater extraction is identified as the main cause of land subsidence at present or possibly in the future, and this factor is considered the most common cause (Table 3). The remaining cities experience land subsidence due to artificial loading (13%), consolidation of sediments (11%), or tectonics and earthquakes (6%). In 2% of the cities, land subsidence is due to hydrocarbon extraction, and mining of ores was responsible in 3% of the cases. The shrinkage and swelling of clay-rich soils are the main causes of land subsidence in 1% of the identified cities, while 1% of the cities were reported to have multiple causes of land subsidence.
FIGURE 5

Main causes of land subsidence in each of the cities considered.
TABLE 3
| Main cause | Percentage over total (%) | Cities |
|---|---|---|
| Groundwater extraction | 28 | Abidjan, Adelaide, Auckland, Barcelona, Chittagong (Chattogram), Fuzhou-Fujian, Guangzhou (Guangdong), Haiphong, Hangzhou, Houston (TX), Jakarta, Karachi, Khulna, Kolkata (Calcutta), Krung Thep (Bangkok), Lagos, Lomé, London, Los Angeles (CA), Manila, Mumbai, Nagoya, Ningbo, Osaka-Kobe, Perth, Qingdao (Tsingtao), Saigon (Ho Chi Minh City), San Diego (CA), San Jose (CA), Shanghai, Taipei, Tianjin (Tientsin), Tokyo, Ujung Pandang (Makassar), Ulsan, Venezia (Venice), Virginia Beach (VA), Wenzhou, Recife, and Yangon |
| No data | 20 | Al Kuwait (Kuwait City), Baixada Santista (Santos), Bayrut (Beirut), Belem, Benghazi, Cape Town, Ciudad de Panama (Panama City), Dar al-Bayda (Casablanca), Dublin, Grande Vitoria, Izmir, La Habana (Havana), Marseille, Melbourne, Nampo (Namp’o), Natal, Odesa (Odessa), Philadelphia (PA), Portland (OR), Porto Alegre, Providence (RI), Rabat, Santo Domingo, Tarabulus (Tripoli), Tel Aviv–Yafo, Visakhapatnam (Vizag, Viśākha or Waltair), and Washington D.C. |
| Artificial loading | 13 | Alexandria, Athens, Dakar, Helsinki, Hong Kong, Incheon, Istanbul, Kobenhavn (Copenhagen), Kochi (Cochin), Lisboa (Lisbon), Livorno, Maputo, Miami (FL), Rotterdam, Seattle (WA), Singapore, Surabaya, and Xiamen (Amoy) |
| Unexplained | 10 | Buenos Aires, Conakry, Dar es Salaam, Davao, Durban, Guayaquil, Hiroshima, Jiddah (Jeddah), Lima, Luanda, Montevideo, Muqdisho (Mogadishu), Palembang, Rio de Janeiro, and Surat |
| Consolidation | 11 | Amsterdam, Barranquilla, Boston (MA), Busan (Pusan), Dalian, Dhaka, Douala, Dubayy (Dubai), New Orleans (LA), Saint Petersburg, San Francisco-Oakland (CA), Sapporo, Shenzhen, Siracusa (Syracuse), Vancouver, and Zhanjiang |
| Tectonics/earthquakes | 6 | Accra, Baltimore (MD), Chennai (Madras), Crotone, Fortaleza, Napoli (Naples), San Salvador, New York (NY), and San Juan |
| Karst | 3 | Grosseto, Hamburg, Kuala Lumpur, and Tampa - St. Petersburg (FL) |
| Mining | 3 | Fukuoka-Kitakyushu, Maceió, Sydney, and Yantai (Chefoo) |
| Hydrocarbon extraction | 2 | Long Beach (Los Angeles) (CA), Maracaibo, and Ravenna |
| Multiple | 1 | Brisbane and Glasgow |
| Undetected | 1 | Oporto (Porto) and Port-au-Prince |
| Clay shrinking/swelling | 1 | Montreal |
| Others | 1 | Stockholm |
Main causes of land subsidence in the 143 coastal cities.
The percentage of cities in which no data were available was 20% globally: 32% in Africa, 28% in North America, 31% in South America, 17% in Oceania, 11% in Asia, and 13% in Europe. In 10% of the cities, there is evidence of land subsidence without clear identification of the causes, while land subsidence was not detected for 1% of the cities based on our research. The secondary causes of land subsidence identified for each continent are shown in Figure 6. These secondary causes are artificial loading (11%) and consolidation (11%) in Africa, artificial loading (8%) in North America, multiple secondary causes in South America and Europe (6% and 22%, respectively), and consolidation in Oceania and Asia (both 17%). The secondary causes of land subsidence identified for the 143 cities are shown in Figure 7. In 34% of the cities, the secondary cause of land subsidence was not clear, and no information could be found for 22% of the cities; in 11% of the cities, there were multiple secondary causes of land subsidence. For instance, artificial loading was associated with mining in the city of Fuzhou-Fujian, shrinkage and swelling of clay were the causes in Barranquilla and Amsterdam, consolidation of sediments was the cause in Venice, peat oxidation was the cause in Venice and Amsterdam, and tectonics or earthquakes were responsible in Karachi and Sapporo. Furthermore, groundwater extraction was associated with the consolidation of sediments in Ravenna, Surabaya, and Xiamen, with mining in Athens, and tectonics or earthquakes in Surabaya. Artificial loading was the secondary cause in 7% of the cities, while consolidation of sediments and groundwater extraction were the secondary drivers of subsidence in 8% of the cities.
FIGURE 6

Secondary causes of land subsidence in each continent according to the literature.
FIGURE 7

Secondary causes of land subsidence in each of the cities considered.
In the 143 cities identified herein, the most commonly found lithological classes are unconsolidated sediments (44%) and sedimentary rocks (30%) (Figure 8A; Hartmann and Moosdorf, 2012), of which 30% are carbonate sedimentary rocks. Figure 8B shows the lithology classification for each continent: unconsolidated sediments, basic volcanic rocks, siliciclastic sedimentary rocks, basic plutonic rocks, mixed sedimentary rocks, carbonate sedimentary rocks, acid volcanic rocks, metamorphic rocks, acid plutonic rocks, intermediate volcanic rocks, and pyroclastic rocks.
FIGURE 8

Lithological classes of the 143 cities. (A) shows a percentage breakdown and (B) shows a breakdown by continent of each class: (1) unconsolidated sediments, (2) basic volcanic rocks, (3) siliciclastic sedimentary rocks, (4) basic plutonic rocks, (5) mixed sedimentary rocks, (6) carbonate sedimentary rocks, (7) acid volcanic rocks, (8) metamorphic rocks, (9) acid plutonic rocks, (10) intermediate volcanic rocks and (12) pyroclastic rocks.
Major basins, including shallow unconfined aquifers and deep confined aquifers, are the most common type of Groundwater Resources of the World in the 143 cities (53%) (Figure 9A). The volumes of stored groundwater in the major basins are significant, since they include highly productive aquifers as well as artesian zones (Margat and Van, 2013). Aquifers with complex geological structures account for 25% of the total, and these include rather productive local aquifers (volcanic or karst aquifers) that are shallow or deep and have significant storage (Margat and Van, 2013). Lastly, 22% of all aquifers are local and shallow aquifers in weathered or fissured rock and alluvial aquifers, characterized by low volumes of stored groundwater (Margat and Van, 2013). Figure 9B shows how 74% of all African cities are located in correspondence with major basins, 21% in complex structures, and 5% in local or shallow aquifers. In Asia, the most common types are the major basins, which account for 54% of the total, while 22% of the cities are in complex structures and 24% are in local or shallow aquifers. In Europe, 48% of the cities are in major basins, 35% are in complex structures, and 17% are in local or shallow aquifers. In the North and South Americas, the most common types are major basins (36% and 56%, respectively), while 32% of the cities are located in complex structures in North America and 38% are located in local or shallow aquifers in South America. In Oceania, 50% of the cities are in major basins, while the remaining 50% are in complex structures.
FIGURE 9

Classes of groundwater resources for each continent. (A) shows a percentage breakdown and (B) shows a breakdown by continent of each class: (11) major basins-very low (<2 mm/year) recharge, (12) major basins-low (2–20 mm/year) recharge, (13) major basins-medium (20-100 mm/year) recharge, (14) major basins-high (100–300 mm/year) recharge, (15) major basins-very high (>300 mm/year) recharge, (22) complex structures-low to very low (<20 mm/year) recharge, (23) complex structures-medium (20–100 mm/year) recharge, (24) complex structures-high (100-300 mm/year) recharge, (25) complex structures-very high (>300 mm/year) recharge, (33) local/shallow aquifers-medium to very low (<100 mm/year) recharge and (34) local/shallow aquifers-very high to high (>100 mm/year) recharge.
We additionally compared the main causes of land subsidence, i.e., groundwater extraction (40 cities), with the lithology and groundwater resource classes (Figure 10). About 60% of these 40 cities are located in unconsolidated sediments, 47.5% are located in major groundwater basins with high (100–300 mm/year) recharge, 15% are situated in major groundwater basins with very high (>300 mm/year) recharge, 12.5% are located in complex hydrogeological structures with high (100–300 mm/year) recharge, and 5% are situated in local and shallow aquifers with very high to high (>100 mm/year) recharge. A more detailed analysis of the 40 cities spread across all continents, in which groundwater extraction is or has been the main driver of subsidence, is provided in Table 4. Of these, 33 cities are still experiencing subsidence at present, whereas mitigation techniques adopted in three cities (e.g., regulation of the quantity of groundwater that can be pumped or artificial recharge of the aquifer system) (Tang et al., 2022; Sahuquillo et al., 2022; Wu et al., 2022) stopped land subsidence altogether. A total of 15 cities have adopted mitigation techniques to limit land subsidence, while 25 either do not have such measures in place or no information could be found. Subsidence has been recorded in these cities as early as the 19th century and has been monitored throughout the decades using satellite, GPS, and GNSS techniques. The maximum subsidence rate recorded was 280 mm/year; however, it was not possible to gather the maximum yearly subsidence rate for seven cities.
FIGURE 10

Main causes of land subsidence compared with the lithology and groundwater resource classes.
TABLE 4
| City | Maximum subsidence rate (mm/year) | Earliest subsidence observation | Monitoring technique | Subsidence still present | Mitigation |
|---|---|---|---|---|---|
| Abidjan | 5.0 | 2014 | Satellite | Yes | N/A |
| Adelaide | 2.8 | 1943 | N/A | Yes | N/A |
| Auckland | 4 | 2003 | Satellite | Yes | N/A |
| Barcelona | 8 | 2016 | Satellite | N/A | N/A |
| Chittagong (Chattogram) | 20 | 2015 | Satellite | Yes | N/A |
| Fuzhou-Fujian | 22 | 1957 | Satellite; ground benchmarks | Yes | N/A |
| Guangzhou (Guangdong) | 23 | 2011 | Satellite | Yes | N/A |
| Haiphong | N/A | N/A | N/A | N/A | N/A |
| Hangzhou | 40 | 1993 | Satellite | Yes | N/A |
| Houston (TX) | 3,000* | 1917 | Satellite; ground benchmarks | Yes | Yes |
| Jakarta | 280 | 1982 | Satellite; ground benchmarks | Yes | Yes |
| Karachi | 10 | 2015 | Satellite | Yes | N/A |
| Khulna | N/A | N/A | N/A | N/A | N/A |
| Kolkata (Calcutta) | 16 | 1992 | Satellite | Yes | N/A |
| Krung Thep (Bangkok) | 120 | 1980 | Satellite; ground benchmarks | Yes | Yes |
| Lagos | 4 | 2018 | Satellite | Yes | N/A |
| Lomé | N/A | N/A | N/A | Yes | No |
| London | 25 | 1992 | Satellite; ground benchmarks | Yes | Yes |
| Los Angeles (CA) | 60 | 1998 | Satellite; ground benchmarks | Yes | Yes |
| Manila | 17 | 2017 | Satellite; GPS | Yes | No |
| Mumbai | 93 | 2014 | Satellite | Yes | No |
| Nagoya | 2 | 1925 | Satellite; ground benchmarks | Yes | Yes |
| Ningbo | 11.4 | 1960s | Satellite; ground benchmarks | Yes | Yes |
| Osaka-Kobe | 20 | 1920s | Satellite | Yes | Yes |
| Perth | 6 | 1970s | Satellite; GPS | Yes | Yes |
| Qingdao (Tsingtao) | 34.48 | 2017 | Satellite | Yes | No |
| Recife | 0.68 | 1970s | GNSS | Yes | Yes |
| Saigon (Ho Chi Minh City) | 53 | 20th century | Satellite | Yes | Yes |
| San Diego (CA) | 75* | 2016 | Satellite; GNSS | Yes | No |
| San Jose (CA) | 68 | 1898 | Geodetic survey/ground network/benchmarks | No | Yes |
| Shanghai | 2,630* | 1920 | Satellite; ground benchmarks | Yes | Yes |
| Taipei | 62 | 1940s | Ground benchmarks | No | No |
| Tianjin (Tientsin) | 100 | 1950s | Ground benchmarks | Yes | No |
| Tokyo | 64 | 1910s | Ground benchmarks | No | Yes |
| Ujung Pandang (Makassar) | 150 | N/A | Satellite | Yes | N/A |
| Ulsan | 48 | N/A | Satellite | Yes | N/A |
| Venezia (Venice) | 30 | 20th century | Satellite | Yes | Yes |
| Virginia Beach (VA) | 4.8 | 20th century | Satellite/GPS | Yes | No |
| Wenzhou | N/A | 21st century | N/A | N/A | N/A |
| Yangon | 90 | 21st century | Satellite | Yes | No |
Analysis of the cities in which groundwater extraction is the main driver of subsidence.
An asterisk (*) is used to identify cities in which only the cumulative subsidence for an unspecified time period was available.
4 Discussion
The bibliographic review reported in this work identifies groundwater extraction as the most frequent cause of subsidence in the cities located in Africa, North and South Americas, Asia, and Oceania, whereas artificial loading was the most main subsidence cause in Europe. These findings are in line with the report of Nicholls et al. (2007), according to whom subsidence related to groundwater extraction is more prominent in cities that are growing; for instance, most cities in Asia have grown both economically (increasing gross domestic product (GDP)) and geographically, with increased population density, while cities in Africa and South America have undergone rapid urban expansion and have witnessed increases in population density (Pandey et al., 2013; Zhong et al., 2023). Additionally, among the top-10 countries for total groundwater usage, eight are located in Asia (Ritchie and Roser, 2023). Similarly, cities in Oceania (Australia) have been steadily growing in population (Krockenberger, 2015), and Australia is the third country in the world with the most amount of groundwater withdrawal for agricultural purposes (Ritchie and Roser, 2023). Although North American and European cities have experienced increases in their GDPs, the population densities are decreasing (Zhong et al., 2023). Nevertheless, two North American countries (United States and Mexico) are respectively 3rd and 7th based on total groundwater usage. Additionally, the United States has the highest water usage rate per capita worldwide, while Mexico has the 2nd highest groundwater withdrawal rate in the world for agricultural purposes as of 2015 (Ritchie and Roser, 2023).
Groundwater extraction was identified as the main cause of subsidence in 40 cities, which constitute 28% of the total and 35% of the 115 cities in which it was possible to identify a main cause of subsidence; this makes subsidence through groundwater extraction an especially pressing issue and the most commonly occurring factor according to the World Population Prospects created by the United Nations Organization (ONU). This finding is in line with the report by Bagheri-Gavkosh et al. (2021), where groundwater extraction was identified as the most common cause of land subsidence. Of the 40 cities identified, 15 have been implementing mitigation techniques to reduce the impacts of groundwater extraction on land subsidence; these entail regulation of the quantity of groundwater that can be pumped and artificial recharge of the aquifer system (Sahuquillo et al., 2022; Tang et al., 2022; Wu et al., 2022). Although it is not usually possible to restore an aquifer to its original thickness (Tang et al., 2022), mitigation techniques have proven to be successful in reducing or even stopping subsidence altogether. For instance, in the cities of San Jose (CA), Tokyo, and Taipei, subsidence is no longer considered an issue (Hwang and Moh, 2020; Cao et al., 2021; Sahuquillo et al., 2022). In Jakarta, the subsidence rate has decreased from a maximum of 280 mm/year over 1982–2010 (Abidin et al., 2011) to a minimum of 50 mm/year (Wu et al., 2022) with the implementation of mitigation techniques in the suburbs. Similarly, in Shanghai where the maximum cumulative subsidence was 2.6 m, the yearly land subsidence rate decreased from 16 mm over 1990–2001 (Chai et al., 2004) to 10 mm close to many places near the water (Wu et al., 2022). Most of the area within the limits of Houston city show no substantial subsidence at present, while subsidence is still recorded in the suburban areas; however, a total subsidence of 3.0 m has been historically measured since 1917 (Galloway et al., 1999; Khan et al., 2022). In Krung Thep (Bangkok), land subsidence reached its most critical state in the early 1980s, when the rate was as high as 120 mm/year (Phien-wej et al., 2006); this regional-scale subsidence decreased to a maximum of 30 mm/year between 2018 and 2021 following mitigation efforts (Jeon and Yi, 2021). Among the analyzed cities, Guangzhou, Ho Chi Minh City, and Mumbai are already experiencing subsidence due to groundwater extraction and are among the cities that have experienced the majority of population increase worldwide, according to Zhong et al. (2023). Of these, only Ho Chi Minh City has been investing in mitigation measures since 1998 to reduce the impacts of floods (Ho, 2008). It is therefore clear from this analysis that historically, regulation of groundwater extraction is an effective tool for mitigating land subsidence in cities where groundwater extraction is the main cause.
It is not always possible to pinpoint a single cause of subsidence in cities where multiple influencing factors have been observed. This is the case for cities like Brisbane and Glasgow; in Brisbane, literature research identified multiple possible causes, such as mining of ore materials and excavation of tunnels, whereas in Glasgow, it was not possible to identify a single main cause among consolidation, artificial loading, and excavation of tunnels. In the case of Port-au-Prince and Porto, based on the literature review, the cities were deemed to be stable. However, while subsidence has not been recorded at present, it could still be occurring in areas that are yet to be investigated; therefore, it is advisable to continue investing resources for subsidence.
In the cities identified by Nicholls et al. (2007) and Hallegatte et al. (2013) on the basis of geopolitical and economic factors, it was oftentimes not possible to confirm or deny the occurrence of land subsidence. Of the 143 cities investigated, it was not possible to gather any data on 32% of African cities, 28% of North American cities, 31% of South American cities, 17% of Oceanian cities, 13% of European cities, and 11% of Asian cities. This can be due to absence of subsidence or lack of resources to investigate the issue or lack of available literature in languages accessible to the authors. It is clear that further investigations are necessary to fill this gap in research and that the problem of land subsidence is an urgent issue that must be investigated, measured, and monitored.
The main limitation of this research is that it aims to group past investigations regarding the subsidence phenomenon at the city level; however, this phenomenon can be very heterogeneous as both localized and widespread sinking can be classified as subsidence within a city. Large numbers of publications (e.g., in case of calamities) may also introduce biases when estimating the main causes of subsidence in such cities. Additionally, authors commonly analyze subsidence occurring within the same city at different locations, making it difficult to pinpoint a single driver of subsidence and study the spatial and temporal evolutions of the phenomena. Even within the same city, local variations in lithology or changes in land use can influence the subsidence dynamics considerably (Momotake, 1996; Galloway et al., 1999; Allis, 2000; Hu et al., 2004; Caramanna et al., 2008; Tularam and Krishna, 2009; Lorphensri et al., 2011; Tomás et al., 2014; Mastin et al., 2018; Solari et al., 2018; Loupasakis, 2020; Hamdani et al., 2021; Sarah et al., 2021; Satriyo, 2021; Calabrese et al., 2021; Budiyono et al., 2022; Sadjadi, 2022; Kurniawan and Deviantari, 2022). This also means that when multiple subsidence causes are identified for a city, it is possible that they may interact or could have occurred at different locations or occurred in specific moments in time, therefore being unrelated.
It may not be possible to provide a meaningful subsidence rate for each city because the rates derived from literature may not be comparable even within the same city. The subsidence rates are also obtained with different techniques in different years over different time spans using different remote sensing methods (ERS-1/2, Radarsat-1/2, Sentinel-1, etc.) at different spatial resolutions in different areas of the same cities and using unique classifications of the rates. Oftentimes, authors do not provide information regarding how the subsidence rate was acquired in the first place, or they only provide subsidence rates along the line of sight of the satellite or as vertical velocities. This means that once the cities are grouped into those with common characteristics, the number of comparable rates is very limited and therefore not significant to identify patterns of correlation between subsidence rates recorded by remote sensing sensors and from the ground. For local subsidence mitigation, the proposed database would therefore need to be integrated with more detailed analyses, including field observations and data collection.
Another limitation of this work is that the classifications proposed within the database are subjective and the research was limited to scientific papers while excluding local news sources for the sake of information quality: the search was limited to peer-reviewed articles from websites such as https://researchgate.net, https://scopus.com, and https://scholar.google.com. Additionally, only articles in languages accessible to the authors, such as English, Italian, French, Dutch, and Spanish, were considered.
However, this work provides a thorough investigation on the phenomenon of subsidence in 143 coastal cities and its relationships to the local hydrogeological settings. Hence, it could be a useful tool for the scientific community because it gives a preliminary overview of subsidence as well as the drivers in these areas, while highlighting the existing gaps in literature. The database is openly accessible, is peer-reviewed, and has global scope, promoting cooperation between academia and local communities as well as different countries, especially those where research on this topic is still lacking. It allows experts who aim to build local hydrogeological models to easily access information regarding both the hydrogeological settings and drivers of subsidence in each city.
The database also allows stakeholders and policymakers who may not be familiar with the issue of subsidence to easily access a comprehensive collection of peer-reviewed articles about their cities. This approach can provide an overview of the vulnerable areas within a city and allow access to information regarding how the issue of subsidence was tackled in similar hydrogeological settings or in areas where the drivers of subsidence were similar. It is expected to provide stakeholders with precedents on addressing the issue of subsidence in their own countries to limit economical losses while also protecting the population.
In literature, subsidence has been monitored through a very diverse array of techniques and methodologies: the database also provides an overview of the drivers of subsidence in a large sample of major coastal cities worldwide. This approach facilitates the creation of global subsidence models to address the issue at a global scale, benefitting countries that do not have the means to investigate the drivers of subsidence on their own at present. This database also contributes to fulfilling the goals of the Sustainable Development Agenda 2030 (UN, 2015) by aiding stakeholders in urban planning and management through reducing the impacts of subsidence on the more vulnerable and marginalized communities, while promoting and enabling future research along with increasing awareness to current and future risks caused by human activities and climate changes.
5 Conclusion
Subsidence is the gradual lowering or sudden sinking of the ground surface and is known to cause widespread impacts in terms of damages to infrastructures, utility lines, and buildings as well as changes in surficial drainage systems and groundwater conditions. This issue is expected to broaden in the future and impact the population more severely in major coastal cities, while also being concerned with the issues of sea level rise, population growth, intensification of coastal erosion and extreme events, increases in flood risk and salinization of freshwater, and increased extraction of groundwater due to population growth.
The aim of this work was to provide an open-source, accurate, peer-reviewed, and comprehensive database of subsidence in 143 coastal cities along with their main and secondary subsidence causes to help facilitate future research regarding subsidence in both priorly identified at-risk areas and areas where the potential impacts of subsidence are still unknown. In line with the findings of Bagheri-Gavkosh et al. (2021), the extraction of groundwater was identified as the most common driver of subsidence in the 143 cities, which is especially concerning given the World Population Prospects for population growth proposed by the ONU.
In African, Asian, Oceanian, and South American cities that are either growing economically or expanding, the increases in water demands reflect the increases in subsidence frequency, whereas this is not the case in European cities, where the GDP is growing on average even as the population density is decreasing. In North American cities, the extraction of groundwater is still the main driver of subsidence even as the population density is decreasing; however, as of 2020, the United States and Mexico are among the top-7 countries for total annual freshwater withdrawals, with the United States additionally having the highest water usage rate per capita and Mexico having the second highest groundwater withdrawal rate for agricultural purposes globally as of 2015 (Ritchie and Roser, 2023).
