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In the present paper, we investigate the effect of the initial conditions on the
dynamics of the spring-block landslide model. The time evolution of the studied
model, which is governed by a system of stochastic delay differential equations,
is analyzed in the mean-field approximation, which qualitatively exhibits the
same dynamics as the initial model. The results of the numerical analysis show
that changing the initial conditions has different effects in different parts of
the parameter space of the model. Namely, moving away from the fixed-point
initial conditions has a stabilizing effect on the dynamics when the noise, the
friction parameters a (higher values) and c as well as the spring stiffness k are
taken into account. The stabilization manifests itself in a complete suppression
of the unstable dynamics or a partial limitation of the effect of some friction
parameters. On the other hand, the destabilizing effect of changing the initial
conditions occurs for the lower values of the friction parameters a and for b. The
main feature of destabilization is the complete suppression of the sliding regime
or a larger parameter range with a transient oscillatory regime. Our approach
underlines the importance of analyzing the influence of initial conditions on
landslide dynamics.
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1 Introduction

Under natural conditions, slopes can generally be found in different dynamic states:
(group 1) stable slopes with no prior or current movement, (group 2) creeping slopes,
which exhibit permanent small displacements, with periodic intermittent sudden increases
in the movement of the whole slope or some parts of the slope, and (group 3) the
so-called conditionally stable slopes, whose stability strongly depends on their initial
conditions. From the point of view of nonlinear dynamics, the conditions that leads
to the instability of stable slopes (group 1) were first studied by Davis (1992), who
initially proposed that the dynamics of the two-block system sliding on an inclined
slope can be described by a system of three ordinary differential equations. In particular,
Davis (1992) proposed such a model for certain classes of debris flows to explain
the episodic surge motions. However, he was unable to estimate the onset of surging
because he could not accurately determine the interaction between the steep feeder
section of the slope and the lower and flatter accumulation section of the slope. In this
paper, Davis (1992) assumed a velocity-dependent frictional force and suggested that
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there is a time delay between the movement of the feeder and
the accumulation section of the slope. Our previous research,
Kostić et al. (2023b), Kostić et al. (2023a), and Kostić and Stojković
(2023) started from the model by Davis (1992) and introduced
the explicit effect of time delay and random background noise
Kostić et al. (2023b), with variable friction law Kostić et al. (2023a)
and under the influence of river level oscillations, which were
modeled as an external effect of colored noise Kostić and Stojković
(2023). In the paper Kostić et al. (2023b) we first justified the
introduction of random noise into a landslide model based on the
results of recorded ambient noise within an existing landslide in
Serbia. The results of further analysis showed that the background
noise has a positive effect on the dynamics of the landslide, i.e.,
the increase in noise intensity requires a lower deformability of
the slope and a higher displacement delay for bifurcation to occur.
This confirms the positive stabilizing effect of increasing the noise
intensity on the dynamics of the analyzed landslide model. In
Kostić et al. (2023a), we first excluded the presence of significant
noise in the observed landslide displacement. In a further analysis,
we examined the effects of delayed failure and different friction
laws on the change of dynamic regimes. It appears that under
homogeneous geological conditions, sliding stabilizes with the
increase of friction parameters, while rapid irregular sliding along
the slope occurs with the increase of certain friction parameters. In
the paper Kostić and Stojković (2023) we first show that the noise
part of the deterministic model for the oscillation of the Kolubara
River and the Ibar River (Serbia) has the properties of colored noise.
In further analysis, it is found that landslide dynamics is sensitive to
the change in noise intensity and that the increase in noise intensity
leads to the onset of unstable landslide dynamics, while landslide
dynamics is rather robust to the change in correlation time ϵ.

Concerning the dynamics of creeping slopes (group 2), some
initial studies on creeping slopes were carried out by Chau (1995),
who proposed a systemof first-order ordinary differential equations,
but where friction depends on both on the rate and state (Dieterich-
Ruina friction law). This model is proposed for creeping slopes, and
Chau (1995) investigated the specific bifurcation that can occur in
the analyzed dynamical system depending on the state parameters
of the sliding surface. He also showed that a small perturbation
can lead to instability of the previously stable slope. Our earlier
work Kostić et al. (2014) built on the work of Chau (1995) and
further investigated the role of time delay in the emergence
of deterministic chaos in the model of landslide dynamics. In
particular, we investigated the dynamics of a single-block model
on an inclined slope with Dieterich–Ruina friction law under the
variation of two time delays and the initial shear stress, assuming
that a periodic perturbation of the initial shear stress mimics the
external triggering effect of long-distance earthquakes or some
non-natural vibration source. The results obtained show conditions
under which complex landslide dynamics occur, with a complete
Ruelle–Takens–Newhouse route to deterministic chaos.

