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Introduction: The surface expression of enhanced geothermal heat fluxes above
an active hydrothermal system causes a surface thermal anomaly (ΔT). The
thermal anomaly is expressed by the difference between the temperature within
the heated zone (Th) and the temperature of non-heated surfaces (T0). Given
that the resulting thermal anomaly at the surface is of extremely low magnitude
(1°C–5°C at Vulcano, Italy), it is extremely sensitive to overprinting by external
factors, namely, meteorological influences on surface temperature variation,
such as solar heating, wind and rain.

Methods: To test the sensitivity of the surface to external drivers, we installed two
surface temperature measurement stations within the Vulcano’s Fossa crater,
one inside the thermal anomaly and one outside (separation = 50 m), with a
weather station co-located with the T0 station. Time series of Th and T0 were
collected for 2020, when the Vulcano Fossa hydrothermal system was at a low
and stable level of activity so that external drivers would have been the main
influences on Th and T0, and hence alsoΔT. To test for divergence fromnormality
in terms of diurnal and seasonal variations in Th and T0, and the role of external
factors in causing abnormality, we used the deep learning engine DITAN: a
domain-agnostic framework to detect and interpret anomalies in time-series
data.

Results: During the year, DITAN found 16 cases of two types of meteorological
events: intense low-pressure systems and high-intensity rainstorms
(cloudbursts). Passage of 13 abnormal low-pressure systems were detected
(10 between February and May, and three in December), with three abnormal
rainstorm events (all in December); all three being coincident with the abnormal
low pressure events. We find just two abnormalities in the time series for of Th

and T0, both of which coincide with passage of abnormal low-pressure systems,
and neither of which coincide with abnormal rain events. We conclude that
diurnal and annual heating and cooling cycles, subject to normalmeteorological
inputs and at a surface above a geothermal-heated source, are immune to
anomalous behaviour to the external (meteorological) variations.

KEYWORDS

deep learning, geothermal system, anomaly detection, external factor, temperature
change
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1 Introduction

A “geothermal system” is defined by Hochstein and Browne
(2000) as a cascading system through which “natural heat transfer
within a confined volume of the Earth’s crust where heat is
transported from a heat source to a heat sink.” Geothermal systems
are located in areas where heat flow is enhanced and where the
structural setting allows for fluid circulation, such as at convergent
plate margins, spreading centers, rift systems and mantle hot spots
(Stimac et al., 2015). Geothermal systems not associated with a
magmatic source have been termed by Nicholson and Nicholson
(1993) “non-volcanic geothermal systems” and can be found in
active tectonic areas where heat can be produced by deep water
circulation in a faulting context. However, if the heat source is
provided by magma, we have a “volcanic geothermal system”
(Nicholson and Nicholson, 1993). In a volcanic geothermal system,
heat and mass are transferred to the surface from a magma
reservoir (Hochstein, 2005), where ascending magmatic fluids
mix with descending fluids from the near-surface groundwater
system to create a “volcanic-hydrothermal system”, hereafter termed
“hydrothermal system”. A hydrothermal system is thus a systemwith
four key components (Figure 1):

• a heat source (the magmatic source),
• an area of recharge (i.e., a “hydrothermal reservoir” of highly

permeable rocks),
• an area of discharge (i.e., the “geothermal field” at the surface),

and
• circulation of hydrothermal fluids contributing to mass and

energy flows.

Diffuse heat fluxes from the hydrothermal system result in
widespread and pervasive ground surface heating to cause a low
amplitude (typically 1°C–10°C) thermal anomaly at the surface (e.g.,
Hochstein and Browne, 2000; Chiodini et al., 2005; Lagios et al.,
2007; Aubert et al., 2008; Harris et al., 2009; Diliberto, 2011). The
difference between the temperature of heated (Th) and unheated
ground (T0) is here termed the thermal anomaly (Figure 1,
ΔT = Th −−T0). Geothermally-heated surfaces are relatively cool
compared to other active volcanic surfaces such as pyroclastic and
lava flows, so that the associated thermal anomalies are just a few
degrees centigrade above the ambient background (Figure 1). The
low amplitude of thermal anomalies associated with hydrothermal
systems make them difficult to detect and handle (Harris and
Stevenson, 1997), and are likely to be extremely sensitive to
external factors, especially meteorological factors such as rain,
wind, humidity and atmospheric pressure. While low amplitude
geothermal thermal anomalies are liable to dampening due to
the cooling effect of rain and wind, radiative heat fluxes will be
controlled by variations in water vapor pressure (e.g., Sekioka and
Yuhara, 1974; Bahrami et al., 2019; Ishibashi et al., 2023), which is
in turn controlled by humidity and atmospheric pressure. At such a
low temperature system, forced or free convection will also be the
dominant heat loss (Keszthelyi et al., 2003), where the convective
heat transfer coefficient will depend on wind and air temperature
(Harris, 2013).

We thus define the magmatic and hydrothermal reservoir
components of the volcanic-hydrothermal system as internal
sources that drive changes in surface temperature (Th), and the
atmospheric system as an external driver (Figure 3). To date,
most studies have focused on the role of the magmatic source
and the permeability of the hydrothermal reservoir in driving

FIGURE 1
Figure 1 from chapter 0 of Harris (2013). Sketch of the main sources of thermal emission at a volcanic hydrothermal system, modified Figure 1
in Bonneville and Gouze (1992) and reproduced by permission of American Geophysical Union. In normal conditions ground (Tground) and air
temperature (Tair) are approximately equal, so that ΔT = Tground −Tair ≈ 0. Over a subsurface heat supply, such as a magmatic intrusion above which
natural convection in a porous, or fractured, medium carries heat to the surface, ΔT becomes positive. Over a high temperature surface heat source,
such as an active lava, ΔT becomes strongly positive. The schematic also shows the main sources of heat loss from an active lava body. These being
radiation (Mrad), convection (Mconv) and conduction (Mcond).Q19
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changes in temperature recorded at the surface (e.g., Dobson et al.,
2003; Chiodini et al., 2005; Aubert et al., 2008; Harris et al., 2012).
However, we are aware of no study that has focused purely on the
potential role of external drivers on variation in Th, T0 and, hence,
ΔT (Figure 1). Thus, to provide data capable of defining the role of
external (meteorological) drivers on surface temperature variation
above a hydrothermal system, we installed two surface-temperature
measurement stations (tomeasureTh andT0), plus a weather station
co-located with the T0 station, inside Vulcano’s (Aeolian Islands,
Italy) Fossa crater (Figure 2). In this regard Vulcano, being the host
of a thermal anomaly associated with an active hydrothermal system
and a well-monitored site (Chiodini et al., 2005; Harris et al., 2009),
is an ideal laboratory to test hypotheses regarding the internal and
external effects on the amplidude of DT.