The analysis was conducted on 40 cities that are either experiencing or have experienced subsidence due to extraction of groundwater, and the findings highlight that implementation of mitigation techniques such as regulation of the pumping rates or artificial recharge of aquifer systems have either reduced or stopped subsidence altogether. It is therefore clear from this analysis that historical regulations of groundwater extraction have been effective tools for mitigating land subsidence in cities where groundwater extraction was the main cause. Owing to the method of selection of the cities, which was based on geopolitical and economic factors, and the severe lack of research regarding subsidence in some areas, it was not possible to gather data regarding land subsidence in a significant portion (20%) of the listed cities.
It must be noted that even within the same city, subsidence may have occurred at different locations due to different drivers and may have been measured using different techniques over different time spans; occasionally, the authors of these investigations do not provide insights into any of these variables, so it was not possible to analyze subsidence quantitatively based on literature alone in some cases. In other cases, the analysis of groundwater extraction rates (in place and time) as well as historical development of mining activities and underground engineering (such as tunneling) could be carried out on the city scale; however, this was beyond the scope of the present work.
The proposed database provides an in-depth investigation of land subsidence in a large sample of major cities around the world and was compiled with the aim of increasing the knowledge on the phenomenon to enhance global awareness of land subsidence among researchers, the scientific community, stakeholders, and policymakers for formulating prevention and urban planning strategies.
Statements
Author contributions
LP: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing–original draft, and writing–review and editing. AG: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing–original draft, and writing–review and editing. MK: methodology, supervision, validation, and writing–review and editing. JL: methodology, supervision, validation, and writing–review and editing. CM: conceptualization, funding acquisition, methodology, project administration, resources, supervision, validation, and writing–review and editing.
Funding
The authors declare that financial support was received for the research, authorship, and/or publication of this article. This work was developed in the framework of the project RESERVOIR (sustainable groundwater RESources managEment by integrating eaRth observation deriVed monitoring and flOw modelIng Results) funded by the Partnership for Research and Innovation in the Mediterranean Area (PRIMA) program supported by the European Union (Grant Agreement 1924; https://reservoir-prima.org/).
Acknowledgments
The authors wish to thank the enterprise DELTARES (Delft, NL) for providing tutorship over this project in the framework of the Erasmus Traineeship program, carried out through the University of Pavia.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feart.2024.1351581/full#supplementary-material.
References
1
Abdelrahman K. Al-Otaibi N. Ibrahim E. (2021). Environmental hazard assessment for ground failure in Jeddah city, western Saudi Arabia, through cross-hole seismic testing. J. King Saud University-Science33 (1), 101274. 10.1016/j.jksus.2020.101274
2
Abdullah F. M. Andriyanto H. Nababan J. R. Abdillah F. Sulistyawan R. I. H. (2021). Results of land subsidence measurement using GPS method in the Jakarta groundwater basin in 2015-2019. IOP Conf. Ser. Earth Environ. Sci.873 (1), 012034). 10.1088/1755-1315/873/1/012034
3
Abidin H. Z. Andreas H. Djaja R. Darmawan D. Gamal M. (2008). Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. Gps Solutions12, 23–32. 10.1007/s10291-007-0061-0
4
Abidin H. Z. Andreas H. Gamal M. Djaja R. Subarya C. Hirose K. et al (2005). “Monitoring land subsidence of Jakarta (Indonesia) using leveling, GPS survey and InSAR techniques,” in A window on the future of geodesy: proceedings of the international association of geodesy IAG general assembly sapporo, Japan june 30–july 11, 2003 (Springer Berlin Heidelberg), 561–566.
5
Abidin H. Z. Andreas H. Gumilar I. Fukuda Y. Pohan Y. E. Deguchi T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. hazards59, 1753–1771. 10.1007/s11069-011-9866-9
6
Abidin H. Z. Andreas H. Gumilar I. Gamal M. Fukuda Y. Deguchi T. (2009). “Land subsidence and urban development in jakarta (Indonesia),” in Proceedings of the 7th FIG regional conference (Hanoi).
7
Abidin H. Z. Andreas H. Gumilar I. Sidiq T. Azdan M. Ali F. et al (2016). Disaster risk reduction of land subsidence in jakarta land subsidence in Indonesian cities land subsidence in java. 10.13140/RG.2.1.4448.9206
8
Abidin H. Z. Djaja R. Darmawan D. Hadi S. Akbar A. Rajiyowiryono H. et al (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat. Hazards23, 365–387. 10.1023/a:1011144602064
9
Adhikari D. K. Roy M. K. Datta D. K. Roy P. J. Roy D. K. Malik A. R. et al (2006). Urban geology: a case study of khulna city corporation, Bangladesh. J. Life Earth Sci.1 (2), 17–29.
10
Aditiya A. Takeuchi W. Aoki Y. (2017). Land subsidence monitoring by InSAR time series technique derived from ALOS-2 PALSAR-2 over Surabaya city, Indonesia. IOP Conf. Ser. Earth Environ. Sci.98 (1), 012010, 10.1088/1755-1315/98/1/012010
11
Adkhi I. I. Karuniasa M. Tambunan R. P. (2021). Watershed flood vulnerability assessment based land subsidence analysed from a long time period of sentinel-1 radar data. IOP Conf. Ser. Earth Environ. Sci.940 (1), 012035. 10.1088/1755-1315/940/1/012035
12
Agarwal V. Kumar A. Gee D. Grebby S. Gomes R. L. Marsh S. (2021). Comparative study of groundwater-induced subsidence for London and Delhi using PSInSAR. Remote Sens.13 (23), 4741. 10.3390/rs13234741
13
Agudelo G. Wang G. Liu Y. Bao Y. Turco M. J. (2020). GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA. Proc. Int. Assoc. Hydrological Sci.382, 11–18. 10.5194/piahs-382-11-2020
14
Agustan A. Kriswati E. Ito T. Abdullah F. M. Anantasena Y. Nugroho D. (2021). “Land subsidence rate of jakarta metropolitan area observed by stacking sentinel-1 data,” in 2021 IEEE asia-pacific conference on geoscience, electronics and remote sensing technology (AGERS) (IEEE), 69–72.
15
Ahmad Z. (2006). Study on groundwater depletion and land subsidence in Dhaka city.
16
Akagi T. (1979). Some land subsidence experiences in Japan and their relevance to subsidence in Bangkok, Thailand. Geotech. Eng.10 (1).
17
Akther H. Ahmed M. S. Rasheed K. B. S. (2009). Spatial and temporal analysis of groundwater level fluctuation in Dhaka city, Bangladesh. Asian J. Earth Sci.2 (2), 49–57. 10.3923/ajes.2009.49.57
18
Alademomi A. S. Mayaki A. O. Daramola O. E. Salami T. J. Olaleye J. B. (2020). Establishment of deformation and subsidence monitoring baseline in the coastal environment: a case study of University of Lagos. South Afr. J. Geomatics9 (1), 13–30. 10.4314/sajg.v9i1.2
19
Alam M. (1996). “Subsidence of the Ganges—brahmaputra Delta of Bangladesh and associated drainage, sedimentation and salinity problems,” in Sea-level rise and coastal subsidence (Dordrecht: Springer), 169–192.
20
Aldiss D. Burke H. Chacksfield B. Bingley R. Teferle N. Williams S. et al (2014). Geological interpretation of current subsidence and uplift in the London area, UK, as shown by high precision satellite-based surveying. Proc. Geologists' Assoc.125 (1), 1–13. 10.1016/j.pgeola.2013.07.003
21
Aldrich H. P. Lambrechts J. R. (1986). Back bay Boston, Part II: groundwater levels. Civ. Eng. Pract.1 (2), 1–64.
22
Alimuddin I. Luhur Bayuaji Rohaya Langkoke Josaphat Tetuko Sri Sumantyo Hiroaki Kuze (2013). Evaluating land surface changes of makassar city using DInSAR and landsat thematic mapper images. David Publ. Co.7, 1287. 10.17265/1934-7359/2013.10.012
23
Allis R. G. (2000). Review of subsidence at Wairakei field, New Zealand. Geothermics29 (4-5), 455–478. 10.1016/s0375-6505(00)00016-x
24
Al Mukaimi M. E. Dellapenna T. M. Williams J. R. (2018). Enhanced land subsidence in Galveston Bay, Texas: interaction between sediment accumulation rates and relative sea level rise. Coast. Shelf Sci.207, 183–193. 10.1016/j.ecss.2018.03.023
25
Amin G. Shahzad M. I. Jaweria S. Zia I. (2022). Measuring land deformation in a mega city Karachi-Pakistan with Sentinel SAR Interferometry. Geocarto Int.37 (17), 4974–4993. 10.1080/10106049.2021.1903572
26
Andreas H. Abidin H. Z. Pradipta D. Sarsito D. A. Gumilar I. (2018). Insight look the subsidence impact to infrastructures in Jakarta and Semarang area; Key for adaptation and mitigation. MATEC Web Conf.147, 08001. 10.1051/matecconf/201814708001
27
Andreas H. Abidin H. Z. Sarsito D. A. Pradipta D. (2019). The investigation on high-rise building tilting from the issue of land subsidence in Jakarta City. MATEC Web Conf.270, 06002. 10.1051/matecconf/201927006002
28
Anjasmara I. M. Yulyta S. A. Cahyadi M. N. Khomsin K. Taufik M. Jaelani L. M. et al (2018). “Land subsidence analysis in Surabaya urban area using time series InSAR method,” in AIP Conference Proceedings (NY: AIP Publishing), 1987. No. 1.
29
Anping C. H. E. N. Yuanmo T. A. N. Cheng Y. A. N. G. Yongji Q. I. N. (2021). Deformation monitoring along Fuzhou metro line based on radar technology. Bull. Surv. Mapp. (7), 86. 10.13474/j.cnki.11-2246.2021.0214
30
Antoncecchi I. Ciccone F. Rossi G. Agate G. Colucci F. Moia F. et al (2021). Soil deformation analysis through fluid-dynamic modelling and DInSAR measurements: a focus on groundwater withdrawal in the Ravenna area (Italy). BGTA-Bollettino Geofis. Teor. Appl. 10.4430/bgta0350
31
Antonellini M. Giambastiani B. M. S. Greggio N. Bonzi L. Calabrese L. Luciani P. et al (2019). Processes governing natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. Catena172, 76–86. 10.1016/j.catena.2018.08.019
32
Antonellini M. Giambastiani B. M. S. Greggio N. Bonzi L. Calabrese L. Luciani P. et al (2020). Hydrologic control on natural land subsidence in the shallow coastal aquifer of the Ravenna coast, Italy. Proc. Int. Assoc. Hydrological Sci.382, 263–268. 10.5194/piahs-382-263-2020
33
Anzidei M. Scicchitano G. Scardino G. Bignami C. Tolomei C. Vecchio A. et al (2021). Relative sea-level rise scenario for 2100 along the coast of south eastern sicily (Italy) by InSAR data, satellite images and high-resolution topography. Remote Sens.13 (6), 1108. 10.3390/rs13061108
34
Ao M. Wang C. Xie R. Zhang X. Hu J. Du Y. et al (2015). Monitoring the land subsidence with persistent scatterer interferometry in Nansha District, Guangdong, China. Nat. Hazards75, 2947–2964. 10.1007/s11069-014-1471-2
35
Aobpaet A. Caro Cuenca M. Hooper A. Trisirisatayawong I. (2010). Land subsidence evaluation using InSAR time series analysis in Bangkok metropolitan area. In Fringe 2009, Proceedings of the workshop, 677. Frascati, Italy: ESA Special Publication.
36
Aobpaet A. Cuenca M. C. Hooper A. Trisirisatayawong I. (2013). InSAR time-series analysis of land subsidence in Bangkok, Thailand. Int. J. Remote Sens.34 (8), 2969–2982. 10.1080/01431161.2012.756596
37
Aobpaet A. Trisirisatayawong I. Aung H. H. Maksin P. (2015). Yangon surface displacement as detected by insar time series analysis.
38
Aoyama S. (1996) “Japan's experience in urban environmental management,” in Metropolitan environment improvement program. Bretton Woods, NH: the World Bank.
39
Appeaning Addo K. (2014). Coastal vulnerability index to sea level rise in Ghana. Applied Earth Observation and Geoinformation, 23, 49–61. Coast Mar. Res.2 (1), 1–7. 10.12966/cmr.01.01.2014
40
Applied Earth Observation and Geoinformation (2019). Applied earth observation and geoinformation, 49–61.
41
Arca S. Beretta G. P. (1985). Prima sintesi geodetico-geologica sui movimenti verticali del suolo nell'Italia settentrionale (1897-1957). Boll. Geod. Sci. affini44 (2), 125–156.
42
Ardha M. Khomarudin M. R. Pranowo W. S. Chulafak G. A. Yudhatama D. Pravitasari S. et al (2022). Spatial information on the rate of subsidence in North Coastal Area of Java and the estimation of inundation in 2031. IOP Conf. Ser. Earth Environ. Sci.1109 (1), 012022. 10.1088/1755-1315/1109/1/012022
43
ARPAE (Agenzia Prevenzione Ambientale Energia Emilia-Romagna) (2008). Analisi preliminare degli effetti dei prelievi di acque sotterranee sulla evoluzione recente del fenomeno della subsidenza in Emilia-Romagna anno. Available at: www.arpae.it/dettaglio_generale.asp?id=2045&idlivello=1425,www.arpae.it/cms3/documenti/subsidenza/Relfin_2008.pdf.
44
ARPAE (Agenzia Prevenzione Ambientale Energia Emilia-Romagna) (2012). Rilievo della subsidenza nella pianura emiliano-romagnola - seconda fase anno. Available at: www.arpae.it/cms3/documenti/subsidenza/Relfin_2012.pdf.
45
Artesea G. Fiaschib S. Di Martirec D. Tessitorec S. Fabrisd M. Achillid V. et al (2016). Monitoring of land subsidence in Ravenna municipality using integrated SAR-GPS techniques: description and first results. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.7, 23–28. 10.5194/isprs-archives-xli-b7-23-2016
46
Asangwe C. K. (2006). The Douala coastal lagoon complex, Cameroon: environmental issues. Administering marine spaces. Int. Issues. Fig. Publ.36, 134–147.
47
Aslan G. Cakır Z. Ergintav S. Lasserre C. Renard F. (2018). Analysis of secular ground motions in istanbul from a long-term insar time-series (1992–2017). Remote Sens.10 (3), 408. 10.3390/rs10030408
48
Aubrey D. G. Emery K. O. Uchupi E. (1988). Changing coastal levels of South America and the Caribbean region from tide-gauge records. Tectonophysics154 (3-4), 269–284. 10.1016/0040-1951(88)90108-4
49
Babel M. S. Gupta A. D. Domingo N. D. S. Donna N. (2006). Land subsidence: a consequence of groundwater over-exploitation in Bangkok, Thailand. Int. Rev. Environ. Strategies6 (2), 307–327.
50
Baghdikian S. Jepson J. D. Henry M. J. Holtz K. Bock L. Fayman J. et al (2010). “Enhancements to GPS-based subsidence monitoring at the wilmington oil field,” in SPE western regional meeting (OnePetro).
51
Bagheri-Gavkosh M. Hosseini S. M. Ataie-Ashtiani B. Sohani Y. Ebrahimian H. Morovat F. et al (2021). Land subsidence: a global challenge. Sci. Total Environ.778, 146193. 10.1016/j.scitotenv.2021.146193
52
Bakr M. (2015). Influence of groundwater management on land subsidence in deltas: a case study of Jakarta (Indonesia). Water Resour. Manag.29 (5), 1541–1555. 10.1007/s11269-014-0893-7
53
Baldi P. Casula G. Cenni N. Loddo F. Pesci A. (2009). GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet. Sci. Lett.288 (1-2), 204–212. 10.1016/j.epsl.2009.09.023
54
Banerjee S. Sikdar P. K. (2020). Land Subsidence due to leakage of aquitard-aquifer pore water in an under-construction tunnel of East-West Metro Railway Project, Kolkata. J. Geol. Soc. India96, 467–474. 10.1007/s12594-020-1584-z
55
Banks V. J. Arnhardt C. Ramli Z. Ahmad F. Pereira J. (2020). “Sinkhole susceptibility mapping in the Kuala Lumpur and the need for a buried karst database,” in Nckri symposium 8.
56
Bao X. Zhang R. Shama A. Li S. Xie L. Lv J. et al (2022). Ground deformation pattern analysis and evolution prediction of Shanghai pudong international airport based on PSI long time series observations. Remote Sens.14 (3), 610. 10.3390/rs14030610
57
Barlow P. M. Eric G. R. (2010). Saltwater intrusion in coastal regions of North America. Hydrogeology J.18 (1), 247–260. 10.1007/s10040-009-0514-3
58
Bateson L. Novellino A. (2019). Glasgow geothermal energy research field site: ground motion survey report.
59
Bau D. Gambolati G. Teatini P. (2000). Residual land subsidence near abandoned gas fields raises concern over northern Adriatic coastland. EOS Transactions-American Geophys. Union81, 245–249. 10.1029/00eo00169
60
Bawden G. W. Johnson M. R. Kasmarek M. C. Brandt J. T. Middleton C. S. (2012). Investigation of land subsidence in the Houston-Galveston region of Texas by using the global positioning system and interferometric synthetic aperture radar, 1993-2000 (No. 2012-5211). Reston, VA: US Geological Survey.
61
Bawden G. W. Thatcher W. Stein R. S. Hudnut K. W. Peltzer G. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature412 (6849), 812–815. 10.1038/35090558
62
Bayuaji L. Sumantyo J. T. S. Kuze H. (2010). ALOS PALSAR D-InSAR for land subsidence mapping in Jakarta, Indonesia. Can. J. Remote Sens.36 (1), 1–8. 10.5589/m10-023
63
Becker M. Papa F. Karpytchev M. Delebecque C. Krien Y. Khan J. U. et al (2020). Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. Proc. Natl. Acad. Sci.117 (4), 1867–1876. 10.1073/pnas.1912921117
64
Bekaert D. P. S. Hamlington B. D. Buzzanga B. Jones C. E. (2017). Spaceborne synthetic aperture radar survey of subsidence in Hampton Roads, Virginia (USA). Sci. Rep.7 (1), 14752. 10.1038/s41598-017-15309-5
65
Bello A. (2022). Recent updates on global warming and geologic hazards. Available at SSRN 4108277.
66
Belperio A. P. (1993). Land subsidence and sea level rise in the Port Adelaide estuary: implications for monitoring the greenhouse effect. Aust. J. Earth Sci.40 (4), 359–368. 10.1080/08120099308728087
67
Berbower R. F. (1959). Subsidence problem in the Long Beach harbor district. J. Waterw. Harb. Div.85 (2), 43–80. 10.1061/jwheau.0000124
68
Bertoni W. Elmi C. Marabini F. (2005). The subsidence of Ravenna. G. Geol. Appl.1 (2). 10.1474/GGA.2005-01.0-03.0003
69
Bhattacharya A. K. (2008). Hydrogeology and land subsidence in Salt Lake City, Kolkata, India. Electron. J. Geotechnical Eng.13, 1–14.
70
Bhattacharya A. K. (2011). Land subsidence in Kolkata due to groundwater depletion. Electron. J. Geotechnical Eng.16.
71
Bhattacharya A. K. (2013). An analysis of land subsidence in Bangkok and Kolkata due to over-extraction of groundwater. Electron. J. Geotechnical Eng.18, 1683–1694.
72
Bhattacharya A. K. Basak S. Patra M. N. (2004). Land subsidence in Calcutta under the effect of hydrogeological conditions and over-extraction of groundwater. EJGE9, 1–16.
73
Bhattacharya A. K. Kumar D. (2012). Land subsidence in east Calcutta. IOSR J. Eng.2 (03), 408–413. 10.9790/3021-0203408413
74
Bhattacharya N. Lamond J. (2011). A review of urban flood risk situation in African growing economies. na.
75
Bianchini S. Raspini F. Solari L. Del Soldato M. Ciampalini A. Rosi A. et al (2018). From picture to movie: twenty years of ground deformation recording over Tuscany region (Italy) with satellite InSAR. Front. Earth Sci.6, 177. 10.3389/feart.2018.00177
76
Bianchini S. Solari L. Del Soldato M. Raspini F. Montalti R. Ciampalini A. et al (2019). Ground subsidence susceptibility (GSS) mapping in Grosseto Plain (Tuscany, Italy) based on satellite InSAR data using frequency ratio and fuzzy logic. Remote Sens.11 (17), 2015. 10.3390/rs11172015
77
Bingley R. M. Ashkenazi V. Penna N. T. Booth S. J. Ellison R. A. Morigi A. N. (1999). Monitoring changes in regional ground level, using high precision GPS. Environ. Agency R&D Tech. Rep. W210. Available at: http://www.freshwaterlife.org/projects/media/projects/images/0/6683_ca_object_representations_media_70_original.pdf.
78
Bissoli R. Bitelli G. Bonsignore F. Rapino A. Vittuari L. (2010) Land subsidence in Emilia-Romagna Region, northern Italy: recent results, 339. England: IAHS-AISH publication, 307–311.
79
Biswas K. Chakravarty D. Mitra P. Misra A. (2019). “Estimation of ground deformation using psinsar with L-band alos palsar data: a case study of Kolkata, India,” in IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium (IEEE), 2119–2122.
80
Bitelli G. Bonsignore F. Carbognin L. Ferretti A. Strozzi T. Teatini P. et al (2010). Radar interferometry-based mapping of the present land subsidence along the low-lying northern adriatic coast of Italy. Land subsidence, associated hazards and the role of natural resources development. Proc. EISOLS339, 279–286.
81
Bitelli G. Bonsignore F. Del Conte S. Franci F. Lambertini A. Novali F. et al (2020). Updating the subsidence map of Emilia-Romagna region (Italy) by integration of SAR interferometry and GNSS time series: the 2011–2016 period. Proc. Int. Assoc. Hydrological Sci.382, 39–44. 10.5194/piahs-382-39-2020
82
Bitelli G. Bonsignore F. Del Conte S. Novali F. Pellegrino I. Vittuari L. (2015a). “Integrated use of Advanced InSAR and GPS data for subsidence monitoring,” in Engineering geology for society and territory-volume 5: urban geology, sustainable planning and landscape exploitation (Springer International Publishing), 147–150.
83
Bitelli G. Bonsignore F. Pellegrino I. Vittuari L. (2015b). Evolution of the techniques for subsidence monitoring at regional scale: the case of Emilia-Romagna region (Italy). Proc. Int. Assoc. hydrological Sci.372 (372), 315–321. 10.5194/piahs-372-315-2015
84
Bitelli G. Bonsignore F. Unguendoli M. (2000). Levelling and GPS networks to monitor ground subsidence in the Southern Po Valley. J. Geodyn.30 (3), 355–369. 10.1016/s0264-3707(99)00071-x
85
Bock Y. Wdowinski S. Ferretti A. Novali F. Fumagalli A. (2012). Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem. Geophys. Geosystems13 (3). 10.1029/2011gc003976
86
Bonì R. Meisina C. Cigna F. Herrera G. Notti D. Bricker S. et al (2017). Exploitation of satellite A-DInSAR time series for detection, characterization and modelling of land subsidence. Geosciences7 (2), 25. 10.3390/geosciences7020025
87
Boretti A. (2020). Relative sea-level rise and land subsidence in Oceania from tide gauge and satellite GPS. Nonlinear Eng.9 (1), 175–193. 10.1515/nleng-2020-0007
88
Boretti A. (2022). An alternative procedure to compute the sea-level acceleration from long-term-trend tide gauge records. Arabian J. Geosciences15 (7), 566–569. 10.1007/s12517-022-09864-z
89
Bott L. M. Schöne T. Illigner J. Haghighi M. H. Gisevius K. Braun B. (2021). Land subsidence in Jakarta and Semarang Bay–The relationship between physical processes, risk perception, and household adaptation. Ocean Coast. Manag.211, 105775. 10.1016/j.ocecoaman.2021.105775
90
Bouin M. N. Wöppelmann G. (2010). Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys. J. Int.180 (1), 193–209. 10.1111/j.1365-246x.2009.04411.x
91
Brambati A. Carbognin L. Quaia T. Teatini P. Tosi L. (2003). The Lagoon of Venice: geological setting, evolution and land subsidence. Episodes J. Int. Geoscience26 (3), 264–268. 10.18814/epiiugs/2003/v26i3/020
92
Brandt J. T. Sneed M. Danskin W. R. (2020). Detection and measurement of land subsidence and uplift using interferometric synthetic aperture radar, San Diego, California, USA, 2016–2018. Proc. Int. Assoc. Hydrological Sci.382, 45–49. 10.5194/piahs-382-45-2020
93
Braun C. L. Ramage J. K. (2022). Status of water-level altitudes and long-term water-level changes in the Chicot and Evangeline (undifferentiated) and Jasper aquifers, greater Houston area, Texas, 2021. Reston, Virginia: U.S. Geological Survey. No. 2022-5065.
