
TYPE Original Research
PUBLISHED 26 March 2024
DOI 10.3389/feart.2024.1353572

OPEN ACCESS

EDITED BY

Marcelo Cohen,
Federal University of Pará, Brazil

REVIEWED BY

Fikret Dogru,
Atatürk University, Türkiye
Giovanni Leucci,
National Research Council (CNR), Italy
Svetlana Kovacikova,
Institute of Geophysics (ASCR), Czechia

*CORRESPONDENCE

Amanda Almeida Rocha,
amanda7k@gmail.com

RECEIVED 13 December 2023
ACCEPTED 15 February 2024
PUBLISHED 26 March 2024

CITATION

Almeida Rocha A, Borges WR, Giannoccaro
Von Huelsen M, Ferreira Rodrigues de Oliveira
e Sousa FR, Ramalho Maciel ST, de Almeida
Rocha J and Baiocchi Jacobson TK (2024),
Imaging tree root systems using ground
penetrating radar (GPR) data in Brazil.
Front. Earth Sci. 12:1353572.
doi: 10.3389/feart.2024.1353572

COPYRIGHT

© 2024 Almeida Rocha, Borges, Giannoccaro
Von Huelsen, Ferreira Rodrigues de Oliveira e
Sousa, Ramalho Maciel, de Almeida Rocha
and Baiocchi Jacobson. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Imaging tree root systems using
ground penetrating radar (GPR)
data in Brazil

Amanda Almeida Rocha1*, Welitom Rodrigues Borges2,
Mônica Giannoccaro Von Huelsen2, Frederico Ricardo Ferreira
Rodrigues de Oliveira e Sousa3, Susanne Tainá Ramalho
Maciel2, Janaína de Almeida Rocha4 and Tamiel Khan Baiocchi
Jacobson2

1Saskatchewan Geological Survey, Ministry of Energy and Resources of Saskatchewan, Regina, SK,
Canada, 2Instituto de Geociências, Instituto Central de Ciencias, Universidade de Brasília, Brasília,
Brazil, 3Serviço Geológico do Brasil, Fortaleza, Brazil, 4GITEC-IGIP GmbH, Cologne, Germany

Trees sequester carbon dioxide from the atmosphere through photosynthesis,
storing it in branches, stems, and roots, where the belowground carbon
fraction, approximately ¼ of the total amount, exhibits significant interspecies
root biomass variability. Estimating the amount of carbon stored in tree
roots of different species is key to understanding an important aspect of
climate change and exploring how natural forests, urban tree planting policies,
and reforestation projects might help to address it. In this context, one of
the most prominent Non-Destructive Testing methods capable of estimating
the diameter and length of roots at different depths is ground penetrating
radar (GPR). It has been widely used for geological, archaeological, and
geotechnical studies due to its accuracy in locating buried material in different
contexts, although standards for the correct management of datasets related
to belowground root systems are still been developed. This paper reports a
GPR signal processing flow to estimate the root diameter of three species
of tropical forest trees, and to demonstrate the method’s viability, a dataset
was collected in a study area with a 900 MHz shielded antenna. A multi-
stage data processing flow is then presented, including raw data, file format
conversion, zero-time adjustment, background removal, signal gain, Stolt FK
migration, and time-to-depth conversion with hyperbolic adjustment velocity.
The resulting data were converted from true amplitude data to a trace
envelope. High amplitudes on the envelope section, with lateral continuity
in parallel sections, were interpreted as roots. However, the interpretation
of outcomes encounters notable complexities, primarily attributable to the
intricate nature of subsurface root architectures, the soil matrix characterized by
significant clay content, and the co-occurrence of buried materials proximate
to the arboreal subjects. Consequently, amplitudes discerned within ground
penetrating radar (GPR) 2D sections necessitate cautious interpretation, as they
are not immediately indicative of subsurface roots. To overcome this difficulty,
this study used direct measurements of the roots in the field, to confirm the
GPR data. Despite these complexities, the study demonstrates GPR’s efficacy,
particularly in the uppermost soil layer-a pivotal carbon reservoir with a 96%
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correlation (R2) between GPR-derived coarse-root diameter estimates and field
measurements.