We installed the sensors in 2020, when levels of heat flux were
particularly low so that the internal element of the system could be
considered minimal and stable, and in a background or baseline state
(Mannini et al., 2019; Pailot-Bonnétat et al., 2023). In such a state,
temperature variations at the surface should be particularly sensitive
to external drivers. However, given the sensitivity of temperature
variation to both external and internal drivers (Figure 3), inter-
relations between Th, T0 and external parameters will be complex,
and any correlationwill be extremely subtle. Such amulti-variate time
series, in which there are unknown interactions between variables, is
ideally suited to amachine learning (e.g.,Malfante et al., 2018; Carniel
and Guzmán, 2020; Watson et al., 2020). In particular, application of
a deep learning-based approach to time series data can greatly aid in
advancingvolcanomonitoring, andprocessingofvolcanicgeophysical
and geochemical signals, especially when searching for patterns and
interrelations in multi-sensor time series (e.g., Manley et al., 2022;
Corradino et al., 2023; Ferreira et al., 2023).

We thus focus on isolating and defining those external drivers
that change the surface thermal state of ground above a hydrothermal
system in an abnormal fashion, our research question being:

Can, and if so how, dometeorological factors impinge on surface
thermal anomalies above geothermal systems?

To do this we apply the deep learning framework DITAN
(Giannoulis et al., 2023) to time series data for surface temperature
and meteorological conditions collected in-situ at the active
hydrothermal system atVulcano (Pailot-Bonnétat andHarris, 2024),
in an experiment designed to answer the stated research question.
We begin by describing the characteristics of the study site (Vulcano)
and the instrumentation installed there, before reviewing DITAN,
its performance and output. In effect, this is the third in a three
part series of papers where we have first set-up, tested and cross-
validated DITAN in Giannoulis et al. (2023), and then (second) set
up the experiment and data collection design in Pailot-Bonnétat and
Harris (2024).

2 Background and data

At Vulcano, the magmatic source has been placed at a depth of
2–3 km by Ferrucci et al. (1991), and the magmatic contribution to
the fumarolic gases has been established from chemical composition
(Nuccio et al., 1999). The gas signature at Vulcano thus results
from mixing of magmatic and hydrothermal fluids (marine and
meteoritic), with the hydrothermal system being described as a

biphase (water–vapor) boiling saline solution with a central vapor-
monophase zone (e.g., Carapezza et al., 1981; Chiodini et al., 1995;
Nuccio et al., 1999). Heat ascends from the mixing zone, which
has its depth ≈1 km below the Fossa Crater (Nuccio et al., 1999;
Alparone et al., 2010) to form a “heat pipe” (White et al., 1971) at the
top of which there is a bottom-heated surface zone (Figure 2C). Heat
loss from the heated surface is partitioned between the conductive
flux through diffuse soil emissions and advection at fumarole vents
(Sekioka and Yuhara, 1974; Chiodini et al., 2005; Harris, 2013). Heat
flux from the zone of soil emission accounts for 93%± 2%of the total
energy budget, is defined by a thermal anomaly (ΔT) of 1°C–5°C
(Harris et al., 2009; Mannini et al., 2019), and is associated with
vertical gradients in the temperature profilewithin 1 m of the surface
50–135 K/m (Aubert et al., 2008).

At Vulcano, heat fluxes during the period 2010 to 2020
were particularly low and stable at around 4–12 MW, as was ΔT
(Mannini et al., 2019). The period 2010–2020 has thus been defined
as a baseline or background level for heat flux, against which change
in the thermal state of the hydrothermal system can be assessed
(Pailot-Bonnétat et al., 2023). We thus chose the year 2020 on which
to target our study so as to determine external drivers on ΔT
with the system in its background state. At Vulcano, the value of
understanding system behaviour during such baseline studies was
highlighted by the unrest that followed our period of interest. This
new phase of unrest began in September 2021 and continued into
2022, and during which heat fluxes increased to peaks of around
120 MW (Pailot-Bonnétat et al., 2023).

Within the Fossa, in the vertical sense, there are thus two
elements to the system that need to be constrained: 1) the immediate
subsurface where enhanced geothermal heat flux (internal driver)
causes elevated surface temperatures and 2) the atmosphere where
meteorological parameters (external drivers) modulate surface
temperature (Figure 3). Horizontally, there are also two zones: one
of which is heated from below, and one of which is not (Figure 2C).
Thus, in our experiment set-up, the surface thermal state of the
heated and non-heated zones are tracked by two sensors that
monitor surface and air temperature, with external meteorological
conditions being measured by a third sensor array (Figure 3).

We installed the sensor network in the Fossa crater in January
2020. The network consists of two temperature stations separated
by 50 m, with one inside the heated zone and one in the non-
heated zone, plus a weather station co-located with the latter station
(Figure 2C). The experimental set-up, sensors and data sets used
here are fully described in Pailot-Bonnétat and Harris (2024), and
are summarized here in Table 1. The two temperature stations
consisted of two thermocouples (Onset HOBO TMC1-HD, signal
to noise ratio = 0.1°C) measuring surface temperature (Ts) and
air temperature (Ta) at a height of 15 cm above the surface. The
thermocouples were linked to an Onset HOBO U12-008 data logger
(storage capacity = 43,000 measurements) with a sampling rate of
one record every five-to-ten minutes. The weather station was an
Onset HOBO H21-USB which measured atmospheric pressure (S-
BPB-CM50), air temperature and relative humidity (S-THC-M002),
wind speed (S-WSB-M003), and rainfall using a tipping bucket rain
gauge (S-RGF-M002). These meteorological sensors were installed
at ground level, and the sampling rate was one record per minute.
The chosen period of analysis is 31 January 2020, 12:00:00, to 31
December 2020, 23:00:00, with data gaps existing due to the logger
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FIGURE 2
(A) Location of Vulcano in the Aeolian Island arc, and (B) of the Fossa on Vulcano, with (C) location of our measurement stations in respect to the
heated zone in the Fossa crater. F0 and FA are the two main fumaroles, gray pin is the temperature station in the heated zone, and red pin is the
co-located weather station and temperature station in the non-heated zone.

capacity being reached before download, which was a problem due
to mobility restrictions during the COVID-19 pandemic period
(Table 2).

3 Methodology

Our sensor network provides amultivariate time series, inwhich
each record is characterized by seven sensors, two sensors from the
surface system and five sensors from the atmospheric (external)

system (Figure 3). To learn the normal thermal behavior of the
surface, and subsequently define externally-driven anomalies, we
developed in Giannoulis et al. (2023) DITAN, a domain-agnostic
deep learning based framework that is effective in detecting and
interpreting temporal-based anomalies. A temporal-based anomaly,
or simply anomaly, occurs when one or more sensor values (e.g.,
pressure and/or wind speed) deviate from their expected “normal”
behavior. When this occurs on the full feature set, the anomaly
is called full-space anomaly, otherwise sub-space anomaly if it
applies to a sub feature set. When an anomaly persists for more

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2024.1372621
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Giannoulis et al. 10.3389/feart.2024.1372621

FIGURE 3
A descriptive illustration of the thermal system at Vulcano and its parameters.