94
Bremard (2020). t. Sinking bangkok.
95
Bremard T. (2022). Monitoring land subsidence: the challenges of producing knowledge and groundwater management indicators in the Bangkok metropolitan region, Thailand. Sustainability14 (17), 10593. 10.3390/su141710593
96
Brinkmann R. Parise M. (2010). The timing of sinkhole formation in Tampa and Orlando, Florida. Fla. Geogr.41.
97
Brown S. Nicholls R. J. (2015). Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ.527, 362–374. 10.1016/j.scitotenv.2015.04.124
98
Browne M. A. E. Forsyth I. H. McMillan A. A. (1986). Glasgow, a case study in urban geology. J. Geol. Soc.143 (3), 509–520. 10.1144/gsjgs.143.3.0509
99
Bruni S. Zerbini S. Raicich F. Errico M. (2019). Rescue of the 1873–1922 high and low waters of the Porto Corsini/Marina di Ravenna (northern Adriatic, Italy) tide gauge. J. Geodesy93, 1227–1244. 10.1007/s00190-019-01238-w
100
Buckley S. M. Rosen P. A. Hensley S. Tapley B. D. (2003). Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. solid earth108 (B11). 10.1029/2002jb001848
101
Budiyono Y. Nuraini Melati D. Khaerani P. Krisna Yuliana D. Riyandari R. Fiqi Riyalda B. et al (2022). “Review on land subsidence and socio-hydrology of northern Java, Indonesia,” in EGU general assembly conference abstracts, EGU22–8170.
102
Buffardi C. Ruberti D. (2023). The issue of land subsidence in coastal and alluvial plains: a bibliometric review. Remote Sens.15 (9), 2409. 10.3390/rs15092409
103
Bui D. Kawamura A. Tong T. Amaguchi H. Nakagawa N. (2012). Spatio-temporal analysis of recent groundwater-level trends in the red river delta, vietnam. Hydrogeology J.20 (8), 1635–1650. 10.1007/s10040-012-0889-4
104
Bulhões J. A. (2022). Colapso Urbano? Narrativas de moradores do Pinheiro sobre a subsidência do solo em Maceió-AL.
105
Burgmann, Roland Hilley G. Ferretti A. Novali F. (2006). Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology34 (3), 221–224. 10.1130/g22064.1
106
Burland J. B. Standing J. R. Jardine F. M. (2001). “Building response to tunnelling,” in Case studies from construction of the jubilee line extension (London), 134–145.
107
Buurman N. (2010). Zirkular-Strukturen in der Metropolregion Hamburg und ihre potenziellen Geogefahren. PhD thesis.
108
Calabrese L. Luciani P. Perini L. (2021). A review of impact of subsidence induced by gas exploitation on costal erosion in Emilia-Romagna, Italy. Boll. Geofis. Teor. Appl.62 (2). 10.4430/bgta0356
109
Calò F. Abdikan S. Görüm T. Pepe A. Kiliç H. Balik Şanli F. (2015). The space-borne SBAS-DInSAR technique as a supporting tool for sustainable urban policies: the case of Istanbul Megacity, Turkey. Remote Sens.7 (12), 16519–16536. 10.3390/rs71215842
110
Camporese M. Gambolati G. Putti M. Teatini P. (2006). Peatland subsidence in the Venice watershed. Dev. Earth Surf. Process.9, 529–550. 10.1016/S0928-2025(06)09023-7
111
Canova F. Tolomei C. Salvi S. Toscani G. Seno S. (2012). Land subsidence along the Ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry. Earth Surf. Process. Landforms37 (3), 273–286. 10.1002/esp.2238
112
Cao A. Esteban M. Valenzuela V. P. B. Onuki M. Takagi H. Thao N. D. et al (2021). Future of asian deltaic megacities under sea level rise and land subsidence: current adaptation pathways for Tokyo, jakarta, manila, and Ho Chi Minh city. Curr. Opin. Environ. Sustain.50, 87–97. 10.1016/j.cosust.2021.02.010
113
Cao G. Han D. Moser J. (2013). Groundwater exploitation management under land subsidence constraint: empirical evidence from the Hangzhou–Jiaxing–Huzhou Plain, China. Environ. Manag.51 (6), 1109–1125. 10.1007/s00267-013-0037-5
114
Caputo M. Pieri L. Tesi F. R. (1972). Land subsidence in Venice and Porto corsini. Ann. Geophys.25 (1), 56–61.
115
Caramanna G. Ciotoli G. Nisio S. (2008). A review of natural sinkhole phenomena in Italian plain areas. Nat. hazards45 (2), 145–172. 10.1007/s11069-007-9165-7
116
Carbognin L. Gatto P. Mozzi G. Gambolati G. (1978). “Land subsidence of Ravenna and its similarities with the Venice case,” in Evaluation and prediction of subsidence (Reston, Virginia: ASCE), 254–266.
117
Carbognin L. Rizzetto F. Tosi L. Strozzi T. Teatini P. Vitturi A. (2005a). “A new monitoring strategy to control land movements. The Veneto Region test area,” in Land subsidence (Shanghai Scientific & Technical Publishers).
118
Carbognin L. Teatini P. Tomasin A. Tosi L. (2010). Global change and relative sea level rise at Venice: what impact in term of flooding. Clim. Dyn.35, 1039–1047. 10.1007/s00382-009-0617-5
119
Carbognin L. Teatini P. Tosi L. (2004). Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium. J. Mar. Syst.51 (1-4), 345–353. 10.1016/j.jmarsys.2004.05.021
120
Carbognin L. Tosi L. (2002). Interaction between climate changes, eustacy and land subsidence in the North Adriatic Region, Italy. Mar. Ecol.23, 38–50. 10.1111/j.1439-0485.2002.tb00006.x
121
Carisi F. Domeneghetti A. Gaeta M. G. Castellarin A. (2017). Is anthropogenic land subsidence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna, Italy. Hydrological Sci. J.62 (15), 2440–2455. 10.1080/02626667.2017.1390315
122
Carminati E. Di Donato G. (1999). Separating natural and anthropogenic vertical movements in fast subsiding areas: the Po plain (N. Italy) case. Geophys. Res. Lett.26 (15), 2291–2294. 10.1029/1999gl900518
123
Carminati E. Enzi S. Camuffo D. (2007). A study on the effects of seismicity on subsidence in foreland basins: an application to the Venice area. Glob. Planet. Change55 (4), 237–250. 10.1016/j.gloplacha.2006.03.003
124
Castellazzi P. Schmid W. (2021). Interpreting C-band InSAR ground deformation data for large-scale groundwater management in Australia. J. Hydrology Regional Stud.34, 100774. 10.1016/j.ejrh.2021.100774
125
Casu F. Buckley S. M. Manzo M. Pepe A. Lanari R. (2005). “Large scale InSAR deformation time series: Phoenix and Houston case studies,” in Proceedings. 2005 IEEE international geoscience and remote sensing symposium, 2005 (IEEE), 7, 5240–5243. 10.1109/igarss.2005.1526866
126
Catalao J. Nico G. Conde V. (2011a). “Detection of ground subsidence in the city of Lisbon: comparison of InSAR and topographic measurements,” in 2011 joint urban remote sensing event (IEEE), 417–420.
127
Catalao J. Nico G. Conde V. Miranda J. (2011b). “Quantification of subsidence rates associated with groundwater flow using SAR interferometry,” in Proc.‘Fringe 2011 workshop (Frascati, Italy: ’), 19–23.
128
Catalão J. Nico G. Lollino P. Conde V. Lorusso G. Silva C. (2015). Integration of InSAR analysis and numerical modeling for the assessment of ground subsidence in the city of Lisbon, Portugal. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.9 (4), 1663–1673. 10.1109/jstars.2015.2428615
129
Catalao J. Raju D. Fernandes R. M. S. (2013). Mapping vertical land movement in Singapore using InSAR GPS. ESA Living Planet Symposium 2013, 722. Edinburgh, UK: ESA Special Publication, 54.
130
Catalao J. Raju D. Nico G. (2020). InSAR maps of land subsidence and sea level scenarios to quantify the flood inundation risk in coastal cities: the case of Singapore. Remote Sens.12 (2), 296. 10.3390/rs12020296
131
Cenni N. Fiaschi S. Fabris M. (2021). Monitoring of land subsidence in the po river delta (Northern Italy) using geodetic networks. Remote Sens.13 (8), 1488. 10.3390/rs13081488
132
Cenni N. Viti M. Baldi P. Mantovani E. Bacchetti M. Vannucchi A. (2013). Present vertical movements in Central and Northern Italy from GPS data: possible role of natural and anthropogenic causes. J. Geodyn.71, 74–85. 10.1016/j.jog.2013.07.004
133
Cerenzia I. Putero D. Bonsignore F. Galassi G. Olivieri M. Spada G. (2016). Historical and recent sea level rise and land subsidence in Marina di Ravenna, northern Italy. Ann. Geophys.59 (5), 0546. 10.4401/ag-7022
134
Chai J. C. Shen S. L. Zhu H. H. Zhang X. L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Geotechnique54 (2), 143–147. 10.1680/geot.2004.54.2.143
135
Chatterjee R. Roy P. Dadhwal V. Lakhera R. Quang T. Saha R. (2007). Assessment of land subsidence phenomenon in Kolkata city, India using satellite-based D-InSAR technique. Curr. Sci.93, 85–93.
136
Chatterjee R. S. Fruneau B. Rudant J. P. Roy P. S. Frison P. L. Lakhera R. C. et al (2006). Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sens. Environ.102 (1-2), 176–185. 10.1016/j.rse.2006.02.006
137
Chaussard E. Amelung F. Abidin H. Hong S. H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ.128, 150–161. 10.1016/j.rse.2012.10.015
138
Chavez H. Alexander J. Šebesta J. Bakoň M. (2020a). Relation between surface dynamics and remote sensor InSAR results over the Metropolitan Area of San Salvador. Nat. Hazards103 (3), 3661–3682. 10.1007/s11069-020-04150-1
139
Chávez J. A. Bichara Y. Miranda K. Funes B. Alfaro I. Vasquez M. et al (2020b). Promoting resilience and sustainability in the metropolitan area of san salvador. Urban Des.3 (1), 22–36. 10.31058/j.ud.2020.31002
140
Chebo A. K. (2009). Monitoring wetlands deterioration in the Cameroon coastal lowlands: implications for management. Procedia Earth Planet. Sci.1 (1), 1010–1015. 10.1016/j.proeps.2009.09.156
141
Chen C. T. Hu J. C. Lu C. Y. Lee J. C. Chan Y. C. (2007). Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol.95 (1-2), 30–47. 10.1016/j.enggeo.2007.09.001
142
Chen F. Lin H. Zhang Y. Lu Z. (2012). Ground subsidence geo-hazards induced by rapid urbanization: implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci.12 (4), 935–942. 10.5194/nhess-12-935-2012
143
Chen Q. Liu G. Ding X. Hu J. C. Yuan L. Zhong P. et al (2010). Tight integration of GPS observations and persistent scatterer InSAR for detecting vertical ground motion in Hong Kong. Int. J. Appl. Earth Observation Geoinformation12 (6), 477–486. 10.1016/j.jag.2010.05.002
144
Chen Y. Liao M. Wu J. Li X. Xiong F. Liu S. et al (2022). Elastic and inelastic ground deformation in Shanghai lingang area revealed by sentinel-1, leveling, and groundwater level data. Remote Sens.14 (11), 2693. 10.3390/rs14112693
145
Chen Z. Wang J. Huang X. (2018). Land subsidence monitoring in greater Vancouver through synergy of InSAR and polarimetric analysis. Can. J. Remote Sens.44 (3), 202–214. 10.1080/07038992.2018.1481736
146
Cheng Y. M. Au S. K. Pearson A. M. Li N. (2013). An innovative geonail system for soft ground stabilization. Soils Found.53 (2), 282–298. 10.1016/j.sandf.2013.02.009
147
Chi Y. X. (2009). Analysis of influence factors for land subsidence in Fuzhou. Hydrogeology Eng. Geol.36 (6), 131–133.
148
Chian M. (1977). Groundwater depletion and land subsidence in taipei basin.
149
Cho M. Lee C. W. (2014). Ground subsidence measurements of noksan national industrial complex using C-band multi-temporal SAR images. Korean J. Remote Sens.30 (2), 161–172. 10.7780/kjrs.2014.30.2.1
150
Chunga K. León C. Quiñónez M. F. Benítez S. Montenegro G. (2005). “Seismic hazard assessment for guayaquil city (Ecuador): insights from quaternary geological data,” in Abstract final meeting, dark nature, rapid natural change and human responses, 55–56.
151
Cian F. Blasco J. M. D. Carrera L. (2019). Sentinel-1 for monitoring land subsidence of coastal cities in africa using PSInSAR: a methodology based on the integration of snap and StaMPS. Geosciences9 (3), 124. 10.3390/geosciences9030124
152
Cigna F. Jordan H. Bateson L. McCormack H. Roberts C. (2015). Natural and anthropogenic geohazards in greater London observed from geological and ERS-1/2 and ENVISAT persistent scatterers ground motion data: results from the EC FP7-SPACE PanGeo project. Pure Appl. Geophys.172 (11), 2965–2995. 10.1007/s00024-014-0927-3
153
Cigna F. Tapete D. (2020) “Mapping land subsidence in urban areas using Esa’s G-POD and the P-SBAS Insar technique: examples in Asia, South America and North Africa,” in 2020 mediterranean and middle-east geoscience and remote sensing symposium (M2GARSS). IEEE.
154
Coda S. Tessitore S. Di Martire D. Calcaterra D. De Vita P. Allocca V. (2019). Coupled ground uplift and groundwater rebound in the metropolitan city of Naples (southern Italy). J. Hydrology569, 470–482. 10.1016/j.jhydrol.2018.11.074
155
Colazas X. C. Strehle R. W. (1995). “Chapter 6 subsidence in the wilmington oil field, long beach, California, USA,” in Developments in petroleum science (Elsevier), 41, 285–335. 10.1016/s0376-7361(06)80053-1
156
Comerci V. Vittori E. (2019). The need for a standardized methodology for quantitative assessment of natural and anthropogenic land subsidence: the Agosta (Italy) gas field case. Remote Sens.11 (10), 1178. 10.3390/rs11101178
157
Confuorto P. Medici C. Bianchini S. Del Soldato M. Rosi A. Segoni S. et al (2022). Machine learning for defining the probability of Sentinel-1 based deformation trend changes occurrence. Remote Sens.14 (7), 1748. 10.3390/rs14071748
158
Coplin L. S. Galloway D. (1999). Houston-Galveston, Texas. Land subsidence in the United States, 1182. US geological survey circular, 35–48.
159
Cormick J. (2019). Land subsidence detection and monitoring using InSAR in Australia.
160
Costa A. L. Kok S. Korff M. (2020). Systematic assessment of damage to buildings due to groundwater lowering-induced subsidence: methodology for large scale application in The Netherlands. Proc. Int. Assoc. Hydrological Sci.382, 577–582. 10.5194/piahs-382-577-2020
161
Cuenca M. C. van Leijen F. J. Hanssen R. F. (2010). “Shallow subsidence in th Dutch wetlands estimated by satellite radar interferometry,” in First international conference on Frontiers in shallow subsurface technology (pp. cp-150) (European Association of Geoscientists & Engineers).
162
Cuervas-Mons J. Zêzere J. L. Domínguez-Cuesta M. J. Barra A. Reyes-Carmona C. Monserrat O. et al (2022). Assessment of urban subsidence in the Lisbon metropolitan area (Central-West of Portugal) applying sentinel-1 SAR dataset and active deformation areas procedure. Remote Sens.14 (16), 4084. 10.3390/rs14164084
163
Cuixia L. I. Wenbin J. I. A. N. (2006). THE ENVIRONMENTAL AND GEOLOGICAL PROBLEM OF FUZHOU CITY DURING ITS CITY CONSTRUCTION. 工程地质学报14 (S1), 223–227.
164
Dahm T. Heimann S. Bialowons W. (2011). A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Nat. Hazards58, 1111–1134. 10.1007/s11069-011-9716-9
165
Dahm T. Kühn D. Ohrnberger M. Kröger J. Wiederhold H. Reuther C. D. et al (2010). Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments: application to Hamburg, Germany. Geophys. J. Int.181 (1), 154–172. 10.1111/j.1365-246x.2010.04521.x
166
Da Lio C. Teatini P. Strozzi T. Tosi L. (2018). Understanding land subsidence in salt marshes of the Venice Lagoon from SAR Interferometry and ground-based investigations. Remote Sens. Environ.205, 56–70. 10.1016/j.rse.2017.11.016
167
Damoah-Afari P. Ding X. L. (2005). “Measuring ground subsidence in Shanghai using permanent scatterer insar technique,” in The 26th asian conference on remote sensing (ACRS2005), 7–11.
168
Damoah-Afari P. Ding X. L. Li Z. Lu Z. Omura M. (2007). “Six years of land subsidence in Shanghai revealed by JERS-1 SAR data,” in 2007 IEEE international geoscience and remote sensing symposium (IEEE), 2093–2097.
169
Damoah-Afari P. Ding X. L. Lu Z. Li Z. Omura M. (2010). Magnitude and extent of six years of land subsidence in Shanghai revealed by JERS-1 SAR China data. InTech.
170
Darwish N. Kaiser M. Koch M. Gaber A. (2021). Assessing the accuracy of ALOS/PALSAR-2 and sentinel-1 radar images in estimating the land subsidence of coastal areas: a case study in Alexandria city, Egypt. Remote Sens.13 (9), 1838. 10.3390/rs13091838
171
Dassargues A. Zhang J. (1992). Land subsidence in Shanghai: hydrogeological conditions and subsidence measurements. Bull. Eng. Geol. Environ.46, 27–36. 10.1007/bf02595030
172
de Glopper R. J. Ritzema H. P. (2023). 13 land subsidence.
173
Del Greco O. Garbarino E. Oggeri C. (2004). A multidisciplinary approach for the evaluation of the “Bottegone” subsidence (Grosseto, Italy). Berlin, Heidelberg: Engineering Geology for Infrastructure Planning in Europe: A European Perspective, 685–693.
174
Delinom R. M. Assegaf A. Aibidin H. Z. Taniguchi M. Suherman D. Lubis R. F. et al (2009). The contribution of human activities to subsurface environment degradation in Greater Jakarta area, Indonesia. Sci. total Environ.407 (2009), 3129–3141. 10.1016/j.scitotenv.2008.10.003
175
Del Soldato M. Solari L. Raspini F. Bianchini S. Ciampalini A. Montalti R. et al (2019). Monitoring ground instabilities using SAR satellite data: a practical approach. ISPRS Int. J. Geo-Information8 (7), 307. 10.3390/ijgi8070307
176
de Luna R. M. R. dos Anjos Garnés S. J. da Silva Pereira Cabral J. J. dos Santos S. M. (2021). Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area. Nat. Hazards106, 1821–1837. 10.1007/s11069-021-04513-2
177
de Luna R. M. R. Garnés S. J. D. A. Cabral J. J. D. S. P. dos Santos S. M. (2017). Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil). Nat. Hazards86, 1363–1376. 10.1007/s11069-017-2749-y
178
De Natale G. Troise C. Somma R. (2020). Invited perspectives: the volcanoes of Naples: how can the highest volcanic risk in the world be effectively mitigated?Nat. Hazards Earth Syst. Sci.20, 2037–2053. 10.5194/nhess-20-2037-2020
179
Deros S. N. M. Din N. M. Norzeli S. M. Omar R. C. Usman F. Hamim S. A. (2022). Land subsidence susceptibility projection for palembang slum area by complex MCDM-AHP technique. J. Eng. Technol. Sci.54, 220104. 10.5614/j.eng.technol.sci.2022.54.1.4
180
Devanthéry N. Crosetto M. Monserrat O. Cuevas-González M. Crippa B. (2014). An approach to persistent scatterer interferometry. Remote Sens.6 (7), 6662–6679. 10.3390/rs6076662
181
Dietrich J. K. Norman M. R. (2003). Steam flooding intensifies subsidence at Wilmington field. Oil gas J.101 (17), 41.
182
Di Lisa M. Ali H. E. A. Mazzanti P. Moretto S. (2020). Inferring the creep settlement behavior of rockfill in reclaimed lands by advanced SAR interferometry and numerical modeling: an example from arabian gulf. Remote Sens.12 (3), 527. 10.3390/rs12030527
183
Ding X. L. Liu G. X. Li Z. W. Li Z. L. Chen Y. Q. (2004). Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogrammetric Eng. Remote Sens.70 (10), 1151–1156. 10.14358/pers.70.10.1151
184
Dixon T. H. Amelung F. Ferretti A. Novali F. Rocca F. Dokka R. et al (2006). Space geodesy: subsidence and flooding in new orleans. Nature441 (7093), 587–588. 10.1038/441587a
185
Djaja R. Rais J. Abidin H. Z. Wedyanto K. (2004). “Land subsidence of Jakarta metropolitan area,” in Proceedings of the 3rd FIG regional conference for Asia and the pacific, 3–7.
186
Dokka R. K. (2011). The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi. J. Geophys. Res. Solid Earth116, B06403. 10.1029/2010jb008008
187
Dong S. Samsonov S. Yin H. Ye S. Cao Y. (2014). Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. earth Sci.72, 677–691. 10.1007/s12665-013-2990-y
188
Doornhof D. Kristiansen T. G. Nagel N. B. Pattillo P. D. Sayers C. (2006). Compaction and subsidence. Oilfield Rev.18 (3), 50–68.
189
Du J. Greiving S. Yap D. L. T. (2022). Informal settlement resilience upgrading-approaches and applications from a cross-country perspective in three selected metropolitan regions of southeast Asia. Sustainability14 (15), 8985. 10.3390/su14158985
190
Du Y. Feng G. Liu L. Fu H. Peng X. Wen D. (2020). Understanding land subsidence along the coastal areas of Guangdong, China, by analyzing multi-track MTInSAR data. Remote Sens.12 (2), 299. 10.3390/rs12020299
191
Duc N. A. (1999). Updating and analysis of Bangkok land subsidence caused by deep well pumping with emphasis on shallow soil settlement. Asian Institute of Technology. Master Thesis.
192
Duffy C. E. Braun A. Volker H. (2020). Surface subsidence in urbanized coastal areas: PSI methods based on Sentinel-1 for Ho Chi Minh City. Remote Sens.12 (24), 4130. 10.3390/rs12244130
193
DWASA, IWM (2008). Final report, resource assessment study, part 2. Dhaka Water Supply and Sewerage Authority. Dhaka.
194
Eggleston J. Pope J. (2013). Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. U. S. Geol. Surv. Circ.1392, 30. 10.3133/cir1392
195
Elsaka B. Radwan A. M. Rashwan M. (2020). Evaluation of nile delta-mediterranean sea conjunction using GPS, satellite-based gravity and altimetry datasets. J. Geoscience Environ. Prot.8 (2), 33–46. 10.4236/gep.2020.82003
196
Emery K. O. Aubrey D. G. (2012). Sea levels, land levels, and tide gauges. Springer Science & Business Media.
197
Emilia-Romagna A. R. (2007). “Rilievo della subsidenza nella pianura Emiliano-romagnola,” in Analisi interferometrica (Regione Emilia-Romagna, ATO), 5.