KEYWORDS

indirect measurement, root systems, ground penetrating radar (GPR), 3D GPR,
belowground imaging

1 Introduction

In recent decades, anthropic actions have triggered a series
of climate changes with the increase in greenhouse gases, and
other activities intensified since the Industrial Revolution with the
burning of fossil fuels (Houghton, 2003; Carvalho et al., 2010).

The increase in greenhouse gas concentration has been the focus
of several international conferences and conventions such as United
Nations Framework Convention on Climate Change (UNFCCC) in
1992 and the Kyoto Protocol in 1997, REDD++ program in 2009,
IPCC in 2014, the Paris Agreement in 2015, among others.Themain
objective is to find strategies to reduce greenhouse gas emissions
into the atmosphere. This has motivated the demand for knowledge
about the ability of different ecosystems to capture and fix carbon
from the atmosphere in their biomass.

In this context, forests are an important provider of
environmental services to mitigate climate change.The carbon fixed
by the reservoir of living biomass (above and below ground) can
represent between 70% and 95% of the sequestered CO2 during the
growth of a tropical forest (Centro de Gestão e Estudos Estratégicos,
2008), the rest is represented by the litter, dead wood and carbon
in the soil.

Evaluating the biomass distribution on the planet is important
to estimate carbon sequestration stocks, for the modeling of
biogeochemical cycles and for understanding the historical effects
and future impacts of anthropic actions. Subsurface biomass
represents 40% of the planet’s total biomass and is estimated at
230 Gt C (Bar-On et al., 2018).

According to Grace et al. (2006), the productivity of the biomass
below the soil contained in the roots of the savanna ecosystem
is often underestimated due to the difficulty of quantifying, since
destructive methodologies require a large amount of time and
service, making the activity quite costly. According to Qureshi et al.
(2012), the quantification of carbon stock in forests is a challenging
task, that involves a high level of uncertainties and discrepancies.

An alternative to the destructive method is the indirect method
using allometric equations to estimate root biomass. However, it
is rare in the literature that have adjusted allometric models to
obtain root biomass of a natural ecosystem (Kuyah et al., 2012;
Cornet et al., 2015; Kuyah et al., 2016; Koala et al., 2017).

As a promising alternative to indirect techniques, ground
penetration radar (GPR), a geophysicalmethod for subsoilmapping,
has been studied since Hruska et al. (1999) for underground
biomass imaging. GPR is a geophysical method that uses radar
pulses to image the subsurface. It is a non-invasive technique
that allows for the detection and imaging of buried objects,
structures, or geological features beneath the ground surface. The
use of GPR has shown good results in imaging the behavior
of root patterns and is still being studied to be established
as a traditional methodology (Butnor et al., 2001; Butnor et al.,

2003; Butnor et al., 2005; Vianden et al., 2010; Tanikawa et al., 2013;
Borden et al., 2014; Guo et al., 2015; Bain, 2016; Nichols et al., 2017;
Agbona et al., 2021).

Coarse root investigation by GPR is being tested for different
types of soil and plant species (Butnor et al., 2001; Guo et al., 2015;
Altdorff et al., 2019; Lantini et al., 2020).The feasibility and accuracy
of diameter estimations based on radargrams - the graphical
representation of the data collected by a GPR - are still in discussion
in the literature (Butnor et al., 2001, Guo et al., 2015; Lantini et al.,
2020; Alani and Lantini, 2020; Wang et al., 2020). Many parameters
such as local soil conditions, electromagnetic root properties, and
GPR antenna frequency can impact the results. Field data collection
protocols are not yet well established (Guo et al., 2015, Wang et al.,
2020; Alani and Lantini, 2020). In particular, studies of biomass
estimation with GPR on South American tropical soils are absent,
as far as we know.

The studied area is located in Brasilia, Brazil (Figure 1). The
climate of the region is characterized by long interspersed periods
of drought and rain (INMET, 2019). The region’s main soil is the
Oxisols (Haridasan, 1994), and we chose three species of trees for
our study.The trees were planted in garden soil inside the University
of Brasilia.The studied trees include: the Schizolobium parahyba, the
Mangifera indica, and the Acacia farnesiana (L.) Willd.

The GPR method has been confirmed in recent years as an
efficient methodology for root determination (Butnor et al., 2016;
Delgado et al., 2017; Almeida et al., 2018; Linna et al., 2022), since
underground biomass is the most time-consuming and challenging
component to be quantified in any forest ecosystem. Furthermore,
direct biomass estimation methods are generally not standardized
(Britez et al., 2006).