Chau (1999) also investigated the creeping slopemodel, inwhich
friction depends on two state variables. Chau applied Reyn’s stability
classification for the three-dimensional space and showed that the
change of the nonlinear parameters of the slip surface, which can
be triggered by rainfall or human activities, causes the occurrence
of bifurcations in the studied dynamical system. One conclusion
of his research is that, assuming a two-state variable friction law,

the weakening of the velocity observed in the laboratory does not
necessarily imply an unstable creeping slope with the same slip
surface in the field (in the case of an infinite slope), while an
amplification of the velocity does not necessarily imply a stable slope
with the same slip surface. On the other hand, Qin et al. (2002) has
proposed a nonlinear dynamicalmodel for landslide evolution in the
form of a system of three first-order nonlinear differential equations,
where stress, displacement and precipitation change over time. The
proposed model was applied to the case study of Xintan landslide,
successfully reproducing the observed data.

The third dynamical state of the natural slope, i.e., conditionally
stable slopes, has not been investigated so far. From a purely
theoretical point of view, dynamic systems are in some cases
sensitive to the change of initial conditions, i.e., this change can lead
to the occurrence of global bifurcations Fuentes et al. (2011). We
have already investigated such sensitivity from the point of view of
theoretical neurology Franović et al. (2016). In the present work, we
investigate the effect of changing the initial conditions on the onset
of a complex dynamical behavior, which is supposed to correspond
to an active landslide movement.

From an engineering point of view, landslides are indeed
sensitive to changes in the original soil conditions. For example,
Schilirò et al. (2019) conducted various flume tests in order to
investigate the triggering process of rainfall-induced shallow
landslides, focusing on the role of initial hydraulic conditions by
changing the slope.They found that at a slope of 35°, the initial water
content increases before the triggering occurs. This result and the
lack of failure at gradient of 27° indicate the remarkable sensitivity
of the tested material to even small variations in gradient. The data
derived from the pore water pressure and soil moisture sensors point
to two potential trigger mechanisms for variations in initial water
content, namely, the advance of the wetting front at relatively high
initial soil moisture content and the rise of a temporary perched
water table, respectively, in relation to the failure mode. In general,
the triggering of landslides was suggested to be strongly dependent
on the initial water content and the initial slope angle. Also, initial
porosity of the soil was already pointed out by Iverson et al. (2000)
as an important initial condition for the occurrence of very different
landslide rates. In their research, they raise a simple question:
Can small differences in initial conditions cause some landslides
to accelerate catastrophically and others to creep downslope only
intermittently? Their analysis shows that landslides with a rate of
1 m/s can be triggered in moist sandy soil with a porosity of about
0.5, while the landslide rate drops to 0.002 m/s for the same soil
with a porosity of about 0.4. Similar conclusions were drawn by
Iverson et al. (2015), whose results from the Oso 2014 landslide
indicate the primary dependence of landslide mobility on initial
water content, initial porosity and initial sediment conditions.

Numerous previous studies have examined the stability of rock
and soil slopes under various conditions, employing diverse models
and utilizing a range of analytical, numerical and experimental
methodologies (Xu et al., 2017; Zhang and Zhou, 2018; Zhou and
Chen, 2019; Cheng et al., 2021; Shou et al., 2022; Li et al., 2023). In
the present work, we start from the phenomenological spring-block
model of Davis (1992), introduce a time delay and assume a velocity-
dependent friction law proposed by Morales et al. (2017). We then
simulate the model numerically and investigate how it behaves
under the change of initial conditions. The paper is organized as

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1374942
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Prekrat et al. 10.3389/feart.2024.1374942

follows. Section 2 provides a description of the investigated model.
The methodology, results and related discussion can be found in
Section 3, while Section 4 is dedicated to the main conclusions and
directions for further research.