198
Emmanuel I. F. Chidi O. V. (2020). Characterisation and mapping of land subsidence based on geodetic techniques data in Lagos, Nigeria. Geodesy Geodyn. 10.1016/j.geog.2019.12.006
199
Emmanuel I. F. Chidi O. V. Babatunde O. O. (2020). Geostatistical evaluation of spatial variability of land subsidence rates in Lagos, Nigeria. Geodesy Geodyn.11, 316–327. 10.1016/j.geog.2020.04.001
200
Endo T. (2011). Sinking cities and governmental action: institutional responses to land subsidence in Osaka and Bangkok. Groundwater and Subsurface Environments. Hum. Impacts Asian Coast. Cities, 271–288. 10.1007/978-4-431-53904-9_14
201
Engelkemeir R. Khan S. D. Burke K. (2010). Surface deformation in Houston, Texas using GPS. Tectonophysics490 (1-2), 47–54. 10.1016/j.tecto.2010.04.016
202
Erban L. E. Gorelick S. M. Zebker H. A. (2014). Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett.9 (8), 084010. 10.1088/1748-9326/9/8/084010
203
Erban L. E. Gorelick S. M. Zebker H. A. Fendorf S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci.110 (34), 13751–13756. 10.1073/pnas.1300503110
204
Erkens G. Bucx T. Dam R. De Lange G. Lambert J. (2015). Sinking coastal cities. Proc. Int. Assoc. Hydrological Sci.372 (372), 189–198. 10.5194/piahs-372-189-2015
205
Erkens G. Stouthamer E. (2020). The 6M approach to land subsidence. Proc. Int. Assoc. Hydrological Sci.382, 733–740. 10.5194/piahs-382-733-2020
206
Esaki T. Makino R. Djamaruddin I. Ikemi H. (2010). Environmental geotechnology to cope with subsidence and sinkhole problem -some experiences in old mining districts-. J. Jpn. Soc. Eng. Geol.50 (6), 319e328. (in Japanese with English abstract).
207
Espiritu K. W. Reyes C. J. Benitez T. M. Tokita R. C. Galvez L. J. Ramirez R. (2022). Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) reveals continued ground deformation in and around Metro Manila, Philippines, associated with groundwater exploitation. Nat. Hazards114, 3139–3161. 10.1007/s11069-022-05509-2
208
Esteban M. Takagi H. Jamero L. Chadwick C. Avelino J. E. Mikami T. et al (2020). Adaptation to sea level rise: learning from present examples of land subsidence. Ocean Coast. Manag.189, 104852. 10.1016/j.ocecoaman.2019.104852
209
Euillades P. A. Euillades L. E. Rosell P Roa Y. (2020). “Subsidence in maceio, Brazil, characterized by dinsar and inverse modeling,” in 2020 IEEE Latin American GRSS & ISPRS remote sensing conference (LAGIRS) (IEEE), 313–317.
210
Fabris M. Achilli V. Borgstrom S. Floris M. Fiaschi S. Siniscalchi V. (2014). Valutazione della subsidenza nell’area di Ravenna tramite un approccio integrato InSAR/livellazione classica.
211
Fabris M. Cenni N. Fiaschi S. (2021). Editorial for special issue “monitoring land subsidence using remote sensing”. Remote Sens.13 (9), 1771. 10.3390/rs13091771
212
Fadhillah M. F. Achmad A. R. Lee C. W. (2020). Integration of InSAR time-series data and GIS to assess land subsidence along subway lines in the Seoul metropolitan area, South Korea. Remote Sens.12 (21), 3505. 10.3390/rs12213505
213
Famiglietti J. S. (2014). The global groundwater crisis. Nat. Clim. Change4 (11), 945–948. 10.1038/nclimate2425
214
Fang J. Nicholls R. J. Brown S. Lincke D. Hinkel J. Vafeidis A. T. et al (2022). Benefits of subsidence control for coastal flooding in China. Nat. Commun.13 (1), 6946. 10.1038/s41467-022-34525-w
215
Farolfi G. Del Soldato M. Bianchini S. Casagli N. (2019). A procedure to use GNSS data to calibrate satellite PSI data for the study of subsidence: an example from the north-western Adriatic coast (Italy). Eur. J. Remote Sens.52 (Suppl. 4), 54–63. 10.1080/22797254.2019.1663710
216
Featherstone W. Filmer M. Penna N. Morgan L. Schenk A. (2012). Anthropogenic land subsidence in the Perth Basin: challenges for its retrospective geodetic detection. J. R. Soc. West. Aust.95 (1), 53–62.
217
Featherstone W. E. Penna N. T. Filmer M. S. Williams S. D. P. (2015). Nonlinear subsidence at Fremantle, a long‐recording tide gauge in the Southern Hemisphere. J. Geophys. Res. Oceans120 (10), 7004–7014. 10.1002/2015jc011295
218
Feldkamp D. (2022). The effects of foundation quality on residential housing value; a case study of the municipality of Rotterdam (Doctoral dissertation).
219
Fiaschi S. Wdowinski S. (2015b). The contribution of land subsidence to the increasing coastal flooding hazard in Miami Beach. University of Padua.
220
Fiaschi S. Di Martire D. Tessitore S. Achilli V. Ahmed A. Borgstrom S. et al (2015a). Monitoring of land subsidence in Ravenna Municipality using two different DInSAR techniques: comparison and discussion of the results. Ecology23 (1), 38–50.
221
Fiaschi S. Tessitore S. Bonì R. Di Martire D. Achilli V. Borgstrom S. et al (2017). From ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GIScience Remote Sens.54 (3), 305–328. 10.1080/15481603.2016.1269404
222
Fiaschi S. Wdowinski S. (2020). Local land subsidence in Miami Beach (FL) and Norfolk (VA) and its contribution to flooding hazard in coastal communities along the US Atlantic coast. Ocean Coast. Manag.187, 105078. 10.1016/j.ocecoaman.2019.105078
223
Fonseca J. F. Palano M. Falcão A. P. Hrysiewicz A. Fernandez J. (2021). Interseismic strain accumulation near Lisbon (Portugal) from space geodesy. Geophys. Res. Lett.48 (24), e2021GL096862. 10.1029/2021gl096862
224
Fornasiero A. N. N. A. Putti M. A. R. I. O. Teatini P. I. E. T. R. O. Ferraris S. T. E. F. A. N. O. Rizzetto F. Tosi L. (2003). Monitoring of hydrological parameters related to peat oxidation in a subsiding coastal basin south of Venice, 278. Italy: International Association of Hydrological Sciences, Publication, 458–462.
225
Foster S. Hirata R. Eichholz M. Alam M. F. (2022). Urban self-supply from groundwater—an analysis of management aspects and policy needs. Water14, 575. 10.3390/w14040575
226
Frihy O. E. (2003). The Nile delta-Alexandria coast: vulnerability to sea-level rise, consequences and adaptation. Mitig. Adapt. Strategies Glob. Change8 (2), 115–138. 10.1023/a:1026015824714
227
Frihy O. E. S. Deabes E. A. Shereet S. M. Abdalla F. A. (2010). Alexandria-Nile Delta coast, Egypt: update and future projection of relative sea-level rise. Environ. Earth Sci.61 (2), 253–273. 10.1007/s12665-009-0340-x
228
Fuangswasdi A. Worakijthamrong S. Shah S. D. (2019). “Addressing subsidence in bangkok, Thailand and Houston, Texas: scientific comparisons and data-driven groundwater policies for coastal land-surface subsidence,” in IAEG/AEG annual meeting proceedings, San Francisco, California, 2018-volume 5: geologic hazards: earthquakes, land subsidence, coastal hazards, and emergency response (Springer International Publishing), 51–60.
229
Gabrysch R. K. Bonnet C. W. (1975). Land-surface subsidence in the Houston-Galveston region, Texas, 74. Austin, Texas: Texas Water Development Board.
230
Galloway D. L. Burbey T. J. (2011). Revisão: Subsidência regional associada à extracção de água subterrânea. Hydrogeol. J.19, 1459–1486. 10.1007/s10040-011-0775-5
231
Galloway D. L. Coplin L. S. Ingebritsen S. E. (2003). “Effects of land subsidence in the greater Houston area,” in Managing urban water supply, 187–203.
232
Galloway D. L. Jones D. R. Ingebritsen S. E. (1999). Land subsidence in the United States (Reston, Virginia: US Geological Survey), 1182.
233
Gambolati G. Giunta G. Putti M. Teatini P. Tomasi L. Betti I. et al (1998) “Coastal evolution of the Upper Adriatic Sea due to sea level rise and natural and anthropic land subsidence,” in CENAS: coastline evolution of the upper adriatic sea due to sea level rise and natural and anthropogenic land subsidence, 1–34.
234
Gambolati G. Putti M. Teatini P. (1996). Land subsidence. Hydrology Disasters, 231–268. 10.1007/978-94-015-8680-1_9
235
Gambolati G. Putti M. Teatini P. Camporese M. Ferraris S. Stori G. G. et al (2005). Peat land oxidation enhances subsidence in the Venice watershed. Eos, Trans. Am. Geophys. Union86 (23), 217–220. 10.1029/2005eo230001
236
Gambolati G. Putti M. Teatini P. Gasparetto Stori G. (2006a). Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Environ. Geol.49, 814–820. 10.1007/s00254-006-0176-6
237
Gambolati G. Ricceri G. Bertoni W. Brighenti G. Vuillermin E. (1991). Mathematical simulation of the subsidence of Ravenna. Water Resour. Res.27, 2899–2918. 10.1029/91wr01567
238
Gambolati G. Teatini P. Ferronato M. (2006b). “Anthropogenic land subsidence,” in Encyclopedia of hydrological sciences.
239
Gambolati G. Teatini P. Tomasi L. Gonella M. (1999). Coastline regression of the Romagna region, Italy, due to natural and anthropogenic land subsidence and sea level rise. Water Resour. Res.35 (1), 163–184. 10.1029/1998wr900031
240
Gambolati G. I. U. S. E. P. P. E. Putti M. A. R. I. O. Teatini P. Stori G. G. (2003). Subsidence due to peat oxidation and its impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Mater. Geoenvironment50, 125–128.
241
Gao Q. Crosetto M. Monserrat O. Palama R. Barra A. (2022). Infrastructure monitoring using the interferometric synthetic aperture radar (InSAR) technique. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.43, 271–276. 10.5194/isprs-archives-xliii-b3-2022-271-2022
242
Ge L. Chang H. C. Rizos C. Omura M. (2005). “Mine subsidence monitoring: a comparison among ENVISAT, ERS and JERS-1,” in Envisat & ERS symposium, 572.
243
Ge L. Cheng E. Li X. Rizos C. (2003). “Quantitative subsidence monitoring: the integrated InSAR, GPS and GIS approach,” in The 6th international symposium on satellite navigation technology including mobil positioning & location services, 87.
244
Geertsma J. (1973). Land subsidence above compacting oil and gas reservoirs. J. petroleum Technol.25 (06), 734–744. 10.2118/3730-pa
245
Giang N. N. H. Quang C. N. X. Long D. T. Ky P. D. Vu N. D. Tran D. D. (2022). Statistical and hydrological evaluations of water dynamics in the lower sai gon-dong nai river, vietnam. Water14 (1), 130. 10.3390/w14010130
246
Giao P. H. (1997). Artificial recharge of the Bangkok aquifer system for the mitigation of land subsidence. D. Eng. Diss., 2–96.
247
Gilluly J. Grant U. S. (1949). Subsidence in the long beach harbor area. California. Geolo. Soc. Am. Bull.60 (3), , 461–530.
248
Gómez J. F. Kwoll E. Walker I. J. Shirzaei M. (2021). Vertical land motion as a driver of coastline changes on a deltaic system in the Colombian Caribbean. Geosciences11 (7), 300. 10.3390/geosciences11070300
249
Gonella M. Gambolati G. Giunta G. Putti M. Teatini P. (1998). “Prediction of land subsidence due to groundwater withdrawal along the Emilia-Romagna coast,” in CENAS: coastline evolution of the upper adriatic sea due to sea level rise and natural and anthropogenic land subsidence, 151–168.
250
Gong H. Pan Y. Zheng L. Li X. Zhu L. Zhang C. et al (2018). Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology J.26 (5), 1417–1427. 10.1007/s10040-018-1768-4
251
Gornitz V. Couch S. Hartig E. K. (2001). Impacts of sea level rise in the New York City metropolitan area. Glob. Planet. Change32 (1), 61–88. 10.1016/s0921-8181(01)00150-3
252
Grgić M. Bender J. Bašić T. (2020). Estimating vertical land motion from remote sensing and in-situ observations in the Dubrovnik area (Croatia): a multi-method case study. Remote Sens.12 (21), 3543. 10.3390/rs12213543
253
Grube F. (1973). “Ingenieurgeologische Erkundung der Erdfälle im Bereich des Salzstocks Othmarschen-Langenfelde (Hamburg),” in Symposium, sink-holes and subsidence: engineeringgeological problems related to soluble rocks= effondrements et affaissements: problemes de geologie de l'ingenieur relatifs aux roches solubles: proceedings, Hannover, 1–7.
254
Guerrera F. Martín-Martín M. Tramontana M. Nimon B. Essotina Kpémoua K. (2021). Shoreline changes and coastal erosion: the case study of the coast of Togo (bight of Benin, west africa margin). Geosciences11 (2), 40. 10.3390/geosciences11020040
255
Hakim W. L. Achmad A. R. Eom J. Lee C. W. (2020). Land subsidence measurement of Jakarta coastal area using time series interferometry with Sentinel-1 SAR data. J. Coast. Res.102 (SI), 75–81. 10.2112/si102-010.1
256
Halicioglu K. Erten E. Rossi C. (2021). Monitoring deformations of Istanbul metro line stations through Sentinel-1 and levelling observations. Environ. Earth Sci.80 (9), 1–10. 10.1007/s12665-021-09644-0
257
Hallegatte S. Green C. Nicholls R. J. Corfee-Morlot J. (2013). Future flood losses in major coastal cities. Nat. Clim. change3 (9), 802–806. 10.1038/nclimate1979
258
Hamdani R. S. Hadi S. P. Rudiarto I. (2021). Progress or regress? A systematic review on two decades of monitoring and addressing land subsidence hazards in semarang city. Sustainability13 (24), 13755. 10.3390/su132413755
259
Hamim S. A. Usman F. (2019). “Determination of land subsidence caused by land-use changing in palembang city using remote sensing data,” in Third international conference on sustainable innovation 2019–technology and engineering (IcoSITE 2019) (Atlantis Press), 101–106.
260
Hamling I. J. Wright T. J. Hreinsdóttir S. Wallace L. M. (2022). A snapshot of New Zealand's dynamic deformation field from Envisat InSAR and GNSS observations between 2003 and 2011. Geophys. Res. Lett.49 (2), e2021GL096465. 10.1029/2021gl096465
261
Haque D. M. E. Hayat T. Tasnim S. (2019). Time series analysis of subsidence in Dhaka City, Bangladesh using Insar. Malays. J. Geosciences3 (1), 32–44. 10.26480/mjg.01.2019.32.44
262
Haque S. J. Onodera S. I. Shimizu Y. (2013). An overview of the effects of urbanization on the quantity and quality of groundwater in South Asian megacities. Limnology14, 135–145. 10.1007/s10201-012-0392-6
263
Harris F. R. Harlow E. H. (1948). “Subsidence of the terminal island-long beach area,” in Transactions of the American society of civil engineers, 113, 375–396.
264
Hartmann J. Moosdorf N. (2012). Global Lithological Map Database v1.0 (gridded to 0.5° spatial resolution). PANGAEA. 10.1594/PANGAEA.788537
265
Hashimoto R. Kazama S. Hashimoto T. Oguma K. Takizawa S. (2022). Planning methods for conjunctive use of urban water resources based on quantitative water demand estimation models and groundwater regulation index in Yangon City, Myanmar. J. Clean. Prod.367, 133123. 10.1016/j.jclepro.2022.133123
266
Hawkes A. D. Horton B. P. Nelson A. R. Vane C. H. Sawai Y. (2011). Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quat. Sci. Rev.30 (3-4), 364–376. 10.1016/j.quascirev.2010.11.017
267
Hayati N. Widodo A. Kurniawan A. Sanjiwani I. D. M. A. Darminto M. R. Yudha I. S. et al (2022). Small baselines techniques of time series InSAR to monitor and predict land subsidence causing flood vulnerability in Sidoarjo, Indonesia. Geomatics, Nat. Hazards Risk13 (1), 2124–2150. 10.1080/19475705.2022.2109518
268
He X. C. Yang T. L. Shen S. L. Xu Y. S. Arulrajah A. (2019). Land subsidence control zone and policy for the environmental protection of Shanghai. Int. J. Environ. Res. public health16 (15), 2729. 10.3390/ijerph16152729
269
Heleno S. Henriques M. J. Falcao A. P. Lima N. Fonseca A. M. Mancuso M. et al (2010). “Measuring subsidence in the center of Lisbon with persistent scatters interferometry (PSI), CGPS and levelling surveys,” in ESA living planet symposium, 686.
270
Heleno S. I. Oliveira L. G. Henriques M. J. Falcão A. P. Lima J. N. Cooksley G. et al (2011). Persistent scatterers interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ.115 (8), 2152–2167. 10.1016/j.rse.2011.04.021
271
Hendarto H. Standing J. (2019). “Influence of groundwater extraction on land subsidence in Jakarta,” in Proceedings of the XVII European conference on soil mechanics and geotechnical engineering, ECSMGE, 1–8.
272
Hengxing L. A. N. Yunshan M. E. N. G. Yixing Z. H. A. N. G. (2019). Spatiotemporal evolution analysis of land subsidence in Fuzhou city under the influence of complex factors. 工程地质学报27 (6), 1350–1361. 10.13544/j.cnki.jeg.2018-268
273
Henriques M. J. Lima J. N. Falcao A. P. Mancuso M. Heleno S. Falcao A. P. (2011). “Land subsidence in Lisbon area: validation of PsinSAR results,” in Proc. Of FIG working week.
274
Herrera-García G. Ezquerro P. Tomás R. Béjar-Pizarro M. López-Vinielles J. Rossi M. et al (2021). Mapping the global threat of land subsidence. Science371 (6524), 34–36. 10.1126/science.abb8549
275
Higa T. L. (2001). Subsidence in Long Beach, California: the decisionmaking process in determining mitigation policy and disbursement of oil revenues. Fullerton: California State University.
276
Higgins S. A. (2016). Review: advances in delta-subsidence research using satellite methods. Hydrogeology J.24 (3), 587–600. 10.1007/s10040-015-1330-6
277
Higgins S. A. Overeem I. Steckler M. S. Syvitski J. P. Seeber L. Akhter S. H. (2014). InSAR measurements of compaction and subsidence in the Ganges‐Brahmaputra Delta, Bangladesh. J. Geophys. Res. Earth Surf.119 (8), 1768–1781. 10.1002/2014jf003117
278
Hilmi E. Christianto D. (2022). The potential of high tidal flooding disaster in North Jakarta using mapping and mangrove relationship approach. In IOP Conf. Ser. Earth Environ. Sci.989 (1), 012001. 10.1088/1755-1315/989/1/012001
279
Hirose K. Maruyama Y. Murdohardono D. Effendi A. Abidin H. Z. (2001). Land subsidence detection using JERS-1 SAR Interferometry. J. Surv. Geod.XI (3), 9–14.
280
Hishammuddin M. A. H. Wang J. X. (2021). Towards sustainable, resilient and adaptive urban underground space (uus) exploration, land subsidence and economic impact spatial model (USEM) in shanghai, PR China: systematic reviews, model framework, initial results and pre-determined challenges. IOP Conf. Ser. Earth Environ. Sci.861 (7), 072033. 10.1088/1755-1315/861/7/072033
281
Ho L. P. (2008). “Impacts of climate changes and urbanisation on urban inundation in Ho Chi Minh City,” in 11th international conference on urban drainage (Edinburgh, Scotland, UK).
282
Holzer T. L. (1981). Preconsolidation stress of aquifer systems in areas of induced land subsidence. Water Resour. Res.17 (3), 693–703. 10.1029/wr017i003p00693
283
Holzer T. L. (1989). State and local response to damaging land subsidence in United States urban areas. Eng. Geol.27 (1-4), 449–466. 10.1016/0013-7952(89)90041-0
284
Holzer T. L. (1990). Land subsidence caused by withdrawal of oil and gas in the Gulf Coastal Plain--the Houston, Texas, case history.
285
Holzer T. L. Bluntzer R. L. (1984). Land subsidence near oil and gas fields, Houston, Texas a. Groundwater22 (4), 450–459. 10.1111/j.1745-6584.1984.tb01416.x
286
Holzer T. L. Galloway D. L. (2005). Impacts of land subsidence caused by withdrawal of underground fluids in the United States.
287
Holzer T. L. Johnson A. I. (1985). Land subsidence caused by ground water withdrawal in urban areas. GeoJournal11, 245–255. 10.1007/bf00186338
288
Hong S. H. Ju J. H. Park S. W. Cigna F. (2022). “Multi-frequency synthetic aperture radar observations to explore ground subsidence,” in IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium (IEEE), 4931–4934.
289
Hoogeveen R. Van Leeuwen B. (1996). The large scale development of land subsidence in northwest Jakarta and north Tangerang, Indonesia. Int. J. Rock Mech. Min. Sci. Geomechanics Abstr.7 (33), 298A.
290
Horman J. (2020). Phenomenon of sinking jakarta from groundwater usage and other drivers that affect its implication geographically, social, economically, and its environment. J. Jakarta Groundw. Issue, 7810700.
291
Hou A. Y. Qiao X. Li D. (2016). Ground deformation monitoring in qingdao coastal areas by time-series terrasar-X images. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.7, 29–33. 10.5194/isprsarchives-xli-b7-29-2016
292
Hu B. Chen J. Zhang X. (2019a). Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors19 (14), 3181. 10.3390/s19143181
293
Hu B. Chen X. Zhang X. (2019b). Using multisensor SAR datasets to monitor land subsidence in Los Angeles from 2003 to 2017. J. Sensors2019, 1–15. 10.1155/2019/9389820
294
Hu B. Yang B. Zhang X. Chen X. Wu Y. (2019c). Time-series displacement of land subsidence in Fuzhou downtown, monitored by SBAS-InSAR technique. J. Sensors2019, 1–12. 10.1155/2019/3162652
295
Hu B. Zhang J. Na J. Liu D. Xie G. (2022). Temporal principal component analysis and synthetic aperture radar interference analysis of the spatial and temporal evolution of ground subsidence in the Los Angeles area. J. Appl. Remote Sens.16 (4), 044504. 10.1117/1.jrs.16.044504
296
Hu B. Zhou J. Wang J. Chen Z. Wang D. Xu S. (2009). Risk assessment of land subsidence at Tianjin coastal area in China. Environ. Earth Sci.59, 269–276. 10.1007/s12665-009-0024-6
297
Hu R. Wang S. Lee C. Li M. (2002). Characteristics and trends of land subsidence in Tanggu, Tianjin, China. Bull. Eng. Geol. Environ.61, 213–225. 10.1007/s100640100132
298
Hu R. L. Yue Z. Q. Wang L. U. Wang S. J. (2004). Review on current status and challenging issues of land subsidence in China. Eng. Geol.76 (1-2), 65–77. 10.1016/j.enggeo.2004.06.006
299
Huang H. Xue D. Zhuo G. Yu X. Qiao J. Yang L. (2019). “Monitoring land subsidence in Fuzhou City (China) using the SBAS-InSAR method with Sentinel-1 imagery data,” in 2019 6th asia-pacific conference on synthetic aperture radar (APSAR) (IEEE), 1–5.
300
Huang J. M. Guo Y. Hu R. Q. Zhou Z. Y. (2013). Analysis of land subsidence in jinshazhou area, Guangzhou city. Chin. J. Geol. Hazard Control24 (2), 61–67.
301
Huang Y. Jiang X. (2010). Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat. Hazards54, 839–850. 10.1007/s11069-010-9509-6
302
Hussain M. A. Chen Z. Shoaib M. Shah S. U. Khan J. Ying Z. (2022). Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique. Sci. Rep.12 (1), 5294. 10.1038/s41598-022-09359-7
303
Hutabarat L. E. Ilyas T. (2017). Mapping of land subsidence induced by groundwater extraction in urban areas as basic data for sustainability countermeasures. Int. J. Technol.8 (6), 1001–1011. 10.14716/ijtech.v8i6.754
304
Hutabarat L. E. Sinaga H. R. M. Ilyas T. Prakoso W. A. (2019). Land subsidence induced by the rate of consolidation of marine clay in kamal muara northern jakarta. IOP Conf. Ser. Earth Environ. Sci.258 (1), 012019. 10.1088/1755-1315/258/1/012019
305
Hwang C. Yang Y. Kao R. Han J. Shum C. K. Galloway D. L. et al (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Sci. Rep.6, 28160. 10.1038/srep28160
306
Hwang R. N. Moh Z. C. (2020). Back analyses of historical ground subsidence induced by the lowering of groundwater table.