Coarse root investigation by GPR is commonly conducted from
the interpretation of reflection waveform indexes (Butnor et al.,
2001; Butnor et al., 2003; Guo et al., 2013), or reflection amplitude
intensity indexes (Guo et al., 2013).

This case study aims to evaluate the possibility of estimating
the actual size of a coarse root diameter with GPR data and
Hilbert Transform, following the data processing steps proposed by
Wielopolski et al., 2000. We estimated the diameter of the detected
roots by analyzing their waveforms, and the distance between the
top, and bottom reflection of a root within 2D GPR data. The
first framework of root diameter estimation through GPR data
was proposed by Butnor et al. (2001).

The objective of this work is to verify the diameter of tree’
roots indirectly, by using GPR data to improve the estimation
of underground biomass, following the protocols suggested by
Butnor et al., 2005; Guo et al., 2015. This is a case study work to
evaluate the efficacy of these protocols in a tropical context, within
Brazilian soil. We show that with adequate parameters tunning, it
is possible to retrieve coarse root diameters. To evaluate results,
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FIGURE 1
Location map of the trees studied inside the University of Brasilia/Darcy Ribeiro Campus. (A) Schizolobium parahyba; (B) Mangifera indica; (C) Acacia
farnesiana (L.) Willd.

direct verification with in situmethodologies is used to compare the
image results.

2 Materials and methods

The GPR is a geophysical method that records high frequency
(10–2,600 MHz) electromagnetic waves artificially irradiated to
media. The electromagnetic waves propagate in the medium and
depending on the electrical characteristics of the structures present
in the medium, the signal returns in the form of reflected, diffracted
and refracted waves (Annan and Chua, 1992).The electrical signal is
converted into a digital signal and arranged in traces that represent
variations in the amplitude of the electromagnetic signal as a
function of travel time. The set of traces obtained along a path
or time, with the same distance between the antennas, is called a
radargram (Figure 2). The main components of the electromagnetic
field come from the Fresnel zone (Zhang et al., 2019).

The main factor controlling the equipment signal is the
electromagnetic frequency (Annan and Chua, 1992). Thus, the
choice of the central frequency of GPR should always be preceded
by soil identification since the amount of clay, salt content, or

water can directly influence radar signal attenuation (Doolittle and
Butnor, 2009).

According to Table 1, the dielectric constant represents the
particular physical characteristic of the medium in which the
radar pulse travels. The dielectric constant plays a prominent
role when working with high-frequency electromagnetic methods
(>1 MHz). For frequencies between 1 MHz and 2.6 GHz, the water
content governs the dielectric properties of the materials since the
relative water permissiveness value is ten times greater than the
characteristic permittivity of the roots.

Antennas of high frequencies provide better results in dry,
and electrically resistive soils because the attenuation is directly
proportional to the electrical conductivity of the medium. The
higher the conductivity in the soil, the higher the attenuation of the
electromagnetic wave (Annan and Chua, 1992).

In this way, the GPRmethod has limitations on the imaging and
characterization of belowground biomass in high conductivity soils.
In this case study, the soil is characterized as an oxidized soil, Oxisols
(Haridasan, 1994). This type of soil has a high content of clay, and
high conductivity, making the radargram processing a challenging
task. Nevertheless, we found suitable parameters for locating the
position, and dimensions of the roots of trees in a non-invasive way.
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FIGURE 2
(A) Graphic representation of the propagation of the electromagnetic wave of the GPR in a homogeneous medium with the presence of roots. (B) GPR
pulse recorded in the presence of a root. (C) Radargram with the indication of a hyperbola related to a root.

TABLE 1 Interval of dielectric constant, electrical conductivity and
magnetic permeability, (Annan and Chua, 1992).

Soil type K µr σ (mS/m)

Sandy soil 2.6 1 0.14

Saturated sandy soil 25 1 6.9

Clay soil 2.4 1 0.27

Saturated clay soil 15 1 50

Roots 3–5 1 <0.1

The drought season is the most convenient period for GPR data
acquisition.