2 Model description

Let us consider a spring-block model on an inclined plane with
angle θ, consisting of block-units withmass δm connected by springs
with stiffness κδm and natural length δl which are acted upon by
friction F(v)δm

F (v) = av3 − bv2 + cv. (1)

A steady-state motion with sliding velocity v is achieved when the
tangential component of gravity is balanced by friction, as the spring
effects within the block cancel each other out:

δmg sin θ = F (v)δm ⇔ F (v) = g sin θ. (2)

This means that in the simplest case of a general motion of the
block-unit i with the position pi and the velocity vi, Newton’s
second law

dvi
dt
= g sin θ+ κ(pi+1 − pi − δl) − κ(pi − pi−1 − δl) − F(vi) , (3)

reduces to

dvi
dt
= F (v) − F(vi) +

i+1

∑
j=i−1
j≠i

κ(pj − pi) . (4)

We will now proceed as in Vasović et al. (2016). If we go beyond
the nearest-neighbor interaction, introduce a spring-effect delay τ
and a Wiener noise d-term, and switch to a unit’s displacement xi
and velocity yi = vi − v relative to the steady-state values, we can
model our system of block-units by the following stochastic delay
differential equation:

dyi
dt
= F (v) − F(v+ yi) +

N

∑
j=1
j≠i

κ(xτ,j − xi) +√2d
dwi

dt
. (5)

Here subscript τ indicates that the quantity is evaluated at t− τ.
After applying the mean-field (MF) approximation to Eq. 5

(see Supplementary Appendix), we obtain the following system that
describes our spring-block model.

dmx

dt
=my, (6a)

dmy

dt
= −(3av2 − 2bv+ c)my − (3av− b)m

2
y − am

3
y

− (3av− b)sy − 3amysy + k(mx,τ −mx), (6b)

dsx
dt
= 2u; (6c)

dsy
dt
= −2sy[(3av

2 − 2bv+ c) + 2(3av− b)my + 3a(m
2
y + sy)] − 2ku+ 2d,

(6d)
du
dt
= −u[(3av2 − 2bv+ c) + 2(3av− b)my + 3a(m2

y + sy)] − ksx + sy.

(6e)

The system follows the time evolution of the MF variables.

• mx–mean displacement of the block elements,
• my–mean displacement velocity of the block elements,
• sx–variance of the displacement of the block elements,
• sy–variance of the displacement velocity of the block elements,
• u–cross-variance between the displacement and displacement

velocity of the block elements,

under the influence of the following parameters.

• a, b, c–friction parameters,
• d–noise,
• k–spring stiffness.

3 Results

The friction in our model is given by

F (v) = av3 − bv2 + cv > 0, (7)

where the default values of the parameters are

v = 0.1, a = 3.2, b = 7.2, c = 4.8, (8)

and is shown in Figure 1. Since we would like to track the behavior
of the system when the friction parameters are varied individually,
positivity of the friction for the default sliding velocity F(v = 0.1) > 0
puts the following restrictions on the intervals of the friction
parameters:

a > b/v− c/v2 = −408, for fixed default b and c, (9a)

b < av+ c/v = 48.32, for fixed default a and c, (9b)

c > bv− av2 = 0.688, for fixed default a and b. (9c)

If we wish the friction to keep the same shape (as a function of v),
the friction parameters must also fulfill the following conditions:

• a > 0 so that F(v) generally increases with v;
• F(v)must have a local maximum followed by a local minimum.

The second condition means that F′(v) = 3av2 − 2bv+ c = 0 has two
real solutions,

v± =
b±√b2 − 3ac

3a
, (10)

which is fulfilled if b2 > 3ac. The parameter constraints (9) are now
changed to:

0 < a < 3.6, for fixed default b and c, (11a)

6.788 < b < 48.32, for fixed default a and c, (11b)

0.688 < c < 5.4, for fixed default a and b. (11c)

For v± > 0 to apply, it must hold b > 0 and ac > 0. Also, if v− is a local
maximum and v+ a local minimum, we must have F″(v−) < 0 and
F″(v+) > 0, which is automatically satisfied. Finally, we wish to have
F(v+) > 0, which yields b2 < 4ac and therefore

3ac < b2 < 4ac. (12)
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FIGURE 1
(A) Friction function F(v) = av3−bv2+cv for a = 3.2, b = 7.2 and c = 4.8. Our default value for the sliding velocity v = 0.1 lies in the nearly linear part of the
friction function. (B) Change of friction shape under variation of a (a =0, 1, 2, 3, 4, 5, from bottom to top).