307
Ikemi H. (2017). Geologically constrained changes to landforms caused by human activities in the 20th century: a case study from Fukuoka Prefecture, Japan. Appl. Geogr.87, 115–126. 10.1016/j.apgeog.2017.08.001
308
Ikuemonisan F. E. Ozebo V. C. (2020). Characterisation and mapping of land subsidence based on geodetic observations in Lagos, Nigeria. Geodesy Geodyn.11 (2), 151–162. 10.1016/j.geog.2019.12.006
309
Ikuemonisan F. E. Ozebo V. C. Olatinsu O. B. (2020). Geostatistical evaluation of spatial variability of land subsidence rates in Lagos, Nigeria. Geodesy Geodyn.11 (5), 316–327. 10.1016/j.geog.2020.04.001
310
Ikuemonisan F. E. Ozebo V. C. Olatinsu O. B. (2021a). Investigating and modelling ground settlement response to groundwater dynamic variation in parts of Lagos using space-based retrievals. Solid Earth Sci.6 (2), 95–110. 10.1016/j.sesci.2021.03.001
311
Ikuemonisan F. E. Ozebo V. C. Olatinsu O. B. (2021b). Investigation of Sentinel-1-derived land subsidence using wavelet tools and triple exponential smoothing algorithm in Lagos, Nigeria. Environ. Earth Sci.80, 1–17. 10.1007/s12665-021-10020-1
312
Ingebritsen S. E. Galloway D. L. (2014). Coastal subsidence and relative sea level rise. Environ. Res. Lett.9 (9), 091002. 10.1088/1748-9326/9/9/091002
313
Ingebritsen S. E. Jones D. R. (1999). Santa clara valley, California.” land subsidence in the United States. U. S. Geol. Surv. Circ.1182, 15–22.
314
Intui S. Inazumi S. Soralump S. (2022a). Evaluation of land subsidence during groundwater recovery. Appl. Sci.12 (15), 7904. 10.3390/app12157904
315
Intui S. Inazumi S. Soralump S. (2022b). Sustainability of soil/ground environment under changes in groundwater level in bangkok plain, Thailand. Sustainability14 (17), 10908. 10.3390/su141710908
316
Irawan D. S. Nursetyowati P. Nova M. C. Maulina S. (2022). System dynamic simulation to determine the effect of water consumption on land subsidence during covid-19 pandemic in jakarta. IOP Conf. Ser. Earth Environ. Sci.1065 (1), 012016. 10.1088/1755-1315/1065/1/012016
317
Ishii M. Kuramochi F. Endo T. (1970). “Recent tendencies of the land subsidence in Tokyo,” in Proceedings of the anaheim symposium.
318
Ismail S. Mansor S. Rodsi A. Bujang B. K. (2011). Geotechnical modeling of fractures and cavities that are associated with geotechnical engineering problems in Kuala Lumpur limestone, Malaysia. Environ. Earth Sci.62, 61–68. 10.1007/s12665-010-0497-3
319
Jacobi D. Syme B. (2005). Port Adelaide seawater stormwater flooding study. City Port Adel. Enfield1.
320
Jago-on K. A. B. Kaneko S. Fujikura R. Fujiwara A. Imai T. Matsumoto T. et al (2009). Urbanization and subsurface environmental issues: an attempt at DPSIR model application in Asian cities. Sci. total Environ.407 (9), 3089–3104. 10.1016/j.scitotenv.2008.08.004
321
Jakobsen P. R. Wegmuller U. Capes R. Pedersen S. A. S. (2013). Terrain subsidence detected by satellite radar scanning of the Copenhagen area, Denmark, and its relation to the tectonic framework. Geol. Surv. Den. Greenl28, 25–28. 10.34194/geusb.v28.4713
322
Jensen J. R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. New Delhi: Pearson Education India.
323
Jeon W. Yi J. (2021). Observation of ground subsidence in bangkok, Thailand using PSInSAR technique. Korean J. Remote Sens.37 (6_1), 1625–1630. 10.7780/KJRS.2021.37.6.1.11
324
Jiacheng X. I. O. N. G. Yunju N. I. E. Yue L. U. O. Yongfei L. I. (2019). Monitoring urban land subsidence by dual-polarization Sentinel-1 data: a case study of Shanghai. Bull. Surv. Mapp.11, 98. 10.13474/j.cnki.11-2246.2019.0360
325
Jiang Y. Liao M. Wang H. Zhang L. Balz T. (2016). Deformation monitoring and analysis of the geological environment of Pudong international airport with persistent scatterer SAR interferometry. Remote Sens.8 (12), 1021. 10.3390/rs8121021
326
Jian-Zhong W. U. Han-Mei W. A. N. G. Tian-Liang Y. A. N. G. (2009). Recharge to shallow aquifer to control land subsidence due to construction in Shanghai city. Geoscience23 (6), 1194.
327
Jing L. (2007). Environmental and geological problems caused by over-exploitation of groundwater and its prevention of Guangdong Province. Chin. J. Geol. Hazard Control18 (1), 64–67.
328
Jo M.-J. Won J.-S. Kim S.-W. (2011). “A time-series observation of ground subsidence at Ulsan area using SAR interferometry,” in 2011 3rd international asia-pacific conference on synthetic aperture radar (APSAR) (IEEE).
329
John B. Das S. (2020). Identification of risk zone area of declining piezometric level in the urbanized regions around the City of Kolkata based on ground investigation and GIS techniques. Groundw. Sustain. Dev.11, 100354. 10.1016/j.gsd.2020.100354
330
Jones C. E. An K. Blom R. G. Kent J. D. Ivins E. R. Bekaert D. (2016). Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid Earth121 (5), 3867–3887. 10.1002/2015jb012636
331
Jones L. L. Warren J. P. (1976). Land subsidence costs in the Houston‐Baytown area of Texas. Journal‐American Water Works Assoc.68 (11), 597–599. 10.1002/j.1551-8833.1976.tb02501.x
332
Junior J. R. T. Candeias A. L. B. Jaime J. da S. P. C. (2020). DINSAR technical proposal for study of soil subsidence the neighborhood of Boa viagem, recife-PE, Brazil.
333
Kaitantzian A. Loupasakis C. Tzampoglou P. Parcharidis I. (2020). Ground subsidence triggered by the overexploitation of aquifers affecting urban sites: the case of Athens coastal zone along faliro bay (Greece). Geofluids2020, 1–18. 10.1155/2020/8896907
334
Kanwal S. (2022). Study of ground displacements, erosion and sea level rise along Karachi coast. Karachi.
335
Kanwal S. Ding X. Wu S. Sajjad M. (2022). Vertical ground displacements and its impact on erosion along the Karachi coastline, Pakistan. Remote Sens.14 (9), 2054. 10.3390/rs14092054
336
Kanwal S. Ding X. Zhang L. (2018). “Measurement of vertical deformation in Karachi using multi-temporal insar,” in IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium (IEEE), 1395–1398.
337
Karila K. Karjalainen M. Hyyppä J. (2005). Urban land subsidence studies in Finland using synthetic aperture radar images and coherent targets. Photogramm. J. Finl.19, 43–53.
338
Kearns T. J. (2018). GPS monitoring and land subsidence in the Houston metropolitan area (doctoral dissertation).
339
Kearns T. J. Wang G. Bao Y. Jiang J. Lee D. (2015). Current land subsidence and groundwater level changes in the Houston Metropolitan Area (2005–2012). J. Surv. Eng.141 (4), 05015002. 10.1061/(asce)su.1943-5428.0000147
340
Kearns T. J. Wang G. Turco M. Welch J. Tsibanos V. Liu H. (2019). Houston16: a st4geodetic reference frame for subsidence and faulting study in the Houston metropolitan area, Texas, US. Geodesy Geodyn.10 (5), 382–393. 10.1016/j.geog.2018.05.005
341
Kebede A. S. Nicholls R. J. (2012). Exposure and vulnerability to climate extremes: population and asset exposure to coastal flooding in Dar es Salaam, Tanzania. Reg. Environ. Change12, 81–94. 10.1007/s10113-011-0239-4
342
Kelsey J. Gray D. A. (1972). Geodetic aspects concerning possible subsidence in southeastern England. Philosophical Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.272 (1221), 141–149. 10.1098/rsta.1972.0040
343
Kenfack J. A. A. Gwet H. Wirngo H. M. Tchawa P. Tagne Tiegam R. F. (2024). Detection of underground water cavities in urban areas by electrical resistivity tomography. Available at SSRN 4081815.
344
Kersten T. Kobe M. Gabriel G. Timmen L. Schön S. Vogel D. (2017). Geodetic monitoring of subrosion-induced subsidence processes in urban areas. J. Appl. Geodesy11 (1), 21–29. 10.1515/jag-2016-0029
345
Khaing K. K. (2016) “Groundwater environment in yangon, Myanmar,” in Groundwater environment in asian cities. Butterworth-Heinemann, 317–335.
346
Khan S. D. Gadea O. C. Tello Alvarado A. Tirmizi O. A. (2022). Surface deformation analysis of the Houston area using time series interferometry and emerging hot spot analysis. Remote Sens.14 (15), 3831. 10.3390/rs14153831
347
Kim D. Lee H. Okeowo M. A. Basnayake S. Jayasinghe S. (2017). Cost-effective monitoring of land subsidence in developing countries using semipermanent GPS stations: a test study over Houston, Texas. J. Appl. Remote Sens.11 (2), 026033. 10.1117/1.jrs.11.026033
348
Kim J. S. Kim D. J. Kim S. W. Won J. S. Moon W. M. (2007). Monitoring of urban land surface subsidence using PSInSAR. Geosciences J.11, 59–73. 10.1007/bf02910381
349
Kim J. S. Park S. E. Moon W. I. M. (2006). Application of PSInSAR technique for monitoring surface deformation over coastal area of incheon. 한국지구물리탐사학회 학술대회논문집, 277–280.
350
King C. L. (1953). Sea-level movement in the vicinity of Durban. South Afr. J. Geol.56 (1), 121–126. 10.10520/AJA10120750_2182
351
Kirshen P. Knee K. Ruth M. (2008). Climate change and coastal flooding in Metro Boston: impacts and adaptation strategies. Clim. Change90 (4), 453–473. 10.1007/s10584-008-9398-9
352
Klein R. J. Nicholls R. J. Thomalla F. (2003). The resilience of coastal megacities to weather-related hazards. Build. safer cities, 101–120.
353
Ko L. M. Ko Giao P. H. (2021). “Land subsidence of yangon plain: an overview and preliminary results of consolidation analysis,” in 4th Asia pacific meeting on near surface geoscience & engineering (Netherlands: EAGE Publications BV), 2021. No. 1.
354
Konagai K. Asakura T. Suyama S. Kyokawa H. Kiyota T. Eto C. et al (2011). “Soil subsidence map of the Tokyo bay area liquefied in the March 11th Great East Japan Earthquake,” in Proceeding of international symposium on engineering lessons learned from the giant earthquake (one year after 2011 great east Japan earthquake), 855–864.
355
Kontogianni V. Stiros S. C. (2020). Ground loss and static soil–structure interaction during urban tunnel excavation: evidence from the excavation of the Athens Metro. Infrastructures5 (8), 64. 10.3390/infrastructures5080064
356
Korff M. (2013). Response of piled buildings to the construction of deep excavations, 13. Netherlands: IOS Press.
357
Koster K. Stafleu J. Stouthamer E. (2018). Differential subsidence in the urbanised coastal-deltaic plain of The Netherlands. Neth. J. Geosciences97 (4), 215–227. 10.1017/njg.2018.11
358
Koudogbo F. N. Duro J. Arnaud A. Bally P. Abidin H. Z. Andreas H. (2012). “Combined X-and L-band PSI analyses for assessment of land subsidence in Jakarta,” in Remote sensing for agriculture, ecosystems, and hydrology XIV (Bellingham, WA, United States: SPIE), 8531, 46–58. 10.1117/12.974821
359
Kovach R. L. (1974). Source mechanisms for Wilmington oil field, California, subsidence earthquakes. Bull. Seismol. Soc. Am.64 (3-1), 699–711. 10.1785/bssa0643-10699
360
Krassakis P. Kazana S. Chen F. Koukouzas N. Parcharidis I. Lekkas E. (2019). Detecting subsidence spatial risk distribution of ground deformation induced by urban hidden streams. Geocarto Int.36, 622–639. just-accepted). 10.1080/10106049.2019.1622601
361
Krockenberger M. (2015). Population growth in Australia. Manuka: Australia Institute.
362
Kruger F. Klinge K. (2002). “The 1996 Teutschenthal Potash Mine Collapse: an unusual event with an unusual mechanism,” in Ten years of German regional seismic network (GRSN). Editor KornM. (Senate commission for geoscience), 206–210.
363
Kühn F. Margane A. Tatong T. Wever T. (2004). InSAR-based land subsidence map for Bangkok, Thailand. Z. für Angew. Geol.50 (1), 74–81.
364
Kurniawan A. Deviantari U. W. (2022). Literatur review: perbandingan berbagai teknik pemodelan land subsidence. Geoid17 (2), 267–272. 10.12962/j24423998.v17i2.11340
365
Latief H. Putri M. R. Hanifah F. Afifah I. N. Fadli M. Ismoyo D. O. (2018). Coastal hazard assessment in northern part of jakarta. Procedia Eng.212, 1279–1286. 10.1016/j.proeng.2018.01.165
366
Laura C. Pietro T. Luigi T. (2005b). Land subsidence in the Venetian area: known and recent aspects. Geol. Appl.1, 5–11. 10.1474/GGA.2005-01.0-01.0001
367
Lavoie J. Dubeau S. Tremblay M. (2015). Affaissement d’une chaussée construite sur argile à Montréal. QC.
368
Le Cozannet G. Raucoules D. Wöppelmann G. de Michele M. Poupardin A. (2014). “InSAR monitoring of ground motions impacts for in-situ sea level measurement: the example of Dakar (Senegal),” in 2014 IEEE geoscience and remote sensing symposium (IEEE), 970–973.
369
Le Cozannet G. Raucoules D. Wöppelmann G. Garcin M. Da Sylva S. Meyssignac B. et al (2015). Vertical ground motion and historical sea-level records in Dakar (Senegal). Environ. Res. Lett.10 (8), 084016. 10.1088/1748-9326/10/8/084016
370
Lexa J. Sebesta J. Chavez J. A. Hernández W. Pecskay Z. (2011). Geology and volcanic evolution in the southern part of the san salvador metropolitan area. J. Geosciences56 (1), 106–140. 10.3190/jgeosci.088
371
Li C. Tang X. Ma T. (2006). Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China. Hydrogeology J.14 (8), 1652–1665. 10.1007/s10040-006-0092-6
372
Li D. Li B. Zhang Y. Fan C. Xu H. Hou X. (2022a). Spatial and temporal characteristics analysis for land subsidence in Shanghai coastal reclamation area using PS-InSAR method. Front. Mar. Sci.9. 10.3389/fmars.2022.1000523
373
Li G. Zhao C. Wang B. Liu X. Chen H. (2022). Land subsidence monitoring and dynamic prediction of reclaimed islands with multi-temporal InSAR techniques in Xiamen and Zhangzhou cities, China. Remote Sens.14 (12), 2930. 10.3390/rs14122930
374
Li J. Zhou L. Ren C. Liu L. Zhang D. Ma J. et al (2021a). Spatiotemporal inversion and mechanism analysis of surface subsidence in Shanghai area based on time-series InSAR. Appl. Sci.11 (16), 7460. 10.3390/app11167460
375
Li J. Zhou L. Zhu Z. Qin J. Xian L. Zhang D. et al (2022c). Surface deformation mechanism analysis in Shanghai areas based on TS-InSAR technology. Remote Sens.14 (17), 4368. 10.3390/rs14174368
376
Li M. Zhang X. Bai Z. Xie H. Chen B. (2022). Land subsidence in Qingdao, China, from 2017 to 2020 based on PS-InSAR. Int. J. Environ. Res. Public Health19 (8), 4913. 10.3390/ijerph19084913
377
Li M. G. Chen J. J. Xu Y. S. Tong D. G. Cao W. W. Shi Y. J. (2021b). Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng. Geol.282, 105995. 10.1016/j.enggeo.2021.105995
378
Li P. Li M. Li Z. Wang H. (2020). Coastal lowlands' inundation risk assessment with high-resolution TanDEM-X DEM in qingdao coastal plains, China. Proc. Int. Assoc. Hydrological Sci.382, 621–627. 10.5194/piahs-382-621-2020
379
Liao M. Pei Y. Wang H. Fang Z. Wei L. (2012). Subsidence monitoring in Shanghai using the PSInSAR technique. Shanghai Land Resour.33 (3), 5–10.
380
Liao X. Zhang B. Wu S. (2022). “Monitoring of ground deformation along shenzhen metro system with sentinel-1A SAR Imagery,” in IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium (IEEE), 2943–2946. 10.1016/j.jag.2022.103099
381
Lin S. Y. (2022). Urban hazards caused by ground deformation and building subsidence over fossil lake beds: a study from Taipei City. Geomatics, Nat. Hazards Risk13 (1), 2890–2910. 10.1080/19475705.2022.2141139
382
Liu G. Luo X. Chen Q. Huang D. Ding X. (2008). Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors8 (8), 4725–4741. 10.3390/s8084725
383
Liu Y. Li J. (2022). Land subsidence due to creep of the gulf coast aquifer system in the houston-galveston region. Environ. Eng. Geoscience28 (3), 237–254. 10.2113/eeg-d-21-00076
384
Liu Y. Li J. Fang Z. N. (2019). Groundwater level change management on control of land subsidence supported by borehole extensometer compaction measurements in the Houston-Galveston Region, Texas. Geosciences9 (5), 223. 10.3390/geosciences9050223
385
Liu Y. Rashvand M. Li J. (2020). “Preliminary investigation of land subsidence impacts on sea level change in Baltimore inner harbor, Maryland,” in World environmental and water resources congress 2020 (Reston, VA: American Society of Civil Engineers), 236–243.
386
Lixin Y. Jie W. Chuanqing S. Guo J. W. Yanxiang J. Liu B. (2010). Land subsidence disaster survey and its economic loss assessment in Tianjin, China. Nat. Hazards Rev.11 (1), 35–41. 10.1061/(asce)1527-6988(2010)11:1(35)
387
Lorphensri O. Ladawadee A. Dhammasarn S. (2011). “Review of groundwater management and land subsidence in Bangkok, Thailand. Groundwater and subsurface environments,” in Human impacts in Asian coastal cities, 127–142.
388
Loupasakis C. (2020). An overview of the land subsidence phenomena occurring in Greece, triggered by the overexploitation of the aquifers for irrigation and mining purposes. Proc. Int. Assoc. Hydrological Sci.382, 321–326. 10.5194/piahs-382-321-2020
389
Lui T. (1991). Land subsidence in Shanghai. in Shanghai land subsidence volume (pp. 1-14) (Bureau of Geology and Mineral Resources of Shanghai China).
390
Luo H. Tan G. Lin S. (2022). “Analysis of spatial and temporal characteristics of ground subsidence in xiamen based on PS-InSAR,” in 2022 7th international conference on image, vision and computing (ICIVC) (IEEE), 307–311.
391
Luo Q. Perissin D. Lin H. Zhang Y. Wang W. (2013). Subsidence monitoring of Tianjin suburbs by TerraSAR-X persistent scatterers interferometry. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.7 (5), 1642–1650. 10.1109/jstars.2013.2271501
392
Luo Q. Perissin D. Zhang Y. Jia Y. (2014). L-and X-band multi-temporal InSAR analysis of Tianjin subsidence. Remote Sens.6 (9), 7933–7951. 10.3390/rs6097933
393
Luo Y. Ye S. Wu J. Wang H. Jiao X. (2016). A modified inverse procedure for calibrating parameters in a land subsidence model and its field application in Shanghai, China. Hydrogeology J.24 (3), 711–725. 10.1007/s10040-016-1381-3
394
Luxiang S. Manfang B. (1984). Case History No. 9.2; Shanghai, China. Guidebook to studies of land subsidence due to ground-water withdrawal. UNESCO Stud. Rep. Hydrol.40, 155–160.
395
Ma P. Wang W. Zhang B. Wang J. Shi G. Huang G. et al (2019). Remotely sensing large-and small-scale ground subsidence: a case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Remote Sens. Environ.232, 111282. 10.1016/j.rse.2019.111282
396
Ma P. Zheng Y. Zhang Z. Wu Z. Yu C. (2022). Building risk monitoring and prediction using integrated multi-temporal InSAR and numerical modeling techniques. Int. J. Appl. Earth Observation Geoinformation114, 103076. 10.1016/j.jag.2022.103076
397
Magnan A. K. Oppenheimer M. Garschagen M. Buchanan M. K. Duvat V. K. Forbes D. L. et al (2022). Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Sci. Rep.12 (1), 10677. 10.1038/s41598-022-14303-w
398
Mahmud M. U. Yakubu T. A. Adewuyi T. O. Sousa J. J. Ruiz Armenteros A. M. Bakon M. et al (2016). Subsidence monitoring in the coastal region of Nigeria using multi temporal interferometric synthetic aperture radar. MT-InSAR.
399
Mallum F. (2022). Stormwater management and the assessment of green infrastructure implementation in new orleans. Shima Int. J. Res. Isl. Cult.16, 61–75. 10.21463/shima.146
400
Mangano G. Zecchin M. Civile D. (2020). Large-scale gravity-driven phenomena in the Crotone Basin, southern Italy. Mar. Petroleum Geol.117, 104386. 10.1016/j.marpetgeo.2020.104386
401
Margat J. Van der Gun J. (2013). Groundwater around the world: a geographic synopsis. Boca Raton, FL, United States: CRC Press.
402
Marsden S. S. Davis S. N. (1967). Geological subsidence. Sci. Am.216 (6), 93–100. 10.1038/scientificamerican0667-93
403
Marshall C. Large D. J. Athab A. Evers S. L. Sowter A. Marsh S. et al (2018). Monitoring tropical peat related settlement using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol.244, 57–65. 10.1016/j.enggeo.2018.07.015
404
Mason P. J. Ghail R. C. Bischoff C. Skipper J. A. (2015). Detecting and monitoring small-scale discrete ground movements across London, using Persistent Scatterer InSAR (PSI).
405
Mastin T. Styles S. Feist K. (2018). “A review of subsidence measurements near mendota, California,” in World environmental and water resources congress 2018: watershed management, irrigation and drainage, and water resources planning and management (Reston, VA: American Society of Civil Engineers), 50–61.
406
Mayuga M. N. Allen D. R. (1969). “Subsidence in the wilmington oil field, long beach, California, USA,” in Proceedings of the Tokyo symposium on land subsidence, international association of scientific hydrology, studies and reports in hydrology (IASH-UNESCO), 1, 66–79.
407
Mazzotti S. Lambert A. Van der Kooij M. Mainville A. (2009). Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. Geology37 (9), 771–774. 10.1130/g25640a.1
408
McCall G. (1996). Urban geoscience (CRC Press), 20.
409
McCann G. D. Wilts C. H. (1951). A mathematical analysis of the subsidence in the long beach-san pedro area.
410
Miller M. M. Shirzaei M. (2019). Land subsidence in Houston correlated with flooding from Hurricane Harvey. Remote Sens. Environ.225, 368–378. 10.1016/j.rse.2019.03.022
411
Miller R. D. Xia J. Park C. B. Anderson J. M. Fiedler M. Overton R. (1999). MASW to investigate subsidence in the Tampa, Florida area. Kans. Geol. Surv. Open File Rep., 99–33.
412
Minderhoud P. S. J. Erkens G. Pham V. H. Vuong B. T. Stouthamer E. (2015). Assessing the potential of the multi-aquifer subsurface of the Mekong Delta (Vietnam) for land subsidence due to groundwater extraction. Proc. Int. Assoc. Hydrological Sci.372 (372), 73–76. 10.5194/piahs-372-73-2015
413
Minh D. Van Trung Le Toan T. (2015). Mapping ground subsidence phenomena in Ho Chi Minh City through the radar interferometry technique using ALOS PALSAR data. Remote Sens.7 (7), 8543–8562. 10.3390/rs70708543
414
Minh D. H. T. Ngo Y. N. Lê T. T. Le T. C. Bui H. S. Vuong Q. V. et al (2022). “Mapping ground motions by open-source persistent and distributed scatterers Sentinel-1 radar interferometry: Ho Chi Minh city case study,” in IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium (IEEE), 1632–1635.