TABLE 1 The sensor network of Vulcano in year 2020.

Station GPS (WGS-84) Sensors name Sensors unit

Red (cold) 38.405367, 14.960742 Ts: surface temperature degrees Celsius (°C)

Grey (hot)
38.405222, 14.960564 Ts: surface temperature degrees Celsius (°C)

Ta: air temperature degrees Celsius (°C)

Weather

38.405367, 14.960742 P: air pressure millibar (mbar)

Ta: air temperature degrees Celsius (°C)

U: wind speed meters per second (m/s)

Rain: rainfall millimeters (mm)

TABLE 2 Data gaps in the 2020 time series.

Station Data gaps (mm/dd/yyyy)

Red (cold)

05/31/2020–06/09/2020

09/04/2020–10/01/2020

10/20/2020–10/24/2020

Grey (hot)

05/31/2020–06/09/2020

09/04/2020–10/01/2020

10/20/2020–10/24/2020

Weather
05/28/2020–06/09/2020

09/01/2020–10/01/2020

than one record (e.g., two time steps) it is called sub-sequence
anomaly. The severity score of an anomaly refers to the intensity of
its contamination. Local anomalies typically receive lower scores due

to their limited impact on the time series as a whole, being primarily
confined to a specific region of the time-series. Global anomalies,
conversely, tend to receive higher scores, indicating their widespread
impact on the time series and significance across multiple data
regions.

DITAN encompasses the integral temporal properties of a time
series, built upon three assumptions: 1) the time series is predictable,
2) normality is identical to regularity, and 3) irregular records are
temporally less predictable than regular records.

The model has been tuned using Bayesian optimization, to
systematically search and exploit the range of values for various
hyperparameters, aiming to determine the optimal configuration.
Throughout this process, a forward chaining cross-validation was
used to ensure that there is no leakage of information between the
training and validation sets during the hyperparameter optimization
phase.

In Giannoulis et al. (2023), the model has been deeply
validated on six multivariate timeseries of varying anomalous
types, using several performance metrics including confusion
matrices, precision, recall and F0.5 score. It has also
been favorably compared to state of the art methods on
anomaly detection.
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DITAN is composed of four modules: 1) pre-processing, 2)
domain-agnostic modeling, 3) application of a dynamic threshold
with built-in pruning, and 4) numerical interpretation. We
briefly describe here these four modules and refer the reader
to Giannoulis et al. (2023) for further details.

3.1 Pre-processing

DITAN applies a series of steps to prepare a predictable
multivariate time series in a favorable format for deep learning
analysis. These steps include an optional decomposition of the
sensor values into residuals or trends to focus on short-term or
long-term regularities, respectively. Additionally, a mandatory min-
max scaling is applied across sensors to maintain a common value
range within [−3, 3]. A prediction-based protocol is used to forecast
a horizon given a context. In this protocol, a horizon includes the
estimation of the records within the context and the prediction of
one ormore subsequent records. Context-horizonmapping can then
be seen as an “IF-THEN” rule, where the “IF” part needs to be
estimated along with the prediction of the “THEN” part.

3.2 Domain-agnostic modeling

DITAN learns regularity across the context-horizon mappings
using an LSTM encoder-decoder with attention mechanisms
(Figure 4). LSTMs (Long Short-Term Memory) (Hochreiter and
Schmidhuber, 1997) are a type of recurrent neural network
(RNN) specially designed to model long-term dependencies in
data sequences. Unlike traditional RNNs, LSTMs incorporate
gating mechanisms, including forgetting, input and output gates,
which enable them to regulate the flow of information through
the network’s cells. These mechanisms enable LSTMs to capture
and store important information over long periods of time,
while mitigating the problems of gradient disappearance or
explosion commonly encountered in conventional RNNs. Attention
mechanisms (Luong et al., 2015) as for them enable the model to
selectively focus on different parts of input data when making
predictions.They allowDITAN to weigh the importance of different
features or elements within the input, enhancing their ability to
capture relevant information for the task at hand. This mechanism
typically involves learning attention weights that dynamically
allocate resources to different parts of the input.

In DITAN, the context is encoded in such a way that the decoder
is responsible for both reconstructing the context and constructing
the subsequent records. Each record is represented by an LSTM cell,
which helps to memorize short-term relations. Additionally, each
LSTM cell in the decoder explicitly attends to the encoder’s LSTM
cells using a cross-attention layer. Moreover, a masked self-attention
layer is employed to assess temporal weights based on the relative
positions of the LSTM cells in the decoder. The structure of this
architecture is optimized using the Bayes optimizer, which explores
and exploits the value range of hyper-parameters with respect
to the application features to select an optimal hyper-parameter
configuration.

In the training phase, both estimation and prediction errors
are utilized. An error ei is computed as the difference between the

forecasted (estimated or predicted) value xi, and the observed value
xi for each sensor d in D. DITAN employs a configurable error
function, which can be defined as either the squared eid = ‖x

i
d − x

i′
d ‖2

or absolute eid = |x
i
d − x

i′
d | error for all d ∈ D. The squared, as opposed

to absolute, errors are non-linear weighted with respect to the error
magnitude, and thus higher errors are magnified. The higher the
error on a sensor value, the more abnormal the value is considered.
A threshold is required to determine the turning point from normal
to abnormal.

Recall that normality is equated to regularity, and irregular
records are considered temporally less predictable than regular
one. Consequently, during the training phase, the objective
function of the model disregards context-horizon patterns that are
contaminated by outliers and deemed irregular. These patterns,
which constitute a small portion of the total number of patterns, are
assigned a low weight and are effectively ignored.

3.3 Dynamic thresholding with built-in
pruning

In the testing phase, only prediction errors are used. To
determine the level of prediction error that records change from
regular (normal) to irregular (abnormal), we use a thresholding
methodology (Figure 5). Prediction errors are first smoothed to
introduce locality. Next, all critical peaks are computed, which are
peak values above the minimum peak height value. To find the
minimumpeak height value, we downhill the errors in the frequency
space until we reach a bin in which variability is introduced. The
corresponding error value of that bin is used as the minimum peak
height. Then, we expand each critical peak into a critical region, as
long as the average error within its expanding region is statistically
above the overall average. The boundaries of each critical region are
trimmed using a high-pass filter that corresponds to the maximum
of error values that are shifting from the clustered errors. Error
values within critical regions are considered abnormal (severity
scores), and the corresponding records anomalous.