This further restricts our intervals to:

2.7 < a < 3.6, for fixed default b and c, (13a)

6.788 < b < 7.838, for fixed default a and c, (13b)

4.05 < c < 5.4, for fixed default a and b. (13c)

A deviation from these intervals would not automatically invalidate
our model (e.g., our default v is not close to v+, so small parameter
changes would not necessarily be affected by F(v+) < 0), but would
certainly require special attention.

Let us now find fixed points of system (6a)–(6e) describing the
time evolution of our model. Equating all time derivatives to 0
immediately leads tomy = 0 and u = 0 ((6a) and (6c)). Furthermore,
dmx = 0 impliesmx,τ =mx, so that the delay term in (6b) disappears.
This leaves us with the following system for the fixed point:

0 = (3av− b) sy, (14a)

0 = 3as2y + (3av2 − 2bv+ c) sy − d, (14b)

0 = sy − ksx. (14c)

For k = 0 the system is solved by sy = 0 provided that d = 0. For k > 0
we have sx = sy/k and.

0 = (3av− b) sy, (15a)

0 = 3as2y + (3av2 − 2bv+ c) sy − d. (15b)

If 3av− b ≠ 0, as satisfied by the default values of the friction
parameters and sliding velocity, the system is again solved by
sy = 0 and d = 0. However, if 3av− b = 0, a second non-trivial fixed
point with

sy =
−(3av2 − 2bv+ c) ±√(3av2 − 2bv+ c)2 + 12ad

6a
(16)

appears, which can be simplified into

sy =
3v2 − c/a±√(3v2 − c/a)2 + 12d/a

6
. (17)

Since sx, sy ≠ 0, this fixed point presumably corresponds to
oscillations within the system that do not affect the motion of the
center of mass. For the default friction parameters, the second fixed
point appears for v = b/(3a) = 0.75. As we can see from (10), this
value lies in the middle of the interval between v− and v+, in which
the friction shows a weak dependence on the sliding velocity. It
is interesting to note that our friction law has up to three sliding
solutions for the same friction value in a certain range of inclination
angles. The behavior of the system in this regime could be an
interesting topic for further research.

We will examine the behavior of the system around the
fixed point:

my = 0, sx = 0, sy = 0, u = 0, d = 0. (18)

For the sake of simplicity, we introduce an offset parameter δ and
look at the initial conditions

mx0 = δ, my0 = δ, sx0 = δ, sy0 = δ, u0 = δ, (19)

and d ≠ 0. A system with d≪ 1 and δ≪ 1 is considered to be near
the fixed point.

System (6a)–(6e) was solved numerically in MATLAB using
the forward Euler method with time step dt = 0.001 for a dense
selection of system parameters and a wide range of initial conditions
δ. The late-time series of solutions were then automatically classified
as describing (asymptotically) sliding, oscillatory or complex
oscillatory regime. The classification was done by looking at the
time series in a window t ∈ [99000,100000]. Examples of solutions
in these regimes are shown in Figure 2. The solution is classified
as unstable if the oscillation amplitude increases exponentially
and reaches numerical infinity within a very short time, which
terminates the numerical simulation.

We see from Figure 2 that mx generally increases with time,
indicating a higher sliding velocity than the assumed steady-state
value v or perhaps landslide straining. It is important to note that
this change δv is typically orders of magnitude smaller than the
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FIGURE 2
Examples of time series for solutions in each of the detected regimes—sliding (A), oscillatory (B), and complex oscillatory regime (C,D). The subfigures
(E–H) show the corresponding phase portraits for the time series (A–D). Their respective Lyapunov exponents are 1.4(9)⋅10–6, 0.011(6), −0.007(19),
−0.03(2), and they are consistent with the value 0. The system parameters for these examples are: a = 3.2, b = 7.2, c = 4.8, d = 10–4, v = 0.1.

sliding velocity v. In the sliding regime, the effect disappears when
we remove the noise d. However, this is not the case in the oscillating
regimes. A possible explanation could also be the non-isotropic
friction law. Indeed, if the friction parameter b is switched off, the
effect is drastically reduced and often even completely eliminated.
The interaction with other parameters of the system, such as the
delay time, deserves further investigation.

The regime of complex oscillations is considered as a
phenomenological model of landslide dynamics. It is particularly
interesting because it can manifest itself in various different forms.
Period-doubling is the simplest example of this regime (Figure 2C).
The doubling is clearly visible when comparing the phase portraits
in Figure 2F and Figure 2G. More complicated examples of complex
oscillations such as stick-slip and pulse-like oscillations can be seen
in Figure 3.