415
Minh D. H. T. Yen-Nhi N. G. O. Lê T. T. Le T. C. Bui H. S. Vuong Q. V. et al (2021). Quantifying horizontal and vertical movements in Ho Chi Minh city by Sentinel-1 radar interferometry.
416
Moe I. R. Kure S. Januriyadi N. F. Farid M. Udo K. Kazama S. et al (2017). Future projection of flood inundation considering land-use changes and land subsidence in Jakarta, Indonesia. Hydrological Res. Lett.11 (2), 99–105. 10.3178/hrl.11.99
417
Mohamadi B. Balz T. Younes A. (2019). A model for complex subsidence causality interpretation based on PS-InSAR cross-heading orbits analysis. Remote Sens.11 (17), 2014. 10.3390/rs11172014
418
Mohamed S. A. (2020). Coastal vulnerability assessment using GIS-Based multicriteria analysis of Alexandria-northwestern Nile Delta, Egypt. J. Afr. Earth Sci.163, 103751. 10.1016/j.jafrearsci.2020.103751
419
Molengraaff G. A. F. (1909). The subsidence of the soil of The Netherlands. KNAW, Proc.12.
420
Momotake M. (1996). Historical riview of land subsidence in niigata city and its vicinity. Quat. Res. (Daiyonki-Kenkyu)35 (3), 253–258. 10.4116/jaqua.35.253
421
Montalti R. Solari L. Bianchini S. Del Soldato M. Raspini F. Casagli N. (2019). A Sentinel-1-based clustering analysis for geo-hazards mitigation at regional scale: a case study in Central Italy. Geomatics, Nat. Hazards Risk10 (1), 2257–2275. 10.1080/19475705.2019.1690058
422
Montuori A. Pezzo G. Anderlini L. Palano M. Chiarabba C. Stramondo S. et al (2017). “Land subsidence from geo-resources exploitation: evidences from InSAR and GPS observations,” in 11° Workshop Tematico di Telerilevamento.
423
Morishita Y. (2021). Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog. Earth Planet. Sci.8 (1), 6–23. 10.1186/s40645-020-00402-7
424
Muir Wood R. (1990). London: not waving but drowning. Terra nova.2, 284–291. 10.1111/j.1365-3121.1990.tb00077.x
425
Murayama S. (1970). “Land subsidence in osaka,” in Proceedings of the Tokyo symposium on land subsidence, 1.
426
Murria J. (1991). “Subsidence due to oil production in Western Venezuela: engineering problems and solutions,” in Land subsidence (Houston, Texas: IAHS), 129–139.
427
Murshed S. Griffin A. L. Islam M. A. Wang X. H. Paull D. (2022). Assessing multi-climate-hazard threat in the coastal region of Bangladesh by combining influential environmental and anthropogenic factors. Prog. Disaster Sci.16, 100261. 10.1016/j.pdisas.2022.100261
428
Na T. Kawamura Y. Kang S. S. Utsuki S. (2021). Hazard mapping of ground subsidence in east area of Sapporo using frequency ratio model and GIS. Geomatics, Nat. Hazards Risk12 (1), 347–362. 10.1080/19475705.2021.1873198
429
Nalakurthi N. V. Sudha R. N. Ranjan Behera M. (2022). Detection of land subsidence using sentinel-1 interferometer and its relationship with sea-level-rise, groundwater, and inundation: a case study along Mumbai coastal city.
430
Nasrul F. A. Schultz B. Susantao R. H. Suryadi F. X. (2011). “Impacts of changes on flood protection systems. Case study of Indonesia and The Netherlands in comparative perspective,” in Proceedings of 25th European Regional ICID Conference on Deltas in Europe. Integrated water management for multiple land use in flat coastal areas, 15. Groningen, the Netherlands, 16-20 May, 2011.
431
Nelson G. R. Rowton M. Kershaw S. Bust R. A. Cooke S. Tipper L. (2013). “A historical perspective on the subsidence effects of mine closure,” in Mine closure 2013: proceedings of the eighth international seminar on mine closure (Australian Centre for Geomechanics), 537–546.
432
Nerem R. S. Van Dam T. M. Schenewerk M. S. (1998). Chesapeake Bay subsidence monitored as wetlands loss continues. Eos, Trans. Am. Geophys. Union79 (12), 149–157. 10.1029/98eo00110
433
Newman W. A. Holton W. E. (2006). Boston's Back Bay: the story of America's greatest Nineteenth-Century landfill project. Upne.
434
Ng A. Wang H. Dai Y. Pagli C. Chen W. Ge L. et al (2018). InSAR reveals land deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed data. Remote Sens.10 (6), 813. 10.3390/rs10060813
435
Ng A. H. M. Chang H. C. Zhang K. Ge L. Rizos C. (2009). “Land subsidence monitoring in Australia and China using satellite interferometry,” in Observing our changing earth (Berlin, Heidelberg: Springer), 743–750.
436
Ng A. H. M. Ge L. Li X. Abidin H. Z. Andreas H. Zhang K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Observation Geoinformation18, 232–242. 10.1016/j.jag.2012.01.018
437
Ng A. H. M. Ge L. Zhang K. Li X. (2011). “Application of persistent scatterer interferometry for land subsidence monitoring in Sydney, Australia using ENVISAT ASAR data,” in 34th international symposium on remote sensing of environment.
438
Nicholls R. J. (2008). The exposure of port cities to flooding: a comparative global analysis.
439
Nicholls R. J. Wong P. P. Burkett V. Codignotto J. Hay J. McLean R. et al (2007). Coastal systems and low-lying areas.
440
Niedermayer J. (1962). Die geologischen Verhältnisse im Bereich des Salzstockes von Hamburg-Langenfelde. Geol. Landesamt.
441
Noi H. Binh N. Phong H. Binh T. Yen H. Duong H. et al (2024). The red river delta, vietnam: an overview of groundwater resources.
442
Normand J. Heggy E. (2015). InSAR assessment of surface deformations in urban coastal terrains associated with groundwater dynamics. IEEE Trans. Geoscience Remote Sens.53, 6356–6371. 10.1109/TGRS.2015.2437368
443
Nur A. S. Achmad A. R. Lee C. W. (2020). Land subsidence measurement in reclaimed coastal land: noksan using C-band Sentinel-1 radar interferometry. J. Coast. Res.102 (SI), 218–223. 10.2112/si102-027.1
444
Nutalaya P. (1989). “Land subsidence in bangkok during 1978-1988,” in Workshop on bangkok land subsidence-what's next? (Bangkok), 1–48.
445
Nutalaya P. Chandra S. Balasubramaniam A. S. (1986). “Subsidence of Bangkok clay due to deep well pumping and its control through artificial recharge,” in Proceedings of the 3rd international symposium on land subsidence (Wallingford: International Association of Hydrological Sciences).
446
Nutalaya P. Rau J. L. (1981). Bangkok: the sinking metropolis. Episodes J. Int. Geoscience4 (4), 3–8. 10.18814/epiiugs/1981/v4i4/001
447
Nutalaya P. Yong R. N. Chumnankit T. Buapeng S. (1996). “Land subsidence in bangkok during 1978–1988,” in Sea-level rise and coastal subsidence (Dordrecht: Springer), 105–130.
448
Ohenhen L. O. Shirzaei M. (2022). Land subsidence hazard and building collapse risk in the coastal city of lagos, west Africa. Earth's Future10 (12), e2022EF003219. 10.1029/2022ef003219
449
Ohshima T. Ueshita K. Daito K. (1991). “Land subsidence and groundwater condition in Nagoya,” in Land subsidence, 283–294.
450
Ojeda Arzuza A. D. (2021). Potencial de la Interferometría de Radar de Apertura Sintética (InSAR) para el análisis del desplazamiento del terreno: caso de estudio. Colombia: Barranquilla.
451
Olson K. R. Kreznor W. (2021). Managing the chao phraya river and delta in bangkok, Thailand: flood control, navigation and land subsidence mitigation. Open J. Soil Sci.11 (4), 197–215. 10.4236/ojss.2021.114011
452
Omoko E. N. Okeke O. C. Opara K. D. (2018). A review of the mechanism and engineering/environmental problems of subsidence due to groundwater extraction. Int. J. Geogr. Environ. Manag.4 (4), 1–12.
453
Onta P. R. Gupta A. D. (1995). Regional management modeling of a complex groundwater system for land subsidence control. Water Resour. Manag.9 (1), 1–25. 10.1007/bf00877386
454
Ostanciaux E. Husson L. Choblet G. Robin C. Pedoja K. (2012). Present-day trends of vertical ground motion along the coast lines. Earth-Science Rev.110 (1-4), 74–92. 10.1016/j.earscirev.2011.10.004
455
Otokiti K. V. Akinola O. Adeniji K. N. (2019). Geospatial mapping of flood risk in the coastal megacity of Nigeria. Am. J. Geophys. Geochem. Geosystems5 (4), 129–138.
456
Pace S. (2021). Urban infrastructure inundation risk from permanent sea-level rise scenarios in London (UK), Bangkok (Thailand) and Mumbai (India): a comparative analysis. Geogr. Inf. Sci.Master Thesis.
457
Paluska A. (2002). Geologische stellungnahme zum bebauungs-planentwurf Gross flottbek 10 (osdorfer marktplatz). Report Az, 33, 1–76.
458
Pamungkas Y. A. Chiang S. H. (2021). Monitoring land subsidence induced by groundwater change using satellite gravimetry and radar interferometry measurements. Case study: Surabaya city, Indonesia. IOP Conf. Ser. Earth Environ. Sci.916, 012030. 10.1088/1755-1315/916/1/012030
459
Pandey B. Joshi P. K. Seto K. C. (2013). Monitoring urbanization dynamics in India
460
Parcharidis I. Lagios E. Sakkas V. Raucoules D. Feurer D. Le Mouélic S. et al (2006). Subsidence monitoring within the Athens Basin (Greece) using space radar interferometric techniques. Earth, planets space58 (5), 505–513. 10.1186/bf03351947
461
Park S. W. Hong S. H. (2021). Nonlinear modeling of subsidence from a decade of InSAR time series. Geophys. Res. Lett.48 (3), e2020GL090970. 10.1029/2020gl090970
462
Park S. W. Jung S. W. Hong S. H. (2019). “Monitoring a time-series of land subsidence in Busan, Korea using space-based multi-temporal SAR observations,” in IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium (IEEE), 1602–1605.
463
Parker A. L. Castellazzi P. Fuhrmann T. Garthwaite M. C. Featherstone W. E. (2021). Applications of satellite radar imagery for hazard monitoring: insights from Australia. Remote Sens.13 (8), 1422. 10.3390/rs13081422
464
Parker A. L. Filmer M. S. Featherstone W. E. (2017). First results from sentinel-1A InSAR over Australia: application to the perth basin. Remote Sens.9 (3), 299. 10.3390/rs9030299
465
Parker A. L. Pigois J. P. Filmer M. S. Featherstone W. E. Timms N. E. Penna N. T. (2021b). Land uplift linked to managed aquifer recharge in the Perth Basin, Australia. Int. J. Appl. Earth Observation Geoinformation105, 102637. 10.1016/j.jag.2021.102637
466
Pedretti L. Giarola A. Korff M. Lambert J. Meisina C. (2023). Database of subsidence in major coastal cities around the world. Zenodo. [Data set]. 10.5281/zenodo.8349293
467
Peng M. Zhao C. Zhang Q. Lu Z. Bai L. Bai W. (2020). Multi-scale and multi-dimensional time series InSAR characterizing of surface deformation over Shandong Peninsula, China. Appl. Sci.10 (7), 2294. 10.3390/app10072294
468
Peng Y. Dong D. Chen W. Zhang C. (2022). Stable regional reference frame for reclaimed land subsidence study in East China. Remote Sens.14 (16), 3984. 10.3390/rs14163984
469
Perissin D. Wang Z. Lin H. (2012). Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogrammetry Remote Sens.73, 58–67. 10.1016/j.isprsjprs.2012.07.002
470
Petersen C. Turco M. J. Vinson A. Turco J. A. Petrov A. Evans M. (2020). Groundwater regulation and the development of alternative source waters to prevent subsidence, Houston region, Texas, USA. Proc. Int. Assoc. Hydrological Sci.382, 797–801. 10.5194/piahs-382-797-2020
471
Pethick J. Orford J. D. (2013). Rapid rise in effective sea-level in southwest Bangladesh: its causes and contemporary rates. Glob. Planet. Change111, 237–245. 10.1016/j.gloplacha.2013.09.019
472
Phien-wej N. Giao P. H. Nutalaya P. (2006). Land subsidence in bangkok, Thailand. Eng. Geol.82 (4), 187–201. 10.1016/j.enggeo.2005.10.004
473
Pierce R. L. (1970). Reducing land subsidence in the wilmington oil field by use of saline waters. Water Resour. Res.6 (5), 1505–1514. 10.1029/wr006i005p01505
474
Poland J. F. (1969). Land subsidence and aquifer-system compaction, santa clara valley, California, USA. United states, department of the interior. Geological Survey.
475
Poland J. F. (1972). Subsidence and its control.
476
Poland J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal.
477
Poland J. F. Hamilton Davis G. (1969). Land subsidence due to withdrawal of fluids.
478
Polcari M. Albano M. Montuori A. Bignami C. Tolomei C. Pezzo G. et al (2018). InSAR monitoring of Italian coastline revealing natural and anthropogenic ground deformation phenomena and future perspectives. Sustainability10 (9), 3152. 10.3390/su10093152
479
Polcari M. Anderlini L. Albano M. Pezzo G. Secreti V. Serpelloni E. et al (2020). “Subsidence monitoring along Ravenna coastal area (northern Italy) by insar and GPS data,” in IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium (IEEE), 810–813.
480
Pooja B. Oommen T. Sajinkumar K. S. Nair A. G. Rajaneesh A. Aswathi J. et al (2021). Correspondence of PSInSAR monitoring and Settle3 modelling at cochin international airport, SW India. Appl. Geomatics13, 735–746. 10.1007/s12518-021-00387-y
481
Pousa J. Tosi L. Kruse E. Guaraglia D. Bonardi M. Mazzoldi A. et al (2007). Coastal processes and environmental hazards: the Buenos Aires (Argentina) and Venetian (Italy) littorals. Environ. Geol.51, 1307–1316. 10.1007/s00254-006-0424-9
482
Pranantya P. A. Sukiyah E. Utomo E. P. (2017). Modelling for groundwater extraction effect for Jakarta land subsidence. Int. J. Sci. Res.6 (8), 184–190.
483
Priest G. Baptista A. M. Myers III E. Kamphaus R. (2001). “Tsunami hazard assessment in Oregon,” in Proceedings of international tsunami symposium, 55–65.
484
Qiao X. Chu T. Tissot P. Louis J. (2022). “Mapping and evaluation of land deformation with InSAR and GNSS measurements near Houston, Texas, USA,” in IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium (IEEE), 2478–2481.
485
Qin Y. Perissin D. (2015). Monitoring ground subsidence in Hong Kong via spaceborne Radar: experiments and validation. Remote Sens.7 (8), 10715–10736. 10.3390/rs70810715
486
Qu F. Lu Z. Zhang Q. Bawden G. W. Kim J. W. Zhao C. et al (2015). Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ.169, 290–306. 10.1016/j.rse.2015.08.027
487
Radhi A. A. B. M. (2017). Monitoring land subsidence of airport using InSAR timeseries techniques with atmospheric and orbital error corrections (doctoral dissertation, thesis, universiti teknologi Malaysia).
488
Radutu A. Gogu R. C. (2019). Chronological reflection on monitoring urban areas subsidence due to groundwater extraction. E3S Web Conf.85, 07015. 10.1051/e3sconf/20198507015
489
Radutu A. Vlad-Sandru M. I. (2023). Review on the use of satellite-based radar interferometry for monitoring mining subsidence in urban areas and demographic indicators assessment. Min. Rev.29 (1), 42–62. 10.2478/minrv-2023-0004
490
Ramasamy S. M. Vijay A. Dhinesh S. (2018). Geo-anthropogenic aberrations and Chennai floods: 2015, India. Nat. Hazards92 (1), 443–477. 10.1007/s11069-018-3213-3
491
Ramirez R. A. Kwon T. H. (2022). Sentinel-1 persistent scatterer interferometric synthetic aperture radar (PS-InSAR) for long-term remote monitoring of ground subsidence: a case study of a port in busan, South Korea. KSCE J. Civ. Eng.26 (10), 4317–4329. 10.1007/s12205-022-1005-5
492
Ramnarong V. Buapeng S. Chootnatut S. Loupensri A. (1998). “Groundwater and land subsidence crisis in Bangkok metropolitan and vicinity,” in Technical report (Thailand: Department of Mineral Resources (DMR) Bangkok), 3.
493
Ramnarong V. Buapeng S. (1991). Mitigation of groundwater crisis and land subsidence in Bangkok.
494
Raspini F. Bianchini S. Ciampalini A. Del Soldato M. Montalti R. Solari L. et al (2019). Persistent Scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides16, 2033–2044. 10.1007/s10346-019-01249-w
495
Raspini F. Bianchini S. Ciampalini A. Del Soldato M. Solari L. Novali F. et al (2018). Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep.8 (1), 7253. 10.1038/s41598-018-25369-w
496
Raspini F. Caleca F. Del Soldato M. Festa D. Confuorto P. Bianchini S. (2022). Review of satellite radar interferometry for subsidence analysis. Earth-Science Rev.104239. 10.1016/j.earscirev.2022.104239
497
Rateb A. Abotalib A. Z. (2020). Inferencing the land subsidence in the Nile Delta using Sentinel-1 satellites and GPS between 2015 and 2019. Sci. Total Environ.729, 138868. 10.1016/j.scitotenv.2020.138868
498
Raucoules D. Le Cozannet G. Wöppelmann G. De Michele M. Gravelle M. Daag A. et al (2013). High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: implications for sea-level measurement. Remote Sens. Environ.139, 386–397. 10.1016/j.rse.2013.08.021
499
Ray R. D. Beckley B. D. Lemoine F. G. (2010). Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Adv. Space Res.45 (12), 1510–1522. 10.1016/j.asr.2010.02.020
500
Reuther C. D. Buurmann N. Kühn D. Ohrnberger M. Dahm T. Scherbaum F. (2007). Erkundung des unterirdischen Raums der Metropolregion Hamburg–Das Projekt HADU. Geotech. Organ Dtsch. Ges. für Geotech.29 (1), 11–20.
501
Reyes R. Bauzon M. Angela D. Pasaje N. A. Alfante R. M. De Lara P. M. et al (2022). Quantifying vertical land motion at tide gauge sites using permanent scatterer interferometric synthetic aperture radar and global navigation satellite system solutions. Spatial Inf. Res.30 (2), 309–319. 10.1007/s41324-022-00431-y
502
Ricceri G. (2007). Il futuro di Venezia tra subsidenza ed eustatismo, 3. Rivista Italiana di Geotecnica.
503
Richts A. Struckmeier W. Zaepke M. (2011). “WHYMAP and the groundwater resources of the world 1:25,000,000,” in Sustaining groundwater resources. International year of planet earth. Editor JonesJ. (Springer). 10.1007/978-90-481-3426-7_10
504
Riel B. Simons M. Ponti D. Agram P. Jolivet R. (2018). Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resour. Res.54 (5), 3557–3582. 10.1029/2017wr021978
505
Rigamonti S. Bellotti F. Dattola G. Frattini P. Guarino P. M. Battista Crosta G. (2021). “Analysis of subsidence in the metropolitan area of Naples based on SAR data,” in EGU general assembly conference abstracts, EGU21–15169.
506
Ritchie H. Roser M. (2023). Water use and stress. Our World Data.
507
Rodolfo K. S. Siringan F. P. (2006). Global sea‐level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters30 (1), 118–139. 10.1111/j.1467-9523.2006.00310.x
508
Romero P. (2022). Asia’s coastal cities ‘sinking faster than sea level-rise. SciDev. net-Environment.
509
Roque D. Fonseca A. M. Henriques M. J. Falcão A. P. (2014). A first approach for displacement analysis in Lisbon Downtown using PS-InSAR. Procedia Technol.16, 288–293. 10.1016/j.protcy.2014.10.094
510
Rosi A. Tofani V. Agostini A. Tanteri L. Stefanelli C. T. Catani F. et al (2016). Subsidence mapping at regional scale using persistent scatters interferometry (PSI): the case of Tuscany region (Italy). Int. J. Appl. earth observation geoinformation52, 328–337. 10.1016/j.jag.2016.07.003
511
Rotchanameka S. Mairaing W. (2023). The characteristic of aquifer drawdown and settlement of bangkok and vicinity area.
512
Rubinetti S. Taricco C. Zanchettin D. Arnone E. Bizzarri I. Rubino A. (2022). Interannual-to-multidecadal sea-level changes in the Venice lagoon and their impact on flood frequency. Clim. Change174 (3-4), 26. 10.1007/s10584-022-03448-2
513
Ruilin H. (2009). “Urban land subsidence in China. Engineering geology for tomorrow’s cities,” in Geological society (London: Engineering Geology Special Publication). (on CD-ROM insert, Paper 786).
514
Sadjadi S. (2022). Review on current status and challenging issues of land subsidence in Iran. J. Future Sustain.2 (1), 33–38. 10.5267/j.jfs.2022.9.001
515
Safari Ghaleh A. Shahir H. (2022). Effect of bedrock ridges on formation of earth fissures due to land subsidence. Bull. Eng. Geol. Environ.81 (11), 455. 10.1007/s10064-022-02952-0
516
Sagoe-Addy K. Appeaning Addo K. (2013). Effect of predicted sea level rise on tourism facilities along Ghana’s Accra coast. J. Coast. conservation17 (1), 155–166. 10.1007/s11852-012-0227-y
517
Sahu P. Sikdar P. K. (2011). Threat of land subsidence in and around Kolkata city and east Kolkata wetlands, West Bengal, India. J. earth Syst. Sci.120, 435–446. 10.1007/s12040-011-0077-2
518
Sahuquillo A. Cassiraga E. Gómez-Hernández J. J. Andreu J. Pulido-Velazquez M. Pulido-Velazquez D. et al (2022). Management alternatives of aquifer storage, distribution, and simulation in conjunctive use. Water14 (15), 2332. 10.3390/w14152332
519
Samsonov S. Tiampo K. González P. J. Manville V. Jolly G. (2010). Ground deformation occurring in the city of Auckland, New Zealand, and observed by Envisat interferometric synthetic aperture radar during 2003–2007. J. Geophys. Res. Solid Earth115 (B8). 10.1029/2009jb006806
520
Samsonov S. V. d'Oreye N. González P. J. Tiampo K. F. Ertolahti L. Clague J. J. (2014). Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT-RADARSAT-2 DInSAR measurements. Remote Sens. Environ.143, 180–191. 10.1016/j.rse.2013.12.017
521
Samsonov S. V. Tiampo K. F. (2016a). “Monitoring of urban subsidence in coastal cities: case studies Vancouver and Seattle,” in Third international conference on digital information processing, data mining, and wireless communications (DIPDMWC) (IEEE).
522
Samsonov S. V. Tiampo K. F. Feng W. (2016b). Fast subsidence in downtown of Seattle observed with satellite radar. Remote Sens. Appl. Soc. Environ.4, 179–187. 10.1016/j.rsase.2016.10.001
523
Sanli F. B. Calò F. Abdikan S. Pepe A. Gorum T. (2014). Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.40 (7), 19–21. 10.5194/isprsarchives-xl-7-19-2014
524
Santamaría-Gómez A. Gravelle M. Collilieux X. Guichard M. Míguez B. M. Tiphaneau P. et al (2012). Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob. Planet. Change98, 6–17. 10.1016/j.gloplacha.2012.07.007
525
Saowiang K. Giao P. H. (2021). Numerical analysis of subsurface deformation induced by groundwater level changes in the Bangkok aquifer system. Acta Geotech.16 (4), 1265–1279. 10.1007/s11440-020-01075-8
526
Sarah D. Soebowo E. (2018). Land subsidence threats and its management in the north coast of java. In IOP Conf. Ser. Earth Environ. Sci.118, 012042. 10.1088/1755-1315/118/1/012042
527
Sarah D. Soebowo E. Satriyo N. A. (2021). Review of the land subsidence hazard in Pekalongan Delta, Central Java: insights from the subsurface. Rudarsko-geološko-naftni Zb.36 (4), 163–176. 10.17794/rgn.2021.4.13
528
Sartoretto F. Gambolati G. Rinaldo A. (1990). Land subsidence due to gas/oil production in inhomogeneous transversally anisotropic half‐space by a boundary element method. Int. J. Numer. Anal. methods geomechanics14 (6), 379–399. 10.1002/nag.1610140602
529
Sarwar G. Alizai A. (2013). Riding the mobile Karachi arc, Pakistan: understanding tectonic threats. J. Himal. Earth Sci.46 (2).