3.4 Numerical interpretation

The magnitude of scores across sensors within anomalous
records can be used to provide sufficient information to allow an
understanding and troubleshooting of anomalies. The contribution
of each sensor d to an anomalous record i, namely, root-cause,
is computed using a softmax function across to its corresponding
severity scores s:

es
i
d/∑

j
es

i
j

We estimate the similarity between anomalous records in
the model-space using the unit dimensionality instead of feature
dimensionality. First, we find the internal representations of each
record ri. Then, we apply Gaussian Mixture Modeling (GMM)
using an optimal number of components to classify each anomalous
record to the component with maximum probability p(ri). The
anomalous records under the same component are considered
similar.
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FIGURE 4
A graphical illustration of the DITAN architecture. The model is composed of LSTM layers along with a composite decoder and soft attention
mechanisms to capture short-term and long-term normal (regular) patterns. The number of LSTM cells in the encoder (left) is equal to the context size,
while the decoder (right) has a context sized number of LSTM cells to reconstruct, as well as a horizon sized number of LSTM cells to construct. Such a
composite decoder forces the network to stay attentive to all time steps in the encoder, instead of only the last few steps. A full description of this
model is proposed in Giannoulis et al. (2023).

FIGURE 5
DITAN thresholding methodology.

Upon this already validated architecture, we build and
introduce here a fifth module (knowledge management), involving
physical interpretation of the time series and anomalies. It is a
graphical environment which allows to create, read, update and
delete (CRUD) knowledge held in the Knowledge Base (KB,
see Supplementary Appendix A). The knowledge management
module allows complete control over the KB in the form of IF-
THEN rules that incorporate temporal constraints or rules. The
scope of a rule in our system is to characterize the physical event
responsible for the occurrence of a series of conditions.

3.5 DITAN knowledge management
module

3.5.1 Conditions
A condition (C) applies to a sensor (S) or physical event

(E) that is in an abnormal state. We define five abnormal states:
increasing, decreasing, positive, tare and missing values. Although
an S-condition can indicate any of these abnormal states, an E-
condition can only have a positive abnormal state, meaning that the
event has occurred. Therefore, post-condition is always a physical
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event, while the preconditions consist of one or more S- and/or E-
conditions. A condition occurs when an abnormal state is found to
be valid for a certain duration. In a given sequence the validation of
abnormal states is thus assessed as it follows:

• Increasing: at least three consecutive values exhibit only an
increasing trajectory.
• Decreasing: at least three consecutive values exhibit only a

decreasing trajectory.
• Positive: consecutive values exhibit only positive values.
• Tare: the first order difference at each step in the sequence

results in the same maximum value.
• Missing value: there is at least one missing time-step in the

sequence.

3.5.2 Constraints
Following Giannoulis et al. (2019), the preconditions of a rule

are constrained using both logical and temporal operators. The
conjunction (AND) logical operator is used to combine conditions,
while the negation (NOT) logical operator is used to define the
abnormal state of a condition. The conditions are temporally
constrained such that the start time of the first condition and the
start time of the last condition are at most 60 min, 24 h or 7 days
apart, introducing lag resolutions of minutes, hours or days across
rules. These constraints ensure that all preconditions occur within
a defined time interval. The post-condition of a rule exists from the
start time of the first condition to the end time of the last condition.

3.5.3 Inference engine
Following Giannoulis et al. (2019), the rule preconditions guide

the inference process by incorporating an event-driven protocol,
where DITAN’s inference engine is given in Algorithm 1. It is
handed the executable rules from the knowledge base (KB) and
the anomalous sensor values from critical regions (CR) identified
by DITAN in the time series. The objective is to report all
post-conditions in the events base (EB), by identifying valid
preconditions. This requires support by rule-chains in which the
post-condition of a rule lies in the preconditions of another.Thus, in
an outer-loop, N executable rules with e events in preconditions are
selected from the KB, e being iteratively increased until N becomes
zero. At each iteration, the FetchRules function is responsible for
selecting and ordering rules. Rules referenced the most frequently
are executed first. Given a rule R, RExecute is responsible for
validating the occurrences of its conditions across CR (sensor type)
or EB (event type). The preconditions of a rule are valid when
both temporal and logical constraints are satisfied. The occurrences
of a post-condition can also overlap. In such a case, overlapping
occurrences are merged. Merging is applied at the end of the
algorithm to preserve different event start times which are needed
in the chaining process. The final occurrences of R are stored in EB.

3.5.4 Rule validation
A rule is valid when its logical and temporal constraints are

valid. Validation of the logical constraints (negation, conjunction) is
straightforward, because each constraint is a well-defined operator.
Instead, further analysis is required for handling temporal relations.
Once all valid occurrences of the conditions have been examined, the
next step is thus to analyze their temporal differences. To accomplish

Require: KB,CR ⊳ Knowledge Base (KB), Critical

Regions (CR)

Ensure: EB ⊳ Events Base (EB)

  e← 0 ⊳ Number of events allowed in rule’s

precondition

  while True do

     rules← FetchRules(KB,e) ⊳ Fetch rules ordered

by the number of events

     if len(rules) == 0 then ⊳ Halt if there are no

more rules

         break

     end if

     for R ∈ rules do

         occurences← RExecute(CR,EB,R) ⊳ Find

occurrences in which R is validated

         if occurences ≠ [] then

              EB.update([R:occurences])⊳ Keep only

the executed rules

         end if

     end for

     e+ = 1 ⊳ Increase number of events for the next

iteration

end while

Algorithm 1. Inference Engine.

this, DITAN constructs an upper triangular matrix containing all
possible pairs of occurrences for all conditions. For instance, if there
are four conditions (C1, C2, C3, C4) DITAN will construct six pairs
of categories (C1-C2, C1-C3, C1-C4, C2-C3, C2-C4, C3-C4), and
the upper triangularmatrix allows consideration of each unique pair
of conditions without redundancy. Next, DITAN constructs chains
between the occurrences of different pairs so as to derive the final
temporal relations. A chain is deemed valid if it incorporates all the
different pairs of categories. A pair is added to the chain if it does
not violate the temporal constraint. Therefore, a rule is linked to the
occurrences of its valid chains (if multiple conditions apply) or its
valid condition (if there is only a single condition).

3.5.5 Risk factor
The risk of a (valid) rule is related to the intensity of its

preconditions. This is usually quantified by experts using fuzzy logic
(Leung and Lam, 1988) or certainty factors (Shortliffe, 1976), such
as in Giannoulis et al. (2019). However, DITAN quantifies risk by
using the severity scores. The severity score of an anomaly refers to
the intensity of its contamination. Local anomalies typically receive
lower scores due to their limited impact on the time series as a
whole, being primarily confined to a specific region in data. Global
anomalies, conversely, tend to receive higher scores, indicating
their widespread impact on the time series and significance across
multiple data regions.The risk associatedwith an S condition is equal
to the average of the severity scores within the partition (duration)
j of a critical region: RFS = average(CR

j
scores), and the risk of an

event E condition is equal to the average risk of its preconditions:
RFE = average(RFS1,…,RFEk). As a result, the risk factor RF provides
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TABLE 3 The knowledge defined by Experts in the form of temporal rules.