Antennas with frequencies between 900 MHz and 1.5 MHz
have been used for shallow investigations and sandy soils. In
soils of middle attenuation, where the penetration of the signal at
depth is quite limited, these antennas of high frequency provide a
depth of investigation comparable to the low-frequency antennas
(Loewer et al., 2016). However, the antennas most used for soil
surveys have a central frequency between 100 and 500 MHz because
they reach greater depth than high-frequency antennas. Organic
soils are responsible for a high attenuation of the electromagnetic
signal (Van Dam, 2014). When considerable depths of research are
necessary, low-frequency antennas between 70 and 200 MHz are
commonly used (Doolittle and Butnor, 2009).

3 Data acquisition

We used the GPR model SIR-3000 (manufactured by
Geophysical Survey Systems, Inc.) coupled with a pair of shielded
antennas with a central frequency of 900 MHz and an odometrical
wheel for data acquisition. The data were acquired through the
common offset technique (fixed distance between antennas),
where a pair of antennas (one transmitter and one receiver) is
simultaneously moved along each profile (Jonard et al., 2019),
allowing real-time visualization of the reflections in the subsoil.

The data were collected along 4 m profiles, equispaced in 5 cm,
where the three species were in the center of an area of 16 m2, for
each of the surveys (Figure 3). The set of 2D GPR sections obtained
with this small spacing between profiles allows the interpolation of
all traces in 3DGPR volumes (Grasmueck et al., 2005).The data was
collected during the dry season in September, when theOxisols have
higher resistivity, providing a better GPR image.The trees are placed
in the garden of the University of Brasília, Darcy Ribeiro Campus.

4 In situ measures of root diameter

The root diameters were measured on the 2D GPR radargrams
and then measured through the in situmethodology, the traditional
excavation method, as shown in Figure 4. Single-tree excavation
methods consist of removing the tree root system from the
soil and tracing each root individually from the stump to root
tip (Pierret et al., 2005). Allometric equations (Kuyah et al., 2012;
Koala et al., 2017) can also be used to evaluate root biomass, but such
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FIGURE 3
Picture shows the GPR system used in data acquisition and the survey lines for Schizolobium parahyba. Mangifera indica, and Acacia farnesiana (L.)
Willd. survey follow similar patterns.

FIGURE 4
Picture shows the in situ methodology, the excavation method used
for root diameter measurements.

models need to be calibrated on large amounts of data collected by
reliable excavation methods (Saint-André et al., 2005).

We excavated the roots after the GPR acquisition. We first
identified the correct location of root samples belowground using
the 3D GPR radargram slices. Then, we measured the diameter
of each sample to further correlate with estimated diameters
from GPR data.

After the exposure of the target root defined by the 3D, and
2D GPR images, the root diameters were measured for each tree.

TABLE 2 Dielectric constant and electrical conductivity values, recorded
in the field and in the laboratory, and used to generate the synthetic
models in the ReflexW software.

Soil type ε σ (mS/m)

Moist soil 18 0.01

Dry soil 7 0.0001

Roots 4.5 0.00024

For this preliminary work, the in situ measurements collected
consisted of 10 samples of root diameter for each tree through the
excavation method.

5 Forward modeling

Forward modeling provides a faster alternative to study the
limiting factors of GPR root investigation when compared to real
data. Since all the variables in the synthetic model can be precisely
controlled, it is possible to differentiate and detect the various
limiting factors (Guo et al., 2013).

The synthetic models were generated using the software
ReflexW, version 7.5 (Sandmeier, 2015). The software simulates the
propagation of the electromagnetic waves using input values for
dielectric conductivity and permittivity for each x, and z coordinate.
Themodeling algorithmuses a time domain finite differencemethod
for solving Maxwell’s equations. We generated 16 different models,
where we varied the values of some physical properties of the
dielectric medium such as presented in Table 2, the dielectric
constant of the soil, electrical conductivity of the soil, root diameter,
and root depth.We varied these values to build a synthetic controlled
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FIGURE 5
(A) Raw data; (B) Radargram after zero time correction; (C) Background removal; (D) Gain (declipping); (E) Stolt or fk migration; (F) Hilbert Transform
(Trace Envelope).

experiment of the root’s complex organic system presented in the
real dataset.