After recognizing the possible solution types, we independently
varied all parameters of the system and investigated their influence
on the extent of the different regimes in the parameter space
of the system. We performed this analysis both near and away
from the fixed point of the system in order to work out the
separate influence of the initial conditions on the dynamics of the
landslide.

When analyzing in detail the transition between the different
dynamical regimes of the landslide model under study (Figure 4),
it becomes clear that a Ruelle-Takens-Newhouse route to
deterministic chaos occurs. We start with stable sliding at low values
of k and τ. As the control parameters are increased, an oscillatory
regime first appears through a direct Hopf bifurcation, followed by a

period-doubling bifurcation and finally the emergence of a complex
oscillatory regime.

The role of k and τ could be further investigated for very high
values of τ. We have found that for extremely high values of τ,
the change of k leads to a regular periodic stick-slip behavior.
Nevertheless, it should be noted that such behavior could be
considered transient, at least in some cases, since the widening of the
investigated time window transforms the regular periodic stick-slip
behavior into regular pulse-like oscillations.

As for the change in initial conditions, it has the following effects
on the dynamics of the studied landslide model under investigation.
From the point of view of spring stiffness, i.e., the deformability of
the slope, and the time delay, distant initial conditions “stabilize”
the landslide dynamics (Figure 5). In particular, when the initial
conditions are away from the fixed point, a complex oscillatory
regime is pushed towards higher values of k and τ.

Let us now present some analytical arguments for the qualitative
behavior of the transition between the sliding and the oscillatory
regime in the (k,τ)-diagram for small τ. Since my = dmx/dt, the
oscillations in mx should also be reflected in oscillations in
my, therefore we can consider Eq. 6b. Firstly, assuming that the
amplitude of the oscillations is small, we can disregard higher powers
ofmy. Secondly, the amplitude of sy oscillations is typically orders of
magnitude smaller than that ofmy, so we can also disregard sy-terms
which yields

dmy

dt
= −(3av2 − 2bv+ c)my + k(mx,τ −mx) . (20)
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FIGURE 3
Examples of the complex oscillatory regime with large delay for a = 3.2, b = 7.2, c = 4.8, d = 10–4, v = 0.1, and initial conditions with offset δ = 10–4. The
figure rows contain time series (A–C), phase portraits (D–F), power spectra (G–I), and Lyapunov exponents (J–L). The Lyapunov exponents (J), (K), and
(L) converge to λmax(J) = 0.0008(9), λmax(K) = −0.15(6) and λmax(L) = −0.12(3).

If we consider the small τ regime and remember that my = dmx/dt,
we can expand mx,τ =mx(t− τ) as follows

mx,τ =mx − τmy +
τ2

2
dmy

dt
− τ

3

6
d2my

dt2
+O(τ4) , (21)

which transforms (20), up to O(τ4), into a second-order linear
differential equation

kτ3

6
d2my

dt2
+(1− kτ

2

2
)
dmy

dt
+ (3av2 − 2bv+ c+ kτ)my = 0. (22)
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FIGURE 4
(A,B) Bifurcation of the oscillation amplitude for a = 3.2, b = 7.2, c = 4.8, d = 10–4, v = 0.1, τ = 10, and initial conditions with offset δ = 10–1. Plot (A) clearly
shows sliding (k ≲6), oscillatory (6≲ k ≲17) and complex oscillatory regime (k ≳17). Plot (B) in addition shows zoomed-in region in which
period-doubling appears—up to about k = 20.5, there are four distinct amplitudes for each k, which is consistent with the period-doubling time series
in Figure 2C. (C) Phase diagram for a = 3.2, b = 7.2, c = 4.8, d = 10–4, v = 0.1, with initial conditions δ = 10–6, showing the onset of the period-doubling
within the complex oscillatory regime.

FIGURE 5
Comparison of the phase diagrams for a = 3.2, b = 7.2, c = 4.8, d = 10−4, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from
the fixed point.
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FIGURE 6
Comparison of the phase diagrams for b = 7.2, c = 4.8, d = 10−4, k = 12, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from the
fixed point.