R1: if decrease on pressure sensor and increase on wind speed sensor started within
hours

then low pressure system (meteorological) event

R2: if positive on rain sensor and low pressure system event started within hours then rainstorm (meteorological) event

R3: if low pressure system event and decrease on red surface temperature and
decrease on grey surface temperature started within hours

then decrease on surface temperatures (surface external driver) event

R4: if rainstorm event and decrease on red surface temperature and decrease on grey
surface temperature started within hours

then decrease on surface temperatures (surface external driver) event

R5: if low pressure system event and decrease on red surface temperature started
within hours

then decrease on red surface temperature (surface external driver) event

R6: if low pressure system event and decrease on grey surface temperature started
within hours

then decrease on grey surface temperature (surface external driver) event

R7: if tare on air temperature then rapid change on air temperature (instrumental) event

a general overview of the predictability offset across conditions
within their validated durations. The maximum risk is selected
when an E condition occurs multiple times within overlapping
durations. Finally, to preserve a relative risk across valid rules, within
a probabilistic-like range, max-normalization is applied.

3.6 DITAN: initialization of the knowledge
management module for Vulcano

DITAN’s “knowledge” is based on rules entered by experts.
An example of rule entry via DITAN’s graphical interface is given
in Supplementary Appendix B.The time scale of “normal” variations
in the time series then needs to be defined, before DITAN is trained
and anomalies detected.

3.6.1 Rules
ForVulcano,knowledge is expressed in the formof seven temporal

rules R as presented in Table 3. The rules were set to describe severe
meteorological (external) events, allowing us to assess storm systems
as causes of anomalous decreases in surface temperatures, followed by
recovery. We define three event types (Table 3):

1. R1 and R2 define a meteorological event, since only external
conditions are linked to each other.

2. R3 to R6 characterize anomalous surface temperature events
resulting from external drivers (Figure 3).

3. R7 considers sensor failure, thus finding an “instrumental
event.”

The post-condition of R1 is in the preconditions of R2, R3,
R4 and R5, and the post-condition of R2 is in precondition of
R4. Instead, R1 and R7 have no events in their preconditions.
Therefore, all of the possible inferences are: (a) R1, (b) R1 → R2,
(c) R1 → R3, (d) R1 → R2 → R4, (e) R1 → R5, (f) R1 → R6,
(g) R7. According to Algorithm 1 executions are divided into three
iterations. In the first iteration, (a, g) are executed. In the second
iteration, (b, c, e, f) are executed. Finally, in the third iteration, (d)
is executed.

3.6.2 Data preparation
There are seven sensors in our Vulcano network (Table 1), for

which the frequency of measurements varies between one record
every 5 min for the hot and cold stations, and one record per minute
for the weather station. Thus, all measurements were sub-sampled
to a frequency of 5 min, and then down-sampled (averaged) to a
common frequency of one record (time-step) per hour. This results
in 6,799 records (for around 283 days), where each record is a vector
of seven sensor values. Thus, the temporal resolution of anomalies
is expected to be of at least 1 h. An overview of range of values
recorded for data set is given in Table 4. There are three main data
set characteristics:

1. All temperature sensors exhibit diurnal and annual cycles
(normality).

2. Sensors do not have similar value ranges, have scales that
differ by six orders of magnitude between rainfall, through
temperature, humidity and wind speed, to pressure.

3. There are three significant data gaps in June, September, and
October.

3.6.3 Pre-processing
Of the 1,253 missing time-steps (hours), only 73 can be linearly

interpolated.The remaining 1,180missing time-stepswere removed,
because they formed gaps that were too long to allow interpolation.
Since normality is learned as the regularity of the context-horizon
mappings, the impact of these data gaps on the frequency of
occurrence of regular context-horizon mappings is negligible due to
their relatively small size.

Although decomposition is an option, we chose to decompose
measurements solely into the residuals component. This decision
was based on the understanding that external phenomena manifest
themselves as short-term interruptions to normality causing
perturbations to the diurnal cycle. In contrast, the internal driver
primarily affects the long-term trend. Therefore, the values of
each sensor are transformed into residuals by estimating its
decomposition type and period. Min-max normalization is then
applied across all sensors to introduce a common scale, without
biasing any correlations or underlying distributions. The resulting
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TABLE 4 Sensor description for Vulcano in the year 2020.

Station Sensor Unit Min Max Mean Standard Deviation

Weather Pressure mbar 967 1,002 986 5.8

Weather Air-temp °C 4.6 48.3 19.8 8.6

Weather Wind-speed m/s 0 4.4 0.3 0.49

Weather Rain mm 0 0.5 0.002 0.019

Grey (hot) tsurf-grey °C 6.7 45.2 23 7.7

Grey (hot) tair-grey °C 6.9 45.2 22.5 7.6

Red (cold) tsurf-red °C 5.9 45.3 20.7 8.4

TABLE 5 Pre-processed sensor description for Vulcano in the year 2020.

sensor Decomposition Period min max Mean std

Pressure Additive 143 −3 3 −0.04 0.6

Air-temp Additive 24 −3 3 −0.4 1.07

Wind-speed Additive 22 −3 3 −0.9 0.44

Rain Additive 78 −3 3 −2.6 0.2

tsurf-grey Additive 24 −3 3 −0.04 0.83

tair-grey Additive 24 −3 3 0.004 0.82

tsurf-red Additive 24 −3 3 −0.3 0.97

value range [−3, 3] allows a good spread in range that is not too
broad. This ensures that the presence of outlier (extreme) values are
not excessively compressed, and maintains outlier relative positions
and magnitudes. The effectiveness of the pre-processing strategy is
closely tied to its ability to preserve the actual correlations between
sensors.The objective is to convert the data into a format suitable for
analysis and input into DITAN, while still preserving the inherent
relationships within the data. A summary of pre-processing output
is given in Table 5.

3.6.4 Forecasting scenario
The selection of the appropriate size for observation

context and forecast horizon needs to be based on the time
scale of expected variations. Surface temperatures will exhibit
diurnal cycles of 24 h, while also following an annual cycle.
In addition, following (Sanders, 1984) major storm systems
will develop over hours so that parameters such as wind speed
and pressure will evolve over timescales of 6–24 h during high
intensity events, such as Medicanes. Thus, following Haque et al.
(2021) the context window is set to 24 h to allow a forecast
horizon of 6 h.

The training phase of DITAN is thus conducted on data with
24 h context size and 6 h horizon size. The aim of learning is to
reduce the differences between forecasted and actual values by

identifying suitable model parameters. To ensure equal importance
in minimizing all differences, we employ mean absolute error
(MAE) as the loss function. By using absolute differences to
compute gradients of the loss function, DITAN can mitigate the
influence of extreme events such as Mediterranean hurricanes,
whichwould otherwise dominate as themain indicator of normality.
Instead, DITAN prioritizes the average understanding of underlying
patterns, with patterns appearing more frequently having a greater
influence on determining normality.

During the Bayes optimization process, a total of 20 different
hyper-parameter configurations were examined. Each configuration
was assessed using four expanding time windows applied to
the pre-processed data set, resulting into an examination of 80
(=4 × 20) models. The first (initial) configuration is described
in Table 6.