For the generation of a finite difference model with numerical
efficiency it is necessary to define the horizontal spatial sampling
(dx) as a function of vertical sampling (dz). The spatial increment
dx depends on the shortest wavelength λ as defined in Equation 1:

λ = c/ f ∙√ε (1)

Where the central frequency is f = 900 MHz and c = vacuum
velocity (0.3 m/ns). To determine the time increment dt that
respects numerical stability, we can use the Equation 2 (Taflove and
Hagness, 1995):

dt ≤ 1c ∙√ 1
dx2
+ 1
dy2
+ 1
dz2

(2)

We set the time increment dt = 0.0046s and the spatial increment
dx = 0.0028 m.We defined the edge conditions as a linear absorbing
range, inwhich the edges of themodel absorb the energy of thewaves
arriving at them, avoiding spurious reflections. Also, we defined
the target as an exploding reflector (Yilmaz, 2001) to simulate that
waves are emitted directly by the target towards the surface. We
used a Kuepper plane wave as the source, with a 900 MHz central
frequency, simulating the antenna we used for the real data survey.
The root target was defined as a circular layer at various depths
(20 cm, 30 cm, 40 cm, and 50 cm). The root target was defined as
a circular layer with different diameters (10 cm and 20 cm).

After the data processing, the same indexes were extracted
from the synthetic radargrams and analyzed similarly to the real
data surveyed.

6 Data processing

We processed the data in the software ReflexW, version 7.5,
Sandmeier (2015). Although environment conditions are different in
each case study onGPR applied to the identification of belowground
biomass, data processing routines have been gradually established,
including GPR radargram standardization, noise reduction,

migration, and Hilbert transformation (Wielopolski et al., 2000;
Butnor et al., 2003; Stover et al., 2007; Dannoura et al., 2008;
Butnor et al., 2008; Hirano et al., 2009, Guo et al., 2015).

The signal processing workflow is exemplified in Figure 5. It
consisted of file format conversion of (A) raw data (B) zero time
adjustment (C) background removal (D) gain - declipping, and (E)
Stolt or fk migration. The time to depth conversion was done with
hyperbolic adjustment velocity found at roots of 0.12 m/ns. The
resulting data is (F) converted from the true amplitude data to a
trace envelope.

According to Sandmeier (2015), stolt migration works in the
frequency wavenumber (fk) domain. The migration aims to trace
the reflected and diffracted energy back to the source (Figure 5E).
Alani and Lantini (2020) suggested that the application of Fk
or Stolt migration significantly improved the effectiveness of root
detection and quantification algorithms, as it decreased the errors
in identifying the roots’ positions.

The trace envelope is the amplitude of the Hilbert transform.
High amplitudes on the envelope section are interpreted as roots.
Through the trace envelope, the roots are measured (distance
between top, and bottom of a root) using the depth scale to convert
it to centimeters. Note that in 2D sections, it is not possible to
distinguish a small rock from a root transversal cut, for example,.
For proper analysis of tree roots, it is necessary to check 3D GPR
radargram slices.

Estimated diameters from radargrams and actual measures of
root diameters were correlated using a linear regression model and
the coefficient of determination. This statistical method can assess
how strong the linear relationship is between two variables, it is
a measure that represents the proportion of the variance for a
dependent variable that is explained by an independent variable or
variables in a regression model (Butnor et al., 2003).

7 Results and discussions

Figure 6 shows the data acquired with the 900 MHz GPR
antenna. On the left column, it is possible to identify hyperbolic
diffractions related to the roots of trees, with the adjustment of the
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FIGURE 6
2D GPR signal after migration step for (A1) Schizolobium parahyba; (B1) Mangifera indica; (C1) Acacia farnesiana (L.); Willd. Hilbert transforms for (A2)
Schizolobium parahyba; (B2) Mangifera indica; (C2) Acacia farnesiana (L.); Willd. Velocity used for time-depth conversion: 0.12 m/ns.

penetration of the signal to themaximumdepth of 2 m. On the right
column, it is possible to observe the results of theHilbert Transform,
and we identified the detected roots with a black line.

Figure 7 illustrates the estimated diameter measured from the
radargrams by each trace. The estimated diameter is an important
variable to be consistently compared to the real diameter. The
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FIGURE 7
Illustration of ɸe (estimated diameter) extratcted from radargrams measured by trace for (A) Schizolobium parahyba; (B) Mangifera indica; (C) Acacia
farnesiana (L.); Willd.

dielectric constant of the soil plays an important role when
estimating the root diameter. The dielectric constant of the soil
influences the electromagnetic wave propagation, changing the
waveform to be analyzed.