If the discriminant of its characteristic polynomial

Δ = (1− kτ
2

2
)
2
− 2kτ3

3
(3av2 − 2bv+ c+ kτ) (23)

is negative, we can expect an oscillating solution, and if it is positive,
a sliding solution. The discriminant can be further rewritten as a
quadratic polynomial in kτ2:

Δ = − 5
12
(kτ2)2 −(1+

2τF′ (v)
3
)kτ2 + 1, (24)

which has one positive zero

kτ2 = 6
5
(√(1+

2τF′ (v)
3
)
2
+ 5

3
−(1+

2τF′ (v)
3
)), (25)

that is

k = 4√6− 6
5τ2
−
(4−√6)F′ (v)

5τ
+
F′(v)2

4√6
+O (τ)

= 0.76
τ2
− 1.07

τ
+ 1.22+O (τ) , (26)

which defines the boundary between the sliding and the oscillating
regime. For the data used in Figure 6A, this boundary is well fitted by

k =
{{{
{{{
{

4.56 (2)
τ2
+

8.5 (2)
τ
+ 1.6 (4) , for 0.1 < τ < 0.5,

5.4 (1)
τ2
+

5.2 (2)
τ
+ 5.19 (8) , for 0.5 < τ < 5.0.

(27)

We see that (26) only qualitatively explains the sharp drop of the
transition line in Figure 5 between these two regimes for small τ.
It also explains the nearly vertical small-delay transition line in
Figure 6 and Figure 9. Namely, since the leading term in (26) does
not depend on the friction parameters, a constant k leads to a nearly
constant τ, regardless of the changes in the friction parameters. This
applies in particular to a, as it has the least influence on F′(v).

As far as the effect of the friction parameters is concerned, the
influence of the variation of the higher values of the parameter a is
similar to the effect of the slope deformability (Figure 6). However,
at very low values of the parameter a, a new dynamical regime
appears, namely, the unstable regime (Figure 7). The investigated
system exhibits such dynamics regardless of the values of the time
delay for the values of the parameter a in the range of 0.03–0.04.
The influence of the initial conditions can further destabilize the
dynamics of the landslide, i.e., the sliding regime with small time
delay (Figure 7B) “vanishes” when the initial conditions are away
from the fixed point. It should be noted that low values of a are
far outside the reasonable parameter intervals (13a)–(13c), so it is
possible that the unstable regime is caused by a velocity feedback
loop where the system is accelerated by the increasing “unnatural”
negative friction. Other parameters have also been considered at low
values, but a has receivedmore attention because its phase transition
line is at low values.

Turning to the next friction parameter, it turns out that shifting
the initial conditions away from the fixed point interacting with b
destabilizes the dynamics of the landslide. Indeed, the oscillatory
regime occurs at much lower values of b and τ when δ is closer
to 0. Moreover, at higher values of b, the system enters a mixed
sliding/oscillatory regime, the extent of which is largely independent
of the initial conditions (Figure 8). Here, even a small change in b or
τ can cause the “random” switching between the oscillatory and the
sliding regime. If we look closer at Figure 8C, we see that in the case
of the mixed regime λmax remains positive even for very long but
finite time series and only converges asymptotically to 0. This could
perhaps explain the “chaotic” nature of themixed regime.This is also
in contrast to other regimes where λmax ends up oscillating tightly
around 0 within a finite time (Figure 3J–L; Figures 8D, E).

As for the joint effect of the friction parameter c and the change
in initial conditions, the dynamics of the landslide seems to stabilize
for initial conditions away from the fixed point. In particular, it can
be seen in Figure 9 that in this case the complex oscillatory regime
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FIGURE 7
Comparison of the phase diagrams for b = 7.2, c = 4.8, d = 10−4, k = 12, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from the
fixed point.

FIGURE 8
Comparison of the phase diagrams for a = 3.2, c = 4.8, d = 10−4, k = 1, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from the
fixed point. In the mixed regime, the phase diagram “randomly” alternates between the sliding and oscillatory regime for small changes in b and τ. The
diagrams (C–E) show the typical behavior of λmax in the mixed, oscillatory and sliding regime, respectively (δ = 10−6).
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FIGURE 9
Comparison of the phase diagrams for a = 3.2, b = 7.2, d = 10−4, k = 1, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from the
fixed point.

FIGURE 10
Comparison of the phase diagrams for a = 3.2, b = 7.2, c = 4.8, k = 12, v = 0.1 and with initial conditions near [(A), δ = 10−6] and far [(B), δ = 10−1] from the
fixed point.

occurs for lower values of c than when the initial conditions are close
to the fixed point.