We observe that no improvement occurs until the 5th

configuration, with a significant improvement being observed
during the 6th configuration with relatively small variations
occurring up to the 16th configuration. A gradual decrease is
then observed between the 16th and 20th configurations, at which
point the objective function converges (Figure 6). By changing from
the initial to the optimal configuration, the optimization error is
decreased from 0.268 to 0.195, resulting in a 27% improvement on
the objective function.
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TABLE 6 Initial parameter setup.

Parameter Initial value Parameter Initial value

Layers 1 (per network) Learning rate 0.001

Units 80 Learning scheduler constant

Unit decay 1.0 Learning patience 10

Dropout 0.3 Batch size 64

reg. strength 0.0

FIGURE 6
Convergence plot of DITAN across configurations using Bayes
Optimizer.

The hyper-parameters of the optimal (20th) configuration
are reported in Table 7. The resulting model consists of 19.815
parameters. These parameters are updated in batches of 32
consecutive patterns, where each record within these patterns is
encoded using 32 units. In addition, use of a larger learning rate
of 0.01 means that the convergence process becomes capable at
exploring global maxima more effectively throughout all epochs.
To maintain stability during training, a step decay factor is used,
which gradually reduces the learning rate every 4 epochs. This
approach strikes a balance between exploration and stability in the
optimization process. The final parameters are selected at epoch
78, at which point the patience of early stopping is exhausted,
with the internal validation loss not improving by > 0.0003 for 10
consecutive epochs after epoch 68.

3.6.5 Detecting anomalies
In the detection phase the trained model is used to predict

normality across 6,843 (records) hours, resulting in a corresponding
number of errors per sensor, as illustrated in Figure 7. Each error
is computed as the absolute difference between the predicted
and observed value, according to the selected loss function. Each
sequence is then smoothed using a simple moving average (SMA)
of 6-hour. An important consideration when reducing temporal
resolution is to maintain a balanced trade-off between smoothness

and introduced lag. The “goodness” of the proposed window size is
demonstrated in Figure 8, using a subset of errors from a randomly
selected (pressure) sensor. We observe that the smoothed versions
of the errors maintain a responsiveness to the raw errors.

4 Results

Our objective is to examine the intensity, duration
and type of anomalies caused on surface temperature by
meteorological/atmospheric effects at a hydrothermal system.
External drivers on the thermal state of the surface are described by
air pressure, wind speed, rain, humidity and air temperature. To do
this, DITAN detects anomalies across the seven sensors, and then
uses the expert rules to interpret them as physical events. Within
this framework, two or more anomalies are considered to be linked
to each other when their start difference is within a defined time
interval.

4.1 Normality

Figure 9 gives key statistics of the preprocessed sensors.We see 3
features of normality: one typical of the meteorological system, and
two characteristic of the hydrothermal system:

1. The four sensors of the meteorological station recording the
external parameters (pressure, air temperature, wind-speed,
and rain), exhibit the expected correlation during the passage
of a low-pressure system. That is, as pressure falls so too does
air temperature, but wind speed and rainfall increase.

2. The surface temperatures for the hot zone exhibit a higher
median than those of the cold zone. This is because the surface
temperature of the hot zone is buffered by the enhanced
geothermal heat flux associated with the hydrothermal
system. The difference between the medians for the two
surface temperatures (0.3) thus gives the median normalized
magnitude of ΔT for the year 2020.

3. The median air temperature in the hot zone is higher than
that at the weather station, again due to buffering by the
geothermally heated surface 15 cm below the air temperature
sensor, giving a median normalized magnitude for the air
temperature anomaly during 2020 of 0.5.

4.2 Anomalies

From the 6,843 records (hours), 1,737 were detected as
anomalous. This means around 72 days (or 25% of total records)
experience anomalous events. The number of anomalies and critical
regions per sensor are given in Table 8. The most critical regions
occur on the temperature sensors, but the number of critical regions
in the cold zone is slightly higher than in hot zone for air and
surface temperatures.This again highlights the buffering effect of the
geothermal heat flux in the hot zone. Wind-speed, rain and pressure
also exhibit anomalies, indicating that the main source of anomalies
on the temperature sensors at Vulcano during 2020, and thus also on
ΔT, were due to external drivers.

Frontiers in Earth Science 11 frontiersin.org

https://doi.org/10.3389/feart.2024.1372621
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Giannoulis et al. 10.3389/feart.2024.1372621

TABLE 7 The hyper-parameters of the optimal DITAN model.

Hyper-parameters Values Hyper-parameters Values

Layers 1 Learning Rate 0.01

Units 32 Learning Scheduler step decay

Units Decay 0.910362945353 Learning Patience 10

Dropout 0 Batch Size 32

Regularization Strength 0

FIGURE 7
Box plots of the prediction errors of DITAN across the 7 sensors. For each sensor, the boxplot consists of a rectangular box which spans the
interquartile range (IQR) of the data, the line inside representing the median. “Whiskers” extend from the edges of the box to indicate the range of the
data outside the IQR, often with outliers (black points) shown beyond the whiskers. Small median errors were observed for all sensors with small IQRs.
Several outliers were observed for the rain sensor, since rain is a rare event in the observed sequence.

4.3 Rule execution

Thenumber of valid executions per rule are given in Table 9.The
two meteorological events (rules R1 and R2) are executed seven and
three times, respectively. Instead, R4 does not occur, R3 and R6 are
executed only once, and R5 twice. This highlights the influence of
external drivers on the surface temperature on both the hot and cold
zones, but with a higher influence on the cold zone. Rule R7 was
executed nine times. This indicates that data were corrupted on nine
occasions due to the sensor giving a spurious output, such as during
automatic reset, or the presence of recording glitches.

The main anomalous meteorological events occurring at
Vulcano in the year 2020 were thus associated with the passage of
low pressure systems and rainstorms (cloudbursts), as defined by
rules R1 and R2, respectively. To obtain the temporal occurrences
of these anomalous meteorological events we need to analyze the
critical regions of DITAN within the pressure, rain and wind speed
sensors, where the root-causes of the critical regions in these sensors
are given in Figure 10. Recall that root causes are probabilistic
contributions of each sensor to the anomalous character of a time-
step (record), ranging from0 to 1.During normal time-steps, all root
cause values are set to zero. Consequently, the root cause diagrams

provides a detailed analysis, at a time-step resolution, of the temporal
difference (delay) between anomalous events triggered at various
sensors. We observe that most of critical regions for wind speed and
pressure are closely correlated in terms of time, contributing to the
occurrence of R1. The critical regions for rain are concentrated later
in the year, in close proximity to critical regions for wind speed and
pressure, resulting in execution of R2 at this time.

4.4 Abnormal meteorological events

Critical regions for the air pressure sensor demonstrate a
negative correlation with the wind speed sensor. This implies
that when pressure exhibits an abnormal decrease, the anomalous
values of the corresponding critical region for wind speed tends to
increase. The positive correlation with critical regions of the rain
sensor indicate that low pressure systems that were classified as
abnormal were also associated with intense rain fall. We here use
abnormal in the sense that the pressure, wind speed and rainfall
intensity associated with the low pressure system in question was
not normal compared with the trends learnt by DITAN for “regular”
system behavior.
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FIGURE 8
A sub-part of the raw and smoothed error sequences on pressure sensor.