Figure 8 exemplifies the differences between the estimated
diameter (cm) by depth (cm) for dry soil (A) and humid soil (B).

It is possible to visualize that the estimated diameter varies in
comparison to the real diameter, overestimating or underestimating
it.The graph also demonstrates how the diameter estimation is better
for dry soil environment when analyzing deeper roots.

Soil is a complex substance made up of different components.
It contains different solid materials, air, free and bound water. There
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FIGURE 8
Graph illustrates the synthetic data generated. The differences
between the estimated diameter (cm) by depth (cm) for dry (A) and
humid soil (B).

FIGURE 9
Graph illustrates the synthetic data generated. Max amplitude (dB) by
Depth (cm) with different dielectric constants of soil (dry or
humid soil).

are different types of soil covering the surface of the earth. It is useful
to separate the dry and wet components of soil while estimating
soil’s dielectric properties. The permittivity of dry soil is better
understood than the wet soil because dielectric losses can lead to
water contribution.

Figure 9 exemplifies how themaximum amplitude (dB) value by
depth changes for humid soil and dry soil. It is possible to verify
from the synthetic data in this graph that humid soil will generated
root anomalies with considerably higher amplitude. It is possible
to identify how the maximum amplitude diminishes when depth
increases due to the geometric dispersion and backscattering of
propagating electromagnetic waves.

Figure 10 presents depth slices in 3D GPR blocks of the three
species, which allows the visualization of the roots distribution
patterns, and root diameters. The GPR radargrams were correlated
with in situmethodology.

Each studied tree was excavated at 20 cm depth, and the in situ
methodologywas testedwith 10 root samples for each tree, totalizing
30 samples.The root diameter (or thickness) was measured with the
GPR radargrams and its results compared to the in situmeasurement
through the conventional excavation method.

We used the Python package Statsmodel (Seabold and Perktold,
2010) to run an ordinary least squares regression model, with the in
situ measured diameters as dependent variable, and the estimated
root diameters from GPR data as the explanatory variable. The
model was built from the 30 samples that were collected in the field.
Raw data provided nonlinear and heteroscedastic residual errors,
which would invalidate linear regression models.

The White test for heteroscedasticity of residuals provided an
LM test’s p-value of 0.0003, so we rejected the hypothesis of the test
that residual errors were homoscedastic. The Lagrange Multiplier
(LM) test, also known as the score test, is a hypothesis test used to
check whether some parameter restrictions are violated. This test
can be performed after estimating the parameters by maximum
likelihood.

Furthermore, the F-test p-value was also practically null, as we
can see in Table 3. An F-test is any statistical test used to compare
the variances of two samples or the ratio of variances between
multiple samples.

To dampen heteroscedasticity effects and remove nonlinearity,
we transformed the data by applying an exponential on the
dependent variable. We built a primary model by fitting an OLS
linear regression model to the exponential-transformed dataset.
In statistics, the Ordinary Least Squares (OLS) is a type of linear
least squares method for choosing the unknown parameters in a
linear regression model by the principle of least squares. Based on
the model assumptions, it is possible to derive estimates on the
intercept and slope that minimize the sum of squared residuals
(SSR).Minimizing the SSR is a desired result, sincewewant the error
between the regression function and sample data to be as small as
possible. The coefficient estimates that minimize the SSR are called
the Ordinary Least Squares (OLS).

Then we evaluated heteroscedasticity on the residual errors
by running the White Test on a secondary model, in which the
dependent variable was the square of the residuals from the primary
model, and the explanatory variables were the “Real root diameter”
and its square. The White test for heteroscedasticity on the residual
errors returned a much higher p-value for F-statistic, of 0.421 than
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FIGURE 10
3D GPR signal with Hilbert Transform (A) Schizolobium parahyba’s slice at 0.17 m depth; (B) Mangifera indica’s slice at 0.08 m depth; (C) Acacia
farnesiana (L.); Willd.'s slice at 0.15 m depth.

for the previous raw data, which confirmed the null hypothesis of
the test that there was no heteroscedasticity in the residual errors.
Furthermore, the LM test statistics’ p-value (0.394) wasmuch higher
than the previous result. Overall, we concluded that the residual
errors for the exponential transformed dataset were homoscedastic.
The linear regression for the exponential transformed dataset
returned an R2 of 0.965, indicating that we can trust predictions of
root diameters by GPR images, when it is possible to reach the ideal
conditions (Figure 11).