530
Sato C. Haga M. Nishino J. (2006). Land subsidence and groundwater management in Tokyo. Intern. Rev. Environ. Strat.6 (2), 403.
531
Sato K. Van Hoang N. (1996). Recent countermeasures for land subsidence and groundwater resources in Japan. Int. J. Rock Mech. Min. Sci. Geomechanics Abstr.8 (33).
532
Satriyo N. A. Soebowo E. (2021). Review of the land subsidence hazard in Pekalongan Delta, Central Java: insights from the subsurface. Rudarsko-Geolosko-Naftni Zb.36 (4), 163–176. 10.17794/rgn.2021.4.13
533
Scheiber L. David C. G. Hoballah Jalloul M. Visscher J. Nguyen H. Q. Leitold R. et al (2022). Low-regret climate change adaptation in coastal megacities–evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam. Nat. Hazards Earth Syst. Sci. Discuss.2022, 1–22. 10.5194/nhess-23-2333-2023
534
Schmidt C. W. (2015). Delta subsidence: an imminent threat to coastal populations.
535
Schokker J. Bakker M. A. J. Dubelaar C. W. Dambrink R. M. Harting R. (2015). 3D subsurface modelling reveals the shallow geology of Amsterdam. Neth. J. Geosciences94 (4), 399–417. 10.1017/njg.2015.22
536
Scoular J. Ghail R. Mason P. Lawrence J. Bellhouse M. Holley R. et al (2020). Retrospective InSAR analysis of east London during the construction of the lee tunnel. Remote Sens.12 (5), 849. 10.3390/rs12050849
537
Secreti V. Polcari M. Anderlini L. Albano M. Palano M. Serpelloni E. et al (2022). Cross-validated multi-technique geodetic dataset of the Upper Adriatic Sea coastal area of Italy. Data brief43, 108342. 10.1016/j.dib.2022.108342
538
Secreti V. Trasatti E. Polcari M. Albano M. Anderlini L. Serpelloni E. et al (2020). “Natural and anthropogenic origin of subsidence of the Northern Adriatic coast (Italy) from satellite data and modelling,” in EGU general assembly conference abstracts, 9903.
539
Sengupta D. Chen R. Meadows M. E. Banerjee A. (2020). Gaining or losing ground? Tracking Asia's hunger for ‘new’coastal land in the era of sea level rise. Sci. Total Environ.732, 139290. 10.1016/j.scitotenv.2020.139290
540
Sestini G. (1996). “Land subsidence and sea-level rise: the case of the Po Delta region, Italy,” in Sea-level rise and coastal subsidence: causes, consequences, and strategies, 235–248.
541
Severi P. (2021). Soil uplift in the Emilia-Romagna plain (Italy) by satellite radar interferometry. Boll. Geof. Teor. Appl.62, 527–542. 10.4430/bgo00349
542
Sew G. S. Seng L. P. (1996). Investigation into a ground subsidence in limestone formation in kuala lumpur.
543
Shen S. Xu Y. (2014). Investigation of the mechanism associated with recent land subsidence in Shanghai. Shanghai Land Resour.35 (4), 12–16. 10.1680/geot.54.2.143.36332
544
Shen S. L. Wu H. N. Cui Y. J. Yin Z. Y. (2014). Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunn. Undergr. Space Technol.40, 309–323. 10.1016/j.tust.2013.10.013
545
Shen S. L. Xu Y. S. (2011). Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotechnical J.48 (9), 1378–1392. 10.1139/t11-049
546
Shi X. Chen C. Dai K. Deng J. Wen N. Yin Y. et al (2022a). Monitoring and predicting the subsidence of dalian jinzhou bay international airport, China by integrating inSAR observation and Terzaghi consolidation theory. Remote Sens.14 (10), 2332. 10.3390/rs14102332
547
Shi X. Jiang S. Xu H. Jiang F. He Z. Wu J. (2016). The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China. Environ. Earth Sci.75, 1–18. 10.1007/s12665-015-5019-x
548
Shi X. Wu J. Ye S. Zhang Y. Xue Y. Wei Z. et al (2008). Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Eng. Geol.100 (1-2), 27–42. 10.1016/j.enggeo.2008.02.011
549
Shi X. Zhu T. Tang W. Jiang M. Jiang H. Yang C. et al (2022b). Inferring decelerated land subsidence and groundwater storage dynamics in Tianjin–Langfang using Sentinel-1 InSAR. Int. J. Digital Earth15 (1), 1526–1546. 10.1080/17538947.2022.2122610
550
Shi Y. Shi D. Cao X. (2018). Impacting factors and temporal and spatial differentiation of land subsidence in Shanghai. Sustainability10 (9), 3146. 10.3390/su10093146
551
Shiru M. S. Shahid S. Shiru S. Chung E. S. Alias N. Ahmed K. et al (2020). Challenges in water resources of Lagos mega city of Nigeria in the context of climate change. J. Water Clim. Change11 (4), 1067–1083. 10.2166/wcc.2019.047
552
Shirzaei M. Bürgmann R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Sci. Adv.4 (3), eaap9234. 10.1126/sciadv.aap9234
553
Shoham T. (2006). Groundwater decline and the preservation of property in Boston. Doctoral dissertation, Massachusetts Institute of Technology.
554
Sikdar P. K. Biswas A. B. Saha A. K. (1996). A study on the possible land subsidence in Calcutta and Howrah cities due to groundwater overdraft. Indian J. Geol.68, 193–200.
555
Simeoni U. Tessari U. Corbau C. Tosatto O. Polo P. Teatini P. (2017). Impact of land subsidence due to residual gas production on surficial infrastructures: the Dosso degli Angeli field study (Ravenna, Northern Italy). Eng. Geol.229, 1–12. 10.1016/j.enggeo.2017.09.008
556
Sinclair W. C. (1982). Sinkhole development resulting from ground-water withdrawal in the Tampa area, Florida. U. S. Geol. Surv. Water Resour. Div.
557
Single M. (2008). Global change and integrated coastal management: the Asia‐Pacific region. N. Z. Geogr.64 (2), 171–172. 10.1111/j.1745-7939.2008.136_3.x
558
Siriwardane-de Zoysa R. (2020). Beyond the wall: dyking as an object of everyday governance in the Bay of Manila, Philippines. Mar. Policy112, 103661. 10.1016/j.marpol.2019.103661
559
Siriwardane-de Zoysa R. Schöne T. Herbeck J. Illigner J. Haghighi M. Simarmata H. et al (2021). The ‘wickedness’ of governing land subsidence: policy perspectives from urban Southeast Asia. PLoS One16 (6), e0250208. 10.1371/journal.pone.0250208
560
Situmorang D. Arhatin R. E. Lumban-Gaol J. (2021). Land subsidence detection in jakarta province using sentinel-1A satellite imagery. IOP Conf. Ser. Earth Environ. Sci.944 (1), 012036. 10.1088/1755-1315/944/1/012036
561
Soares P. F. C. Zuchello F. Anjos L. H. C. D. Pereira M. G. Oliveira A. P. P. D. (2015). Soil attributes and c and n variation in histosols under different agricultural usages in the state of Rio de Janeiro, Brazil. Biosci. j.(Online)31, 1349–1362. 10.14393/bj-v31n5a2015-26365
562
Soboyejo L. A. Giambastiani B. M. Molducci M. Antonellini M. (2021). Different processes affecting long-term Ravenna coastal drainage basins (Italy): implications for water management. Environ. Earth Sci.80 (15), 493. 10.1007/s12665-021-09774-5
563
Solari L. Del Soldato M. Bianchini S. Ciampalini A. Ezquerro P. Montalti R. et al (2018). From ERS 1/2 to Sentinel-1: subsidence monitoring in Italy in the last two decades. Front. Earth Sci.6, 149. 10.3389/feart.2018.00149
564
Somerville S. H. Shelton J. C. (1972). Observed settlement of multi-storey buildings on laminated clays and silts in Glasgow. Géotechnique22 (3), 513–520. 10.1680/geot.1972.22.3.513
565
Soudarin L. Crétaux J. F. Cazenave A. (1999). Vertical crustal motions from the DORIS space‐geodesy system. Geophys. Res. Lett.26 (9), 1207–1210. 10.1029/1999gl900215
566
Sousa J. J. Bastos L. C. Ruiz A. M. Hooper A. J. Hanssen R. (2012). Detection of ground deformation in the oporto metropolitan area with multi-temporal interferometry (MTI). Fringe697, 92–9092.
567
Standing J. R. Burland J. B. (2006). Unexpected tunnelling volume losses in the Westminster area, London. Géotechnique56 (1), 11–26. 10.1680/geot.2006.56.1.11
568
Stanley J. D. Clemente P. L. (2017). Increased land subsidence and sea-level rise are submerging Egypt’s Nile Delta coastal margin. GSA Today27 (5), 4–11. 10.1130/gsatg312a.1
569
Steckler M. S. Akhter S. H. Seeber L. Bilham R. G. Kogan M. G. Masson F. et al (2012). GPS velocities and structure across the Burma accretionary prism and shillong anticline in Bangladesh. AGU Fall Meet. Abstr.2012, T51F–T2667.
570
Steckler M. S. Nooner S. L. Akhter S. H. Chowdhury S. K. Bettadpur S. Seeber L. et al (2010). Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res. Solid Earth115 (B8). 10.1029/2009jb007018
571
Steckler M. S. Oryan B. Wilson C. A. Grall C. Nooner S. L. Mondal D. R. et al (2022). Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta, Bangladesh. Earth-Science Rev.224, 103887. 10.1016/j.earscirev.2021.103887
572
Strehle R. (1987). Subsidence in long beach.
573
Strozzi T. Teatini P. Tosi L. Wegmüller U. Werner C. (2013). Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surf.118 (2), 1177–1191. 10.1002/jgrf.20082
574
Strozzi T. Tosi L. Teatini P. Wegmüller U. (2008). “Monitoring land subsidence in the Venice lagoon with TerraSAR-X,” in 3rd TerraSAR-X science team meeting (Germany: Oberpfaffenhofen), 25–26.
575
Strozzi T. Tosi L. Teatini P. Werner C. Wegmüller U. (2009). “Monitoring land subsidence within the Venice lagoon with SAR interferometry on trihedral corner reflectors,” in 2009 IEEE international geoscience and remote sensing symposium (IEEE), 4, IV–33. 10.1109/igarss.2009.5417602
576
Strozzi T. Tosi L. Wegmüller U. Teatini P. Carbognin L. Rosselli R. (2002). “Thematic and land subsidence maps of the Lagoon of Venice from ERS SAR interferometry,” in Scientific Research and Safeguarding of Venice. CORILA Research program 2001-2003. Vol. I. 2001 results. CORILA, Venezia; Istituto Veneto di Scienze (Lettere ed Arti, Venezia; La Garangola, Padova).
577
Strozzi T. Tosi L. Wegmuller U. Werner C. Teatini P. Carbognin L. (2003a). “Land subsidence monitoring service in the Lagoon of Venice,” in Igarss 2003. 2003 IEEE international geoscience and remote sensing symposium. Proceedings (IEEE: IEEE Cat. No. 03CH37477), 1, 212–214. 10.1109/igarss.2003.1293727
578
Strozzi T. Wegmuller U. Tosi L. Bitelli G. Spreckels V. (2001). Land subsidence monitoring with differential SAR interferometry. Photogrammetric Eng. remote Sens.67 (11), 1261–1270.
579
Strozzi T. Wegmüller U. Werner C. Wiesmann A. Tosi L. Teatini P. et al (2003b). Venezia subsidence monitoring service in the lagoon of venice for regional administrative and water authorities data user programme (dup), ii period executive summary.
580
Strozzi T. WegmüllerWe U. Werner C. Teatini P. Tosi L. (2005). “SAR Interferometric point target analysis and application to the monitoring of land subsidence in the Venice Lagoon,” in Land subsidence (Shanghai Scientific & Technical Publishers).
581
Subraelu P. Ebraheem A. A. Sherif M. Sefelnasr A. Yagoub M. M. Rao K. N. (2022). Land in water: the study of land reclamation and artificial islands formation in the uae coastal zone: a remote sensing and gis perspective. Land11 (11), 2024. 10.3390/land11112024
582
Suganthi S. Elango L. (2020). Estimation of groundwater abstraction induced land subsidence by SBAS technique. J. Earth Syst. Sci.129 (1), 46. 10.1007/s12040-019-1298-z
583
Suganthi S. Elango L. Subramanian S. K. (2017). Microwave D-InSAR technique for assessment of land subsidence in Kolkata city, India. Arabian J. Geosciences10, 1–10. 10.1007/s12517-017-3207-6
584
Sun Q. Jiang L. Jiang M. Lin H. Ma P. Wang H. (2018). Monitoring coastal reclamation subsidence in Hong Kong with distributed scatterer interferometry. Remote Sens.10 (11), 1738. 10.3390/rs10111738
585
Sundell J. Haaf E. Norberg T. Alén C. Karlsson M. Rosén L. (2019). Risk mapping of groundwater‐drawdown‐induced land subsidence in heterogeneous soils on large areas. Risk Anal.39 (1), 105–124. 10.1111/risa.12890
586
Sundell J. Rosén L. (2016). City-Link Stockholm; an integrated hydrogeological and geotechnical risk assessment. NGU REPORT, 20.
587
Tabassum F. Imtiaz F. Alam J. Alam⁴ T. (2024). Risk assesment of sinkhole occurrence in Bangladesh by analyzing trigger factors of south asian sinkhole collapse incidents with suggestions for possible preventive measures.
588
Taftazani R. Kazama S. Takizawa S. (2022). Spatial analysis of groundwater abstraction and land subsidence for planning the piped water supply in jakarta, Indonesia. Water14 (20), 3197. 10.3390/w14203197
589
Takagi H. Esteban M. Mikami T. Pratama M. B. Valenzuela V. P. B. Avelino J. E. (2021). People's perception of land subsidence, floods, and their connection: a note based on recent surveys in a sinking coastal community in Jakarta. Ocean Coast. Manag.211, 105753. 10.1016/j.ocecoaman.2021.105753
590
Takagi H. Fujii D. Esteban M. Yi X. (2017). Effectiveness and limitation of coastal dykes in Jakarta: the need for prioritizing actions against land subsidence. Sustainability9 (4), 619. 10.3390/su9040619
591
Takami J. (2021). “Monitoring artificial islands subsidence in North jakarta using persistent and distributed scatterers InSAR analysis,” in 2021 IEEE international geoscience and remote sensing symposium IGARSS (IEEE), 6956–6959.
592
Takekawa J. Y. Thorne K. M. Buffington K. J. Spragens K. A. Swanson K. M. Drexler J. Z. et al (2013). Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes (No. 2013-1081). US Geological Survey.
593
Talib O. C. Shimon W. Sarah K. Tonian R. (2022). Detection of sinkhole activity in West-Central Florida using InSAR time series observations. Remote Sens. Environ.269, 112793. 10.1016/j.rse.2021.112793
594
Tang M. Zhao Q. Pepe A. Devlin A. T. Falabella F. Yao C. et al (2022a). Changes of Chinese coastal regions induced by land reclamation as revealed through TanDEM-X DEM and InSAR analyses. Remote Sens.14 (3), 637. 10.3390/rs14030637
595
Tang W. Zhao X. Motagh M. Bi G. Li J. Chen M. et al (2022b). Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ.269, 112792. 10.1016/j.rse.2021.112792
596
Tang Y. Q. Cui Z. D. Wang J. X. Lu C. Yan X. X. (2008). Model test study of land subsidence caused by high-rise building group in Shanghai. Bull. Eng. Geol. Environ.67, 173–179. 10.1007/s10064-008-0121-x
597
Tao Q. Guo Z. Wang F. An Q. Han Y. (2021). SBAS-InSAR time series ground subsidence monitoring along Metro Line 13 in Qingdao, China. Arabian J. geosciences14, 1–14. 10.1007/s12517-021-08616-9
598
Taqwa F. M. L. Hutabarat L. E. Ilyas T. Prakoso W. A. (2019). Estimation of settlement induced land subsidence of marine clay on kamal muara area, northern jakarta, based on the change of pore water pressure. J. Phys. Conf. Ser.1376 (1), 012007. 10.1088/1742-6596/1376/1/012007
599
Tay C. Lindsey E. Chin S. T. McCaughey J. Bekaert D. Nguyen M. et al (2021). Sinking land intensifies sea-level rise: a global InSAR analysis of coastal cities.
600
Tay C. Lindsey E. O. Chin S. T. McCaughey J. W. Bekaert D. Nguyen M. et al (2022). Sea-level rise from land subsidence in major coastal cities. Nat. Sustain.5 (12), 1049–1057. 10.1038/s41893-022-00947-z
601
Teatini P. Ferronato M. Gambolati G. Bertoni W. Gonella M. (2005a). A century of land subsidence in Ravenna, Italy. Environ. Geol.47, 831–846. 10.1007/s00254-004-1215-9
602
Teatini P. Ferronato M. Gambolati G. Gonella M. (2006). Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour. Res.42 (1). 10.1029/2005wr004242
603
Teatini P. Gambolati G. Tomasi L. Putti M. (1998). “Simulation of land subsidence due to gas production at Ravenna coastline,” in CENAS: coastline evolution of the upper adriatic sea due to sea level rise and natural and anthropogenic land subsidence, 133–150.
604
Teatini P. Strozzi T. Tosi L. Wegmüller U. Werner C. Carbognin L. (2007). Assessing short‐and long‐time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. J. Geophys. Res. Earth Surf.112 (F1). 10.1029/2006jf000656
605
Teatini P. Tosi L. (2013). La subsidenza naturale e antropica di Venezia. Monitoraggio e analisi tramite satelliti con tecnologia “Synthetic Aperture Radar”(SAR). Geocentro Mag.5 (29), 86–84.
606
Teatini P. Tosi L. Strozzi T. (2011). Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Solid Earth116 (B8), B08407. 10.1029/2010jb008122
607
Teatini P. Tosi L. Strozzi T. (2014). “Capability of X-band persistent scatterer interferometry to monitor land subsidence in the venice lagoon,” in Engineering geology for society and territory–volume 4: marine and coastal processes (Springer International Publishing), 175–178.
608
Teatini P. Tosi L. Strozzi T. Carbognin L. Cecconi G. Rosselli R. et al (2012). Resolving land subsidence within the Venice Lagoon by persistent scatterer SAR interferometry. Phys. Chem. Earth, Parts A/B/C40, 72–79. 10.1016/j.pce.2010.01.002
609
Teatini P. Tosi L. Strozzi T. Carbognin L. Wegmüller U. Rizzetto F. (2005b). Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ.98 (4), 403–413. 10.1016/j.rse.2005.08.002
610
Teeuw R. (2007). Applications of remote sensing for geohazard mapping in coastal and riverine environments. Geol. Soc. Lond. Spec. Publ.283 (1), 93–106. 10.1144/sp283.8
611
Terranova C. Ventura G. Vilardo G. (2015). Multiple causes of ground deformation in the Napoli metropolitan area (Italy) from integrated Persistent Scatterers DinSAR, geological, hydrological, and urban infrastructure data. Earth-science Rev.146, 105–119. 10.1016/j.earscirev.2015.04.001
612
Tesauro M. Berardino P. Lanari R. Sansosti E. Fornaro G. Franceschetti G. (2000). Urban subsidence inside the city of Napoli (Italy) observed by satellite radar interferometry. Geophys. Res. Lett.27 (13), 1961–1964. 10.1029/2000gl008481
613
Tessitore S. Ramondini M. Calcaterra D. (2011). “Applicazione di tecniche satellitari al monitoraggio delle deformazioni del suolo,” in Iarg 2011, 1–6.
614
Thanvisitthpon N. Shrestha S. Pal I. (2018). Urban flooding and climate change: a case study of Bangkok, Thailand. Environ. Urbanization ASIA9 (1), 86–100. 10.1177/0975425317748532
615
Thoang T. T. Giao P. H. (2015). Subsurface characterization and prediction of land subsidence for HCM City, Vietnam. Eng. Geol.199, 107–124. 10.1016/j.enggeo.2015.10.009
616
Timothy J. (2015). Current land subsidence and groundwater level changes in the Houston metropolitan area (2005–2012). American Society of Civil Engineers.
617
Tirmizi O. Khan S. (2021). Hazard potential in southern Pakistan: a study on the subsidence and neotectonics of Karachi and surrounding areas. AGU Fall Meet. Abstr.2021, EP55A–1056. 10.3390/rs15051290
618
Toivanen T. L. Leveinen J. (2015). “Groundwater level variation and deformation in clays characteristic to the Helsinki metropolitan area,” in Engineering geology for society and territory-volume 6: applied geology for major engineering projects (Springer International Publishing), 309–312.
619
Tomás R. Romero R. Mulas J. Marturià J. J. Mallorquí J. J. López-Sánchez J. M. et al (2014). Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain. Environ. earth Sci.71, 163–181. 10.1007/s12665-013-2422-z
620
Tosi L. Da Lio C. Strozzi T. Teatini P. (2016). Combining L-and X-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po River Delta and Venice Lagoon, Italy. Remote Sens.8 (4), 308. 10.3390/rs8040308
621
Tosi L. Lio C. D. Teatini P. Strozzi T. (2018). Land subsidence in coastal environments: knowledge advance in the Venice coastland by TerraSAR-X PSI. Remote Sens.10 (8), 1191. 10.3390/rs10081191
622
Tosi L. Strozzi T. Da Lio C. Teatini P. (2015). Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI. Proc. Int. Assoc. Hydrological Sci.372 (372), 199–205. 10.5194/piahs-372-199-2015
623
Tosi L. Teatini P. Carbognin L. Brancolini G. (2009). Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: the Venice coast, Italy. Tectonophysics474 (1-2), 271–284. 10.1016/j.tecto.2009.02.026
624
Tosi L. Teatini P. Carbognin L. Frankenfield J. (2007). A new project to monitor land subsidence in the northern Venice coastland (Italy). Environ. Geol.52, 889–898. 10.1007/s00254-006-0530-8
625
Tosi L. Teatini P. Strozzi T. (2013). Natural versus anthropogenic subsidence of Venice. Sci. Rep.3 (1), 2710–2719. 10.1038/srep02710
626
Tosi L. Teatini P. Strozzi T. Carbognin L. Brancolini G. Rizzetto F. (2010). Ground surface dynamics in the northern Adriatic coastland over the last two decades. Rendiconti Lincei21, 115–129. 10.1007/s12210-010-0084-2
627
Tosi L. Teatini P. Strozzi T. Da Lio C. (2014). “Relative land subsidence of the Venice coastland, Italy,” in Engineering geology for society and territory–volume 4: marine and coastal processes (Springer International Publishing), 171–173.
628
Tseng H.-T. Yu H.-L. Chang T.-J. (2020). Using data-based modeled groundwater model to developing groundwater optimal pumping strategy-A case of Taipei basin. EGU General Assem. Conf. Abstr.
629
Tularam G. A. Krishna M. J. J. O. A. S. I. E. S. (2009). Long term consequences of groundwater pumping in Australia: a review of impacts around the globe. J. Appl. Sci. Environ. Sanitation4 (2).
630
Turcott E. Maathuis H. (1996). Groundwater abstraction-induced land subsidence prediction: bangkok and Jakarta case studies. Int. J. Rock Mech. Min. Sci. Geomechanics Abstr.7 (33), 298A.
631
Ulma T. Mutiara Anjasmara I. Hayati N. (2021). Atmospheric phase delay correction of PS-InSAR to monitor land subsidence in Surabaya. IOP Conf. Ser. Earth Environ. Sci.936 (1), 012033. 10.1088/1755-1315/936/1/012033
632
UN (2015). Transforming our world: the 2030 Agenda for sustainable development (UN, New York, 2015) using DMSP/OLS night time lights and SPOT-VGT data. Int. J.