FIGURE 9
Box-plot of the pre-processed data for Vulcano in 2020. Despite the fact that decomposing to only residuals results in more values outside of the
interquartile ranges, the sensors are able to preserve their correlations.

Of all the 19 critical regions identified for 2020, nine are
for pressure, seven are for wind speed, and two are for rain.
Abnormalities in the time series for pressure, wind speed and
rainfall, related to passage of a low pressure system (Rule R1),
occurred during the first 4 months of 2020, and then again in
December. R1 was executed (Figure 11):

• once in early-February (event duration = 2 days);
• once in late-March (event duration = 2 days);
• once in mid-April (event duration = 1 day);
• once in early-May (event duration = 5 days);
• three times during December (combined duration =

4 days).

Summer and autumn lacked abnormal meteorological events,
with all sensors maintaining relatively low (normal) levels
(Figure 11). Rainfall remained at relatively low (normal) levels
during the spring, summer and autumn months of 2020, but in

December the rainstorm rule (R2) was executed three times. These
abnormal rainstorm events lasted a total of 5 days, and coincided
with the three occurrences of abnormalities due to low pressure
systems.

4.5 Abnormalities in surface temperatures

The values of the surface temperatures in both the cold and
hot zones are positively correlated (Figure 12). However, a partial
correlation is observed between their anomalous values within
critical regions, since the surface temperature of the hot zone is
buffered to the external conditions by the internal driver (i.e., the
geothermal heat source). Two critical regions were identified for
surface temperature in both the hot zone and cold zone (Figure 13).
Anomalies are confined to the winter and spring months, while
summer and autumn are free of critical regions. An abnormal
decrease in surface temperature in the cold zone (R5)was detected in
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TABLE 8 DITAN’s detection results per sensor.

Sensor name Critical regions Anomalous values

Pressure 11 462

Air-temp 11 99

Wind-speed 11 678

Rain 6 537

tsurf-grey 13 298

tair-grey 10 363

tsurf-red 16 562

TABLE 9 Rules executed using the inference engine.

Rule ID Event type Valid executions

R1 Meteorological 7

R2 Meteorological 3

R3 Surface external driver 1

R4 Surface external driver 0

R5 Surface external driver 2

R6 Surface external driver 1

R7 Instrumental 9

early-February and lasted 2 days, although this did not affect the hot
zone. An abnormal decrease in surface temperaturewas recorded for
both zones in mid-May, and lasted 6 days. During this period, the
surface temperature at the hot zone began to decrease a few hours
before the cold zone.

The two-day-long February abnormality in surface temperature
began on 3 February, and was characterized by a dampening of
the diurnal cycle, but only for the cold zone whose amplitude
decreased by 4°C (Supplementary Appendix C). Abnormality began
around midnight of 2–3 February, and was coincident with an
abnormal decrease in pressure from 996 mbar to 976 mbar until
midnight on 4–5 February. The pressure drop at 0.4 mb h−1 was
matched by an increase in wind speed from 7 km/h to 36 km/h, with
no rainfall being recorded (Supplementary Appendix C). DITAN
therefore characterized this meteorological event as a low-pressure
system, but not a rain storm.

The six-day-long May surface temperature abnormality
began on 9 May, continued until 15 May, and affected both
the cold and the hot zones. The abnormality was due to a
dampening of the diurnal cycles in surface temperature by
2°C–3°C (Supplementary Appendix C). For the 6 days prior to the
abnormality diurnal ranges were 10°C (32°C–22°C) in the cold zone
and 16°C (36°C–20°C) in the hot zone, whereas for the 6 days of
abnormality ranges were 8°C (32°C–26°C) and 13°C (31°C–18°C).

The surface temperature abnormality was associated with an
abnormality in pressure which fell from 990 mbar to 976 mbar over
48 h beginning at midnight 8–9 May (Supplementary Appendix C).
Pressure recovered on 15–16 May, also synchronous with the end
of abnormality in surface temperature. The greatest decrease in
pressure was at a rate of 1 mbar per hour during 10 May, which
classes the event as a “meteorological bomb.” Such events are
defined as “extra-tropical surface cyclones whose central pressure
fall averages at least 1 mbar h−1 for 24 h” being a “maritime, cold-
season event, with hurricane-like features” (Sanders and Gyakum,
1980). Meteorological bombs are not necessarily associated with
rain, but are associated with sustained high winds which increase
as the pressure decreases, making them “wind storms” (Sanders
and Gyakum, 1980). Indeed, the 6 days of abnormality were
characterized by no rain, but winds peaked at 30 km/h which was
twice the speed recorded in the 6 days prior to passage of the bomb
(Supplementary Appendix C) and, given the sheltered location
of the anemometer inside the crater, high. DITAN therefore also
characterized this event as an anomalous low-pressure system, but
not a rain storm.

Surface temperature abnormalities are thus due to suppressed
ranges of the diurnal cycle.This is triggered by decreases in pressure,
which would have increased radiative cooling of the surface through
its influence on vapor pressure. In addition, forced convectionwould
have been greatly enhanced by the high winds. The combined effect
is to dampen the diurnal cycle of surface temperature, making the
cycles abnormal.

4.6 Prediction errors

Figure 7 presents the prediction errors across sensors, and
based on these errors, the risk associated with the occurrence
of abnormal meteorological events is also depicted in Figure 11.
The risk of an abnormal low-pressure system varies from 0.33
to 0.43, whereas the risk of an abnormal rainstorm varies from
0.62 to the maximum risk of 1.0. That is because, especially
during the early days of December, the prediction offset in rain
activity was higher than the prediction offset of wind speed and
pressure activities.

The risk of abnormal decrease in cold surface temperature
(R5) is 0.31, while the risk of abnormal decrease of hot surface
temperature (R6) is higher at 0.43 (Figure 13). This suggests that
abnormal surface temperature changes in the hot zone have a higher
level of risk of occurrence than in the cold zone. In addition, the
risk of abnormal surface temperature decreases at both cold and
hot zones (R3) is 0.27, which is lower because it considers all
conditions fromR5 and R6.This observation suggests that abnormal
temperature changes across the entire surface carry slightly less risk
of occurrence compared to changes in either the cold zone or hot
zone temperatures.

5 Discussion

The critical regions for surface temperatures in the cold and
hot zones, as well as wind speed and pressure, are given as a root-
causes diagram in Figure 12.The detected physical events associated
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FIGURE 10
The root-causes diagram for pressure, rain and wind speed sensors.