The ideal conditions to successfully measure the root
diameter, and consequently the root volume belowground, are
dependable on the root geometry, root depth, root thickness,
root water content (Guo et al., 2013), cross angles between root

TABLE 3 OLS summary for raw data and exponential transformed data
set, and White test on residual errors results.

Raw data Exponential
transformed data

R2 0.899 0.965

p-value 5.15e-12 6.84e-22

LM- test on
residuals

0.0003 0.394

F-test p-value on
residuals

3.563718882328079e-
05

0.421
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FIGURE 11
Correlation graph between measured root thickness with 2D GPR
Signal, and measured root thickness on the field. The error bars
represent the error percentage on each measure.

and survey line (Hirano et al., 2009; Tanikawa et al., 2013, Guo
et al., 2015), soil humidity, and others. Nevertheless, it is possible
to estimate coarse root diameter using GPR under certain
conditions: shallow coarse roots, roots containing water in its
composition.

In this case study, S. parahyba presents longer and thicker roots
than other species, they are sparse and present a horizontal growth
pattern (at the same depth).

Mangifera indica presents an interwinted growth pattern
with shorter and thinner roots in general and intense variation
in root depth, causing several diffraction patterns. Acacia
farnesiana (L.) Willd. has the less reliable correlation results of
this case study because it has an intertwined growth pattern
with intense variation in root depth. In addition, A. farnesiana
(L.) Willd.'s roots are also thinner. Future studies might
focus on more modern data processing methods for super-
resolution imaging.

We observed that the 3D GPR provides better results than
the 2D GPR. It is necessary to consider the root growth pattern
and root identification on the map belowground. Despite being
useful for estimating root diameters, the 2D GPR profile alone
can not allow the interpretation of the root angles and their
root continuity.

The 3DGPR provided a fast way to identify the root patterns and
the roots targeted as root samples for the diameter measurement.

The best framework for the quantification of roots with the
use of GPR is still being studied (Guo et al., 2013, Guo et al., 2015,
Altdorff et al., 2019; Wang et al., 2020, Alani and Lantini, 2020;
Lantini et al., 2020).

GPR has proven to be an efficient method to identify roots
of trees in different environments, although the identification
of roots of trees in Brazil has not been studied yet. Figure 11
presents the linear R-squared correlation results for the
2D GPR data.

This preliminary study shows the strong correlation between the
GPR images, and the real root diameter.

8 Conclusion

Soils with high content of clay are more challenging to detect
roots than sandy soils. We showed that it is possible to characterize
roots up to 1 m depth in Oxisols using 2D and 3D sections.
The interpretation of roots in radargram is extremely subjective
in 2D sections, because root systems are extremely complex and
unpredictable. Furthermore, high amplitudes in radargrams cannot
be immediately interpreted as roots. Roots patterns are more
interpretable in 3D sections, which are the most recommended
for belowground biomass studies with GPR. This study presents
the strong correlation between the root diameter measured with
the GPR and the root diameter measured with the excavation
method. In future work, using software development, we pretend
to make it possible to estimate the volume of belowground
biomass using measurements of root diameters, 2D GPR data, and
3D GPR data.

Indirect belowground carbon estimation is a methodology
that requires further research, and the development of new GPR
applications in this area is promising. There are several open topics
in this research field, such as how the water content within the
soil, and within the roots, impact results; the differences in the root
depth, root thickness, and root cross angles between the survey lines,
among others.

The GPR radargrams are better trustworthy when correlated
with other direct measurements taken at field level. Further
development of post-processing software tools is recommended
to integrate the field data, and the GPR data to develop better
statistical solutions, using volume estimation, and the pixel
intensity values.

It is possible to evaluate the validity of the real data surveyed
and processed with the synthetic data. The graphs show the
distribution parameters of the differences in amplitude according to
the differences in the dielectric constant in the different humidity
values in the soil.
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