The interaction of noise and change in initial conditions is shown
in Figure 10. It appears that moving away from the fixed point
stabilizes the dynamics of the landslide, as complex oscillations only
occur for a very narrow range of parameters when δ is away from 0
(Figure 10B).

4 Conclusion

In this paper we investigate the effects of initial conditions
on the dynamics of the phenomenological spring-block model.
The initial model is described by a system of stochastic delay
differential equations in which both the delay of the displacement
and the random background noise are taken into account. By
applying themean-field approximationmethod, we have formulated

a corresponding mean-field variant of the initial model. Such a
deterministic mean-fieldmodel has qualitatively the same dynamics
as the starting stochastic one. The analysis of the changes in the
dynamics of the landslide model caused by the varying initial
conditions was carried out numerically.

When the initial conditions start near the fixed point, the
following dynamical regimes occur: (1) sliding regime, (2)
oscillatory regime, (3) complex oscillatory regime, (4) unstable
regime, (5) mixed sliding/oscillatory regime. The sliding regime
represents the stable equilibrium regime of the creeping landslide.
Regular periodic oscillations are considered as the transient unstable
regime, while the complex oscillatory regime as well as unstable
and mixed sliding regime correspond to the unstable landslide
dynamics.

For the initial conditions away from the fixed point, the
following can be observed: (1) the change in the initial conditions
does not lead to a new dynamical regime, (2) the change in
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the initial conditions acts as a stabilizing or destabilizing factor,
depending on which system parameter it interacts with. The
stabilizing effect occurs when interacting with the noise intensity
d, the friction parameter c, higher values of the friction parameter
a and the spring stiffness (slope deformability) k. This stabilizing
effect manifests itself as follows: (1) almost complete suppression
of the occurrence of an unstable landslide (interacting with d),
(2) partial limitation of the effect of the friction parameters a
and c in the sense that an unstable landslide occurs at lower
(parameter c) or higher values (parameter a) of the control
parameters. A similar effect is captured by the interaction with
the spring stiffness (slope deformability) k. The destabilizing
effect of changing the initial conditions occurs when interacting
with the parameter b and lower values of the parameter a. The
destabilizing effect is shown by the fact that a transient oscillatory
regime occurs at lower values of the parameter b and the stable
sliding regime is completely suppressed at lower values of the
parameter a.

As far as the interaction between the displacement delay and
the change in the initial conditions is concerned, the change in
the initial conditions only has an influence on the effect of the
delay if it interacts with the friction parameter b, lower values
of the friction parameter a or the noise intensity. In the case of
the noise intensity, a change in the initial conditions leads to a
complex oscillatory regime that only occurs at higher values of the
displacement delay. For the friction parameter b, a change in the
initial conditions leads to the appearance of the oscillatory regime
for much lower values of the delay, while for the lower values
of the parameter a, a change in the initial conditions suppresses
the appearance of the stable sliding regime for low values of the
time delay.

From an engineering point of view, the results of our
research underline the importance of initial conditions for
landslide dynamics. The nature of this effect (stabilizing or
destabilizing) strongly depends on the friction parameters, the
noise intensity, the displacement delay and the deformability of
the slope.

In our research, we found that at extremely high values
of displacement delay (which are hardly to be expected under
real conditions), long-lasting stick-slip-like motion occurs (e.g.,
τ = 60, k = 6, δ = 10–6, t up to 105), which can be considered
as the most representative phenomenological model of real
landslide dynamics. Further research should investigate the
possible occurrence of these stick-slip dynamics for a much
smaller delay, which should bring the results closer to those
expected in practice. However, we have observed short-term
transient stick-slip behavior for a delay as small as τ = 5
(e.g., τ = 5, k = 10, δ = 10–6, t ≲ 50 and τ = 15, k = 5, δ = 10–6,
t ≲ 1000).

The experimental verification of the proposed model and its
conclusions could in principle be performed with a similar setup
as in Pajalić et al. (2021) or Cheng et al. (2021). To compute the
variables of the MF model and observe their evolution over time,
a precise and fast mapping of the large number of points on
the slope would be required. The initial steady-state velocity of
the landslide could be controlled by adjusting the speed of the
artificial rain as well as the steepness of the slope. On the other
hand, the variation of the friction parameters could be realized by

using different soil samples. This could be an interesting topic for
future research.
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