FIGURE 11
Timeline of detected meteorological events (R1, R2).

with anomalies in these critical regions have been checked as true
positives (Table 10). This analysis shows that critical regions for
surface temperature, wind speed and pressure are closely associated,
showing partial or complete overlap. The passage of abnormally
intense low pressure systems (meteorological event R1) always
caused surface temperature anomalies involving abnormal decreases
in temperature. Meteorological event R1 drove decreases in surface
temperature for both hot and cold zones. However, the cooling
experienced by the hot zone was modulated by the effect of the
hydrothermal system heat source. Thus, critical regions were more
associated with passage of a low pressure system for the cold zone
than the hot zone.

This has implications for the effect of external drivers on the
surface thermal anomaly (ΔT). In early-February 2020, a low-
pressure system passed over Vulcano, persisting for 2 days. During
this period, the cold zone experienced an abnormal decrease in

surface temperature. However, no abnormality was recorded in
the hot zone. This, thus, drove the thermal anomaly upwards,
but increasing ΔT was the result of an external rather than an
internal driver. However, the effect was limited to just 2 days. A
second low pressure system passed over Vulcano in late-March
and lasted 2 days. This was followed a one day-long period of low
pressure system conditions in mid-April. In both of these cases,
there were no abnormalities in the surface temperatures at either
the cold or hot zones, meaning that the thermal anomaly was
unaffected. However, in early-May, a low-pressure system persisted
for approximately 5 days. Its influence decreased the surface
temperature in the hot zone and the cold zone, disrupting normality
across the entire surface. Abnormal rainstorm events were detected
throughout December, and were associated with abnormalities in
wind speed and pressure. However, surface temperatures retained
their normality in both the cold and hot zones.
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FIGURE 12
The root-causes diagram for pressure, wind speed and (red, grey) surface temperature sensors.

FIGURE 13
The timeline of the detected surface external driver events (R3, R5, R6).

This means that, even when at low, baseline levels, external
drivers have a minimal role in causing abnormalities in surface
temperature in the hot and cold zones, and hence also the
surface thermal anomaly. Passage of intense low pressure
systems with high winds was the main external driver for
abnormal variations in surface temperature. However, even

the most intense, cloudburst events did not force abnormality
on the surface temperature time series, meaning that when
the system is at baseline levels, surface temperature normality
is immune to rain. However, this conclusion applies only to
surface temperatures (Pailot-Bonnétat et al., 2023; Pailot-Bonnétat
and Harris, 2024).
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TABLE 10 The detected meteorological and surface external driver events.

Rule ID Physical event Average risk Verified

R1 Low pressure system 0.38 ✓

R2 Rainstorm 0.75 ✓

R3 Decrease on surface temperatures 0.27 ✓

R5 Decrease on cold zone surface temperature 0.31 ✓

R6 Decrease on hot zone surface temperature 0.43 ✓

5.1 Physical link between intensity of
meteorological abnormality and surface
cooling

At Vulcano, heat produced by condensation of ascending
hydrothermal fluids has been shown to heat the surface
(Chiodini et al., 2005) buffering the surface temperature so that
surfaces are warmer than in an ambient scenario. Both heated and
non-heated surfaces undergo diurnal and annual variation. Thus,
because the heated surface is just a few degrees greater than ambient
it is subject to the same external factors, such as solar heating,
wind and rain, that drive surface heating and cooling. However,
temperature cycles for the heated zone are at a higher level, thus
creating the thermal anomaly (ΔT). For 2020 at Vulcano we found
that the only external factor that could drive an abnormal behavior
in the diurnal cycles was particularly low atmospheric pressures and
wind speeds, rain not playing a role.

5.2 Abnormality in the thermal anomaly
due to external drivers

Only particularly intense and long lasting low-pressure systems
associated with meteorological bombs can dampen the diurnal
cycles at both heated and non-heated surfaces. In such a case,
because both Th and T0 behave in the same way, there is no
abnormality in ΔT. However, passage of less intense systems of
shorter duration only dampen the cycles in T0, thereby causing
abnormality in ΔT. The buffering provided by the internal heat
source is sufficient to protect the hot surface from abnormal
cooling. Thus, we consider passage of moderate intensity systems
the only external driver on ΔT, where the effect of abnormal
decrease in T0, but not Th, will increase ΔT for the period of
the event.

6 Conclusion

Deep learning is beginning to be applied to understand
abnormalities in diurnal cycles of surface temperature in non-
volcanic environments, such as at urban heat islands (Qi et al.,
2023), but not yet at low temperature thermal anomalies associated
with hydrothermal systems. At bottom-heated surfaces above

hydrothermal systems, due to the low amplitude of the anomaly
we expect the form and amplitude of diurnal cycles in surface
temperature to have both external drivers (the meteorological
system) and internal drivers (the magmatic and hydrothermal
systems). However, the role of the meteorological system in driving
abnormality in surface temperatures at both geothermally heated
and non-heated ground, in a vegetation-free crater, is poorly
constrained. Most studies focus instead on the role of rainfall in
influencing meteoric inflow into the hydrothermal mixing zone
(Carapezza et al., 1981; Chiodini et al., 1995; Nuccio et al., 1999).
We have thus applied DITAN to a year of meteorological data for the
geothermally-heated zone in the Vulcano Fossa crater to understand
the role of external (meteorological) factors in heating and cooling
the surface.

We intentionally chose the year 2020, as heat fluxes were
particularly low and stable allowing us to assess the background
state of the system. Defining baselines is fundamental in volcano
surveillance (McGuire et al., 1995). In the baseline state, the system
appears to be remarkably robust and relatively immune to external
drivers. Divergence from normality in surface temperature only
occurred twice, and was associated with the passage of particularly
intense low-pressure systems with durations of 2–5 days. Abnormal
rainfall events did not cause divergence from normality in surface
temperature cycles. Thus, during low levels of heat flux, external
factors play a minimal role in driving the system away from
normality in terms of diurnal and seasonal cycles of surface heating
and cooling.

When applied to meteorological and surface temperature time
series for surfaces above an active hydrothermal system, and
configured with rules to define physical events, DITAN allows
anomalies driven by external factors to be detected and classified. It
could thus be applied to any geothermal system where appropriate
data are available. If, as here, applied during a period when external
drivers are variable, but internal drivers are stable and at background
levels, all anomalies will be characteristic of a “stable” system whose
surface temperature abnormalities are only driven bymeteorological
events. Once this is defined, such externally-driven abnormalities
can be identified, cleaned and removed from periods when the
internal drivers become variable and, hence, the hydrothermal
system becomes unstable.

We consider this work as test and starting point for a
model that cleans data set of externally driven thermal anomalies,
isolating abnormalities in thermal anomalies due to internal
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drivers, such as recharge of the magmatic system or changes
in system permeability. During our period of study, no such
events occurred. However, recharge of the magmatic system
or changes in system permeability can be the prelude to
eruption, or enhanced CO2 soil degassing, so that isolating such
internal changes is fundamental. That the thermal anomaly is
so subtle, and that influences on it are multivariate, makes this
task challenging, and hence requiring of a machine-learning
based approach. Thus, defining the key internal drivers for,
and their association and temporal interplay with, surface
temperature abnormalities as the system moves into unrest will be
our next step.
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