633
Vadivel S. K. P. Kim D. J. Jung J. Cho Y. K. (2022). “Vertical land motion monitoring at tide gauges in Korean peninsula using sequential sbas-insar,” in IGARSS 2022-2022 IEEE international geoscience and remote sensing symposium (IEEE), 6951–6954.
634
Van Beers M. (2017). Floodwater governance as key urban challenge in beira, Barranquilla and Ho Chi Minh city (doctoral dissertation).
635
Van der Horst T. (2017a). Sinking Yangon: detection of subsidence caused by groundwater extraction using SAR interferometry and PSI time-series analysis for Sentinel-1 data.
636
van der Horst T. (2017b). Land subsidence in Yangon: don't blame the messenger. TU Delft DeltaLinks.
637
van der Horst T. Rutten M. M. van de Giesen N. C. Hanssen R. F. (2018). Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms. Remote Sens. Environ.217, 101–110. 10.1016/j.rse.2018.08.004
638
Van Veen J. (1954). Tide-gauges, subsidence-gauges and flood-stones in The Netherlands. Geol. Mijnb.16 (6), 214–219.
639
Vassileva M. Al-Halbouni D. Motagh M. Walter T. R. Dahm T. Wetzel H. U. (2021a). A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió, Brazil. Sci. Rep.11, 7704. 10.1038/s41598-021-87033-0
640
Vassileva M. Al-Halbouni D. Motagh M. Walter T. R. Dahm T. Wetzel H. U. (2021b). “Man-made disaster on urban area: subsidence and underground salt dissolution in Maceio (Brazil) revealed by remote sensing and numerical modelling,” in EGU general assembly conference abstracts, EGU21–12371. 10.5194/egusphere-egu21-12371
641
Vassileva M. S. Al-Halbouni D. Dahm T. Motagh M. Walter T. Wetzel H. U. (2020). Rapidly accelerating subsidence in Maceió (Brazil) analayzed by multi-temporal DInSAR analysis and 2d geomechanical modeling (No. EGU2020-19905). Copernic. Meet.
642
Vicente E. M. Amurane D. P. Leonardo X. (2006). Assessment of slope stability in maputo city, Mozambique.
643
Vicente E. M. Jermy C. A. Schreiner H. D. (2009). “Urban geology of Maputo, Mocambique.” Engineering geology of tomorrow’s cities,” in Geological society (London: Engineering Geology Special Publication), 22.
644
Vishwanath Harish T. Sairam N. Yang L. E. Garschagen M. Kreibich H. (2022). “Identifying the drivers of private flood precautionary measures,” in Ho Chi Minh city, vietnam (EGUsphere), 2022, 1–25.
645
Vollrath A. Bekaert D. Bonforte A. Guglielmino F. Hooper A. Stramondo S. et al (2014). “The advancement of intraplate tectonic motion detection by the use of atmospherically corrected InSAR time-series and its decomposition into a 3D-field vector in South-east sicily, Italy,” in AGU fall meeting abstracts, 2014, G31A–G0405.
646
Vollrath A. Zucca F. Bekaert D. Bonforte A. Guglielmino F. Hooper A. J. et al (2017). Decomposing DInSAR time-series into 3-D in combination with GPS in the case of low strain rates: an application to the Hyblean Plateau, Sicily, Italy. Remote Sens.9 (1), 33. 10.3390/rs9010033
647
Wang G. Greuter A. Petersen C. M. Turco M. J. (2022a). Houston GNSS network for subsidence and faulting monitoring: data analysis methods and products. J. Surv. Eng.148 (4), 04022008. 10.1061/(asce)su.1943-5428.0000399
648
Wang G. Welch J. Kearns T. J. Yang L. Serna J. Jr (2015a). Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, USA. Proc. Int. Assoc. Hydrological Sci.372, 297–303. 10.5194/piahs-372-297-2015
649
Wang G. Yu J. Kearns T. J. Ortega J. (2014a). Assessing the accuracy of long-term subsidence derived from borehole extensometer data using GPS observations: case study in Houston, Texas. J. Surv. Eng.140 (3), 05014001. 10.1061/(asce)su.1943-5428.0000133
650
Wang H. Feng G. Xu B. Yu Y. Li Z. Du Y. et al (2017). Deriving spatio-temporal development of ground subsidence due to subway construction and operation in delta regions with PS-InSAR data: a case study in Guangzhou, China. Remote Sens.9 (10), 1004. 10.3390/rs9101004
651
Wang H. Wright T. J. Yu Y. Lin H. Jiang L. Li C. et al (2012). InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int.191 (3), 1119–1128. 10.1111/j.1365-246x.2012.05687.x
652
Wang H. Yu Y. P. Jiang L. L. (2014c). Monitoring land subsidence in Guangzhou and Foshan using InSAR. Sci. Surv. Mapp.39, 66–71.
653
Wang H. M. Wang Y. Jiao X. Qian G. R. (2014b). Risk management of land subsidence in Shanghai. Desalination Water Treat.52 (4-6), 1122–1129. 10.1080/19443994.2013.826337
654
Wang J. Gu X. Jiang Y. Huang T. Feng B. (2013). Point-line-area-volume index system of land subsidence and application in Ningbo, China. Nat. hazards69, 2197–2214. 10.1007/s11069-013-0801-0
655
Wang J. Yang T. Wang G. Liu X. Xu Na Stoumather E. et al (2022). Control and prevent land subsidence caused by foundation pit dewatering in a coastal lowland mega city: indicator definition, numerical simulation and regression analysis. 10.21203/rs.3.rs-1221768/v1
656
Wang J. X. Liu X. T. Yang T. L. (2015b). Prevention partition for land subsidence induced by engineering dewatering in Shanghai. Proc. Int. Assoc. Hydrological Sci.372 (372), 207–210. 10.5194/piahs-372-207-2015
657
Wang M. Li T. Jiang L. (2016). Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers. Nat. hazards82, 531–543. 10.1007/s11069-016-2196-1
658
Wang Q. Zhao Q. Ding J. Fedotov A. A. Badenko V. Liu M. et al (2020). Investigation of the ground displacement in Saint Petersburg, Russia, using multiple-track differential synthetic aperture radar interferometry. Int. J. Appl. Earth Observation Geoinformation87, 102050. 10.1016/j.jag.2020.102050
659
Wang R. Yang M. Dong J. Liao M. (2022c). Investigating deformation along metro lines in coastal cities considering different structures with InSAR and SBM analyses. Int. J. Appl. Earth Observation Geoinformation115, 103099. 10.1016/j.jag.2022.103099
660
Wang R. Yang M. Yang T. Lin J. Liao M. (2022d). Decomposing and mapping different scales of land subsidence over Shanghai with X-and C-Band SAR data stacks. Int. J. Digital Earth15 (1), 478–502. 10.1080/17538947.2022.2036835
661
Wang S. F. Zheng M. X. (2011). Application of biot consolidation theory to analyze land subsidence. Adv. Mater. Res.168, 2615–2618. 10.4028/www.scientific.net/amr.168-170.2615
662
Wang W. (2014). “Detection of land subsidence of Shanghai: a research based on differential SAR interferometry,” in Earth observing missions and sensors: development, implementation, and characterization (SPIE), 9264, 277–285. 10.1117/12.2068383
663
Wang Y. (1998). Sea-level changes, human impacts and coastal responses in China. J. Coast. Res., 31–36.
664
Ward P. J. Pauw W. P. Van Buuren M. W. Marfai M. A. (2013). Governance of flood risk management in a time of climate change: the cases of Jakarta and Rotterdam. Environ. Polit.22 (3), 518–536. 10.1080/09644016.2012.683155
665
Wassie Y. Gao Q. Monserrat O. Barra A. Crippa B. Crosetto M. (2022). Differential sar interferometry for the monitoring of land subsidence along railway infrastructures. International archives of the photogrammetry. Remote Sens. Spatial Inf. Sci. 10.5194/isprs-archives-XLIII-B3-2022-361-2022
666
Water U. N. (2022). “Groundwater: making the invisible visible,” in The United Nations world water development report.
667
Watson K. M. Bock Y. Sandwell D. T. (2002). Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin. J. Geophys. Res. Solid Earth107 (B4). ETG-8. 10.1029/2001jb000470
668
Wdowinski S. Fiaschi S. (2022). “Localized coastal subsidence in Miami beach and surfside, Florida,” in EGU general assembly conference abstracts, EGU22–3199.
669
Wdowinski S. Oliver-Cabrera T. Fiaschi S. (2020). Land subsidence contribution to coastal flooding hazard in southeast Florida. Proc. IAHS382, 207–211. 10.5194/piahs-382-207-2020
670
Widodo J. Herlambang A. Sulaiman A. Razi P. Perissin D. Kuze H. et al (2019). Land subsidence rate analysis of Jakarta Metropolitan Region based on D-InSAR processing of Sentinel data C-Band frequency. J. Phys. Conf. Ser.1185 (1), 012004. 10.1088/1742-6596/1185/1/012004
671
Willis M. J. Tiampo K. F. Heijkoop E. R. Nerem R. S. (2021). “Monitoring of coastal subsidence by combining multiple sensors,” in 2021 IEEE international geoscience and remote sensing symposium IGARSS (IEEE), 1715–1718.
672
Winslow A. G. Doyel W. W. (1954). Land-surface subsidence and its relation to the withdrawal of ground water in the Houston-Galveston region, Texas. Econ. Geol.49 (4), 413–422. 10.2113/gsecongeo.49.4.413
673
Wnuk K. C. (2021). Post-processing of InSAR persistent scatterer time-series to investigate deformational processes induced by subsurface excavation. 2021-Mines Theses & Dissertations.
674
Wöppelmann G. Le Cozannet G. De Michele M. Raucoules D. Cazenave A. Garcin M. et al (2013). Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt?Geophys. Res. Lett.40 (12), 2953–2957. 10.1002/grl.50568
675
Worawattanamateekul J. (2006). The application of advanced interferometric radar analysis for monitoring ground subsidence doctoral dissertation. Technische Universität München.
676
Wu H. A. Zhang Y. H. Luo G. F. Kang Y. K. Zhu Y. M. (2016). Monitoring ground subsidence in areas covered by dense vegetation using terrasar-X images: a case study of hangzhou. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.41, 55–59. 10.5194/isprs-archives-xli-b7-55-2016
677
Wu H. N. Shen S. L. Yang J. (2017). Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai. J. Perform. Constr. Facil.31 (6), 04017092. 10.1061/(asce)cf.1943-5509.0001082
678
Wu J. Shi X. Xue Y. Zhang Y. Wei Z. Yu J. (2008). The development and control of the land subsidence in the Yangtze Delta, China. Environ. Geol.55, 1725–1735. 10.1007/s00254-007-1123-x
679
Wu P. C. Wei M. D’Hondt S. (2022). Subsidence in coastal cities throughout the world observed by InSAR. Geophys. Res. Lett.49 (7), e2022GL098477. 10.1029/2022gl098477
680
Wu Z. Zhao Z. Zheng Y. Ma P. (2021). “Automatic detection of widely distributed local-scale subsidence bowls in rapidly urbanizing metropolitan region using time-series InSAR and deep learning methods,” in 2021 IEEE international geoscience and remote sensing symposium IGARSS (IEEE), 8464–8467.
681
Xiong S. Wang C. Qin X. Zhang B. Li Q. (2021). Time-series analysis on persistent scatter-interferometric synthetic aperture radar (PS-InSAR) derived displacements of the Hong Kong–Zhuhai–Macao bridge (HZMB) from Sentinel-1A observations. Remote Sens.13 (4), 546. 10.3390/rs13040546
682
Xiong Z. Deng K. Feng G. Miao L. Li K. He C. et al (2022). Settlement prediction of reclaimed coastal airports with InSAR observation: a case study of the Xiamen Xiang’an International Airport, China. Remote Sens.14 (13), 3081. 10.3390/rs14133081
683
Xu B. Feng G. Li Z. Wang Q. Wang C. Xie R. (2016a). Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: a case study of Shenzhen, China. Remote Sens.8 (8), 652. 10.3390/rs8080652
684
Xu H. Tian Z. Sun L. Ye Q. Ragno E. Bricker J. et al (2022). Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai. Nat. Hazards Earth Syst. Sci.22 (7), 2347–2358. 10.5194/nhess-22-2347-2022
685
Xu Y. S. Ma L. Shen S. L. Sun W. J. (2012). Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeology J.20 (8), 1623–1634. 10.1007/s10040-012-0892-9
686
Xu Y. S. Shen S. L. Cai Z. Y. Zhou G. Y. (2008). The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat. Hazards45, 123–135. 10.1007/s11069-007-9168-4
687
Xu Y. S. Shen S. L. Hayashi S. Cai Z. Y. (2007). Analysis on groundwater withdrawal and land subsidence in Shanghai. Lowl. Technol. Int.9 (2, Dec), 2–7.
688
Xu Y. S. Shen S. L. Ren D. J. Wu H. N. (2016b). Analysis of factors in land subsidence in Shanghai: a view based on a strategic environmental assessment. Sustainability8 (6), 573. 10.3390/su8060573
689
Yamamoto S. (1984). “Case history No. 9.5. Osaka, Japan,” in Guidebook to studies of land subsidence due to groundwater withdrawal. Editor PolandJ. E. (Paris: UNESCO), 185–194.
690
Yamamoto S. (1995). Recent trend of land subsidence in Japan, 234. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 487.
691
Yamamoto S. Poland J. F. (1984). “Case history No. 9.4. Tokyo, Japan,” in Guidebook to studies of land subsidence due to groundwater withdrawal (Paris: United Nations Educational, Scientific and Cultural Organization), 175–184.
692
Yan D. Ge D. Yang J. Zhang L. Wang Y. Guo X. (2010). “PSI analyses of land subsidence due to economic development near the city of Hangzhou, China,” in 2010 IEEE international geoscience and remote sensing symposium (IEEE), 2410–2413.
693
Yan D. Zeng Q. Guo X. Ge D. (2012). “PSI analyses of land subsidence due to industrial structure near the city of Hangzhou, China,” in 2012 IEEE international geoscience and remote sensing symposium (IEEE), 6725–6728.
694
Yan H. Dai W. Xie L. Xu W. (2022). Fusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco Bay Area and Southern California. J. Geodesy96 (7), 47. 10.1007/s00190-022-01636-7
695
Yan X. Xu Y. Yang T. Tosi L. Stouthamer E. Minderhoud P. et al (2022c). Sustainable development of coastal cities through control of land subsidence: activities of IGCP Project 663 in Jakarta. Episodes J. Int. Geoscience45 (1), 101–108. 10.18814/epiiugs/2021/021014
696
Yan X. Yang T. Xu Y. Tosi L. Stouthamer E. Andreas H. et al (2020). Advances and practices on the research, prevention and control of land subsidence in coastal cities. Acta Geol. Sinica‐English Ed.94 (1), 162–175. 10.1111/1755-6724.14403
697
Yang M. Wang R. Li M. Liao M. (2022). A PSI targets characterization approach to interpreting surface displacement signals: a case study of the Shanghai metro tunnels. Remote Sens. Environ.280, 113150. 10.1016/j.rse.2022.113150
698
Yang M. Yang T. Zhang L. Lin J. Qin X. Liao M. (2018). Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-C-and L-band SAR datasets. Remote Sens.10 (2), 329. 10.3390/rs10020329
699
Yang T. Wang H. Jiao X. (2014). Land subsidence zoning control in Shanghai. Shanghai Land Resour.35 (4), 105–109.
700
Yang T. Yan X. Huang X. Wu J. (2020). Integrated management of groundwater exploitation and recharge in Shanghai based on land subsidence control. Proc. Int. Assoc. Hydrological Sci.382, 831–836. 10.5194/piahs-382-831-2020
701
Ye S. Luo Y. Wu J. Yan X. Wang H. Jiao X. et al (2016). Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrogeology J.24 (3), 695–709. 10.1007/s10040-016-1382-2
702
Yi L. Fang Z. He X. Shijie C. Wei W. Qiang Y. (2011). Land subsidence in tianjin, China. Environ. Earth Sci.62 (6), 1151–1161. 10.1007/s12665-010-0604-5
703
Yin J. Yu D. Wilby R. (2016). Modelling the impact of land subsidence on urban pluvial flooding: a case study of downtown Shanghai, China. Sci. Total Environ.544, 744–753. 10.1016/j.scitotenv.2015.11.159
704
Yin Y. Zhang K. Li X. (2006). Urbanization and land subsidence in China. China Geol. Surv31 (15.11).
705
Yu J. Wang G. Kearns T. J. Yang L. (2014). Is there deep-seated subsidence in the Houston-Galveston area?Int. J. Geophys.2014, 1–11. 10.1155/2014/942834
706
Yu L. Yang T. Zhao Q. Liu M. Pepe A. (2017). The 2015–2016 ground displacements of the Shanghai coastal area inferred from a combined COSMO-SkyMed/Sentinel-1 DInSAR analysis. Remote Sens.9 (11), 1194. 10.3390/rs9111194
707
Yu Q. Yan X. Wang Q. Yang T. Lu W. Yao M. et al (2021a). A spatial-scale evaluation of soil consolidation concerning land subsidence and integrated mechanism analysis at macro-and micro-scale: a case study in Chongming East Shoal Reclamation Area, Shanghai, China. Remote Sens.13 (12), 2418. 10.3390/rs13122418
708
Yu W. Gong H. Chen B. Zhou C. Zhang Q. (2021b). Combined GRACE and MT-InSAR to assess the relationship between groundwater storage change and land subsidence in the Beijing-Tianjin-Hebei Region. Remote Sens.13 (18), 3773. 10.3390/rs13183773
709
Yu X. (2016). Assessing the land subsidence governance in ningbo city: by a close study of the building collapse at the strictly protected land subsidence area. EGU General Assem. Conf. Abstr.18. 10.5194/egusphere-egu22-2114
710
Yu X. Hu X. (2022). Multi-annual InSAR solution of vertical land motion in 2021 lethal building collapse site in Miami. Copernic. Meet.No. EGU22-2114.
711
Yuan L. Cui Z. D. Yang J. Q. Jia Y. J. (2020). Land subsidence induced by the engineering-environmental effect in Shanghai, China. Arabian J. Geosciences13 (6), 1–11. 10.1007/s12517-020-5224-0
712
Yujin S. H. I. Xuexin Y. A. N. Nianqing Z. H. O. U. (2007). Land Subsidence Induced By Recent Alluvia Deposits In Yangtze River Delta Areaa Case Study Of Shanghai Lingang New City. J. Eng. Geol.15 (3), 391–394.
713
Yusuf M. A. Takizawa S. Katayama H. (2007). Ground water storage in aquifer of Dhaka City and land subsidence: a major concern in potable water supply in Dhaka Metropolis in 2030. Southeast Asian water Environ.2, 205–212.
714
Zaid S. M. Mamoun M. M. Al-Mobark N. M. (2014). Vulnerability assessment of the impact of sea level rise and land subsidence on north Nile Delta region. World Appl. Sci. J.32 (3), 325–342. 10.5829/idosi.wasj.2014.32.03.14505
715
Zanello F. Teatini P. Putti M. Gambolati G. (2011). Long term peatland subsidence: experimental study and modeling scenarios in the Venice coastland. J. Geophys. Res. Earth Surf.116 (F4), F04002. 10.1029/2011jf002010
716
Zeitoun D. G. Wakshal E. (2013). Land subsidence analysis in urban areas: the Bangkok metropolitan area case study. Springer Science & Business Media.
717
Zerbini S. Richter B. Rocca F. van Dam T. Matonti F. (2007). A combination of space and terrestrial geodetic techniques to monitor land subsidence: case study, the Southeastern Po Plain, Italy. J. Geophys. Res. Solid Earth112 (B5). 10.1029/2006jb004338
718
Zhang X. S. Wang J. X. Wong H. Leo C. J. Liu Q. Tang Y. Q. et al (2013). Land subsidence caused by internal soil erosion owing to pumping confined aquifer groundwater during the deep foundation construction in Shanghai. Nat. hazards69, 473–489. 10.1007/s11069-013-0718-7
719
Zhang Y. Wu J. Xue Y. Wang Z. Yao Y. Yan X. et al (2015). Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeology J.23 (8), 1851–1866. 10.1007/s10040-015-1302-x
720
Zhang Z. Ding X. L. Wu S. Kang Q. (2022). The settlement of Hong Kong international airport based on the interferometric point target analysis. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.43, 1267–1272. 10.5194/isprs-archives-xliii-b3-2022-1267-2022
721
Zhang Z. Wang X. Wu Y. Zhao Z. E Y. (2021) “Applied research on InSAR and GPS data fusion in deformation monitoring. Sci. Program.2021, 1–9. 10.1155/2021/3888975
722
Zhao Q. Lin H. Jiang L. Chen F. Cheng S. (2009). A study of ground deformation in the Guangzhou urban area with persistent scatterer interferometry. Sensors9 (1), 503–518. 10.3390/s90100503
723
Zhao Q. Pan J. Devlin A. Xu Q. Tang M. Li Z. et al (2021). Integrated analysis of the combined risk of ground subsidence, sea level rise, and natural hazards in coastal and Delta River regions. Remote Sens.13 (17), 3431. 10.3390/rs13173431
724
Zhong C. Guo H. Swan I. Gao P. Yao Q. Li H. (2023). Evaluating trends, profits, and risks of global cities in recent urban expansion for advancing sustainable development. Habitat Int.138, 102869. 10.1016/j.habitatint.2023.102869
725
Zhou B. Urosevic M. Shen B. (2015). Subsidence assessment using 3-D seismic data at Collingwood Park, Brisbane. J. Environ. Eng. Geophys.20 (3), 257–272. 10.2113/jeeg20.3.257
726
Zhou C. Gong H. Chen B. Gao M. Cao Q. Cao J. et al (2020). Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China. Remote Sens.12 (3), 457. 10.3390/rs12030457
727
Zhou L. Zhao Y. Zhu Z. Ren C. Yang F. Huang L. et al (2022). Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology. J. Geodesy Geoinformation Sci.5 (1), 60–72.
728
Zhu K. Zhang X. Sun Q. Wang H. Hu J. (2022a). Characterizing spatiotemporal patterns of land deformation in the santa ana basin, Los Angeles, from InSAR time series and independent component analysis. Remote Sens.14 (11), 2624. 10.3390/rs14112624
729
Zhu Y. Y. He Y. Li H. Y. Lv Z. P. Xu G. C. (2022b). Land subsidence monitoring and analysis in Fuzhou based on insar and multispectral remote sensing technology. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sciences-ISPRS Archives43, 373–379. 10.5194/isprs-archives-xliii-b3-2022-373-2022
730
Zhu Z. L. Ren C. Zhou L. Shi X. J. Li X. G. Zhang D. (2020). Monitoring Tianjin land subsidence by SBAS-InSAR based on Sentinel-1A SAR images. Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci.42, 315–319. 10.5194/isprs-archives-xlii-3-w10-315-2020
731
Zhuo G. Dai K. Huang H. Li S. Shi X. Feng Y. et al (2020). Evaluating potential ground subsidence geo-hazard of Xiamen Xiang’an new airport on reclaimed land by SAR interferometry. Sustainability12 (17), 6991. 10.3390/su12176991
732
Zou F. Tenzer R. Fok H. S. Meng G. Zhao Q. (2021). The sea-level changes in Hong Kong from tide-gauge records and remote sensing observations over the last seven decades. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens.14, 6777–6791. 10.1109/jstars.2021.3087263
Summary
Keywords
subsidence, database, coastal, groundwater, cities
Citation
Pedretti L, Giarola A, Korff M, Lambert J and Meisina C (2024) Comprehensive database of land subsidence in 143 major coastal cities around the world: overview of issues, causes, and future challenges. Front. Earth Sci. 12:1351581. doi: 10.3389/feart.2024.1351581
Received
06 December 2023
Accepted
12 July 2024
Published
27 August 2024
Volume
12 - 2024
Edited by
Elisa Zuccolo, Fondazione Eucentre, Italy
Reviewed by
Stuart Marsh, University of Nottingham, United Kingdom
Daniela Ruberti, University of Campania Luigi Vanvitelli, Italy
Updates
Copyright
© 2024 Pedretti, Giarola, Korff, Lambert and Meisina.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Alessia Giarola, alessia.giarola01@universitadipavia.it